functional.py 54.3 KB
Newer Older
1
import math
2
3
import numbers
import warnings
4
from enum import Enum
5
6

import numpy as np
vfdev's avatar
vfdev committed
7
from PIL import Image
8
9
10

import torch
from torch import Tensor
11
from typing import List, Tuple, Any, Optional
12

13
14
15
16
17
try:
    import accimage
except ImportError:
    accimage = None

18
19
20
from . import functional_pil as F_pil
from . import functional_tensor as F_t

21

22
class InterpolationMode(Enum):
23
24
25
26
27
28
29
30
31
32
33
34
    """Interpolation modes
    """
    NEAREST = "nearest"
    BILINEAR = "bilinear"
    BICUBIC = "bicubic"
    # For PIL compatibility
    BOX = "box"
    HAMMING = "hamming"
    LANCZOS = "lanczos"


# TODO: Once torchscript supports Enums with staticmethod
35
36
# this can be put into InterpolationMode as staticmethod
def _interpolation_modes_from_int(i: int) -> InterpolationMode:
37
    inverse_modes_mapping = {
38
39
40
41
42
43
        0: InterpolationMode.NEAREST,
        2: InterpolationMode.BILINEAR,
        3: InterpolationMode.BICUBIC,
        4: InterpolationMode.BOX,
        5: InterpolationMode.HAMMING,
        1: InterpolationMode.LANCZOS,
44
45
46
47
48
    }
    return inverse_modes_mapping[i]


pil_modes_mapping = {
49
50
51
52
53
54
    InterpolationMode.NEAREST: 0,
    InterpolationMode.BILINEAR: 2,
    InterpolationMode.BICUBIC: 3,
    InterpolationMode.BOX: 4,
    InterpolationMode.HAMMING: 5,
    InterpolationMode.LANCZOS: 1,
55
56
}

vfdev's avatar
vfdev committed
57
_is_pil_image = F_pil._is_pil_image
vfdev's avatar
vfdev committed
58
_parse_fill = F_pil._parse_fill
vfdev's avatar
vfdev committed
59
60
61


def _get_image_size(img: Tensor) -> List[int]:
62
    """Returns image size as [w, h]
vfdev's avatar
vfdev committed
63
64
65
    """
    if isinstance(img, torch.Tensor):
        return F_t._get_image_size(img)
66

vfdev's avatar
vfdev committed
67
    return F_pil._get_image_size(img)
68

vfdev's avatar
vfdev committed
69

70
def _get_image_num_channels(img: Tensor) -> int:
71
72
    """Returns number of image channels
    """
73
74
75
76
77
78
    if isinstance(img, torch.Tensor):
        return F_t._get_image_num_channels(img)

    return F_pil._get_image_num_channels(img)


vfdev's avatar
vfdev committed
79
80
@torch.jit.unused
def _is_numpy(img: Any) -> bool:
81
82
83
    return isinstance(img, np.ndarray)


vfdev's avatar
vfdev committed
84
85
@torch.jit.unused
def _is_numpy_image(img: Any) -> bool:
86
    return img.ndim in {2, 3}
87
88
89
90


def to_tensor(pic):
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.
91
    This function does not support torchscript.
92

93
    See :class:`~torchvision.transforms.ToTensor` for more details.
94
95
96
97
98
99
100

    Args:
        pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
vfdev's avatar
vfdev committed
101
    if not(F_pil._is_pil_image(pic) or _is_numpy(pic)):
102
103
        raise TypeError('pic should be PIL Image or ndarray. Got {}'.format(type(pic)))

104
105
106
    if _is_numpy(pic) and not _is_numpy_image(pic):
        raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndim))

107
108
    default_float_dtype = torch.get_default_dtype()

109
110
    if isinstance(pic, np.ndarray):
        # handle numpy array
surgan12's avatar
surgan12 committed
111
112
113
        if pic.ndim == 2:
            pic = pic[:, :, None]

114
        img = torch.from_numpy(pic.transpose((2, 0, 1))).contiguous()
115
        # backward compatibility
116
        if isinstance(img, torch.ByteTensor):
117
            return img.to(dtype=default_float_dtype).div(255)
118
119
        else:
            return img
120
121

    if accimage is not None and isinstance(pic, accimage.Image):
122
        nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=default_float_dtype)
123
124
125
126
127
128
129
130
        pic.copyto(nppic)
        return torch.from_numpy(nppic)

    # handle PIL Image
    if pic.mode == 'I':
        img = torch.from_numpy(np.array(pic, np.int32, copy=False))
    elif pic.mode == 'I;16':
        img = torch.from_numpy(np.array(pic, np.int16, copy=False))
131
132
    elif pic.mode == 'F':
        img = torch.from_numpy(np.array(pic, np.float32, copy=False))
133
134
    elif pic.mode == '1':
        img = 255 * torch.from_numpy(np.array(pic, np.uint8, copy=False))
135
136
    else:
        img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
137
138

    img = img.view(pic.size[1], pic.size[0], len(pic.getbands()))
139
    # put it from HWC to CHW format
140
    img = img.permute((2, 0, 1)).contiguous()
141
    if isinstance(img, torch.ByteTensor):
142
        return img.to(dtype=default_float_dtype).div(255)
143
144
145
146
    else:
        return img


147
148
def pil_to_tensor(pic):
    """Convert a ``PIL Image`` to a tensor of the same type.
149
    This function does not support torchscript.
150

vfdev's avatar
vfdev committed
151
    See :class:`~torchvision.transforms.PILToTensor` for more details.
152
153
154
155
156
157
158

    Args:
        pic (PIL Image): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
159
    if not F_pil._is_pil_image(pic):
160
161
162
        raise TypeError('pic should be PIL Image. Got {}'.format(type(pic)))

    if accimage is not None and isinstance(pic, accimage.Image):
163
164
        # accimage format is always uint8 internally, so always return uint8 here
        nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.uint8)
165
166
167
168
169
170
171
172
173
174
175
        pic.copyto(nppic)
        return torch.as_tensor(nppic)

    # handle PIL Image
    img = torch.as_tensor(np.asarray(pic))
    img = img.view(pic.size[1], pic.size[0], len(pic.getbands()))
    # put it from HWC to CHW format
    img = img.permute((2, 0, 1))
    return img


176
177
def convert_image_dtype(image: torch.Tensor, dtype: torch.dtype = torch.float) -> torch.Tensor:
    """Convert a tensor image to the given ``dtype`` and scale the values accordingly
178
    This function does not support PIL Image.
179
180
181
182
183
184

    Args:
        image (torch.Tensor): Image to be converted
        dtype (torch.dtype): Desired data type of the output

    Returns:
vfdev's avatar
vfdev committed
185
        Tensor: Converted image
186
187
188
189
190
191
192
193
194
195
196
197

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """
198
199
200
201
    if not isinstance(image, torch.Tensor):
        raise TypeError('Input img should be Tensor Image')

    return F_t.convert_image_dtype(image, dtype)
202
203


204
def to_pil_image(pic, mode=None):
205
    """Convert a tensor or an ndarray to PIL Image. This function does not support torchscript.
206

207
    See :class:`~torchvision.transforms.ToPILImage` for more details.
208
209
210
211
212

    Args:
        pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).

213
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
214
215
216
217

    Returns:
        PIL Image: Image converted to PIL Image.
    """
Varun Agrawal's avatar
Varun Agrawal committed
218
    if not(isinstance(pic, torch.Tensor) or isinstance(pic, np.ndarray)):
219
220
        raise TypeError('pic should be Tensor or ndarray. Got {}.'.format(type(pic)))

Varun Agrawal's avatar
Varun Agrawal committed
221
222
223
224
225
226
    elif isinstance(pic, torch.Tensor):
        if pic.ndimension() not in {2, 3}:
            raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndimension()))

        elif pic.ndimension() == 2:
            # if 2D image, add channel dimension (CHW)
Surgan Jandial's avatar
Surgan Jandial committed
227
            pic = pic.unsqueeze(0)
Varun Agrawal's avatar
Varun Agrawal committed
228

229
230
231
232
        # check number of channels
        if pic.shape[-3] > 4:
            raise ValueError('pic should not have > 4 channels. Got {} channels.'.format(pic.shape[-3]))

Varun Agrawal's avatar
Varun Agrawal committed
233
234
235
236
237
238
239
240
    elif isinstance(pic, np.ndarray):
        if pic.ndim not in {2, 3}:
            raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndim))

        elif pic.ndim == 2:
            # if 2D image, add channel dimension (HWC)
            pic = np.expand_dims(pic, 2)

241
242
243
244
        # check number of channels
        if pic.shape[-1] > 4:
            raise ValueError('pic should not have > 4 channels. Got {} channels.'.format(pic.shape[-1]))

245
    npimg = pic
Varun Agrawal's avatar
Varun Agrawal committed
246
    if isinstance(pic, torch.Tensor):
247
248
249
        if pic.is_floating_point() and mode != 'F':
            pic = pic.mul(255).byte()
        npimg = np.transpose(pic.cpu().numpy(), (1, 2, 0))
250
251
252
253
254
255
256
257
258
259

    if not isinstance(npimg, np.ndarray):
        raise TypeError('Input pic must be a torch.Tensor or NumPy ndarray, ' +
                        'not {}'.format(type(npimg)))

    if npimg.shape[2] == 1:
        expected_mode = None
        npimg = npimg[:, :, 0]
        if npimg.dtype == np.uint8:
            expected_mode = 'L'
vfdev's avatar
vfdev committed
260
        elif npimg.dtype == np.int16:
261
            expected_mode = 'I;16'
vfdev's avatar
vfdev committed
262
        elif npimg.dtype == np.int32:
263
264
265
266
267
268
269
270
            expected_mode = 'I'
        elif npimg.dtype == np.float32:
            expected_mode = 'F'
        if mode is not None and mode != expected_mode:
            raise ValueError("Incorrect mode ({}) supplied for input type {}. Should be {}"
                             .format(mode, np.dtype, expected_mode))
        mode = expected_mode

surgan12's avatar
surgan12 committed
271
272
273
274
275
276
277
278
    elif npimg.shape[2] == 2:
        permitted_2_channel_modes = ['LA']
        if mode is not None and mode not in permitted_2_channel_modes:
            raise ValueError("Only modes {} are supported for 2D inputs".format(permitted_2_channel_modes))

        if mode is None and npimg.dtype == np.uint8:
            mode = 'LA'

279
    elif npimg.shape[2] == 4:
surgan12's avatar
surgan12 committed
280
        permitted_4_channel_modes = ['RGBA', 'CMYK', 'RGBX']
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
        if mode is not None and mode not in permitted_4_channel_modes:
            raise ValueError("Only modes {} are supported for 4D inputs".format(permitted_4_channel_modes))

        if mode is None and npimg.dtype == np.uint8:
            mode = 'RGBA'
    else:
        permitted_3_channel_modes = ['RGB', 'YCbCr', 'HSV']
        if mode is not None and mode not in permitted_3_channel_modes:
            raise ValueError("Only modes {} are supported for 3D inputs".format(permitted_3_channel_modes))
        if mode is None and npimg.dtype == np.uint8:
            mode = 'RGB'

    if mode is None:
        raise TypeError('Input type {} is not supported'.format(npimg.dtype))

    return Image.fromarray(npimg, mode=mode)


299
def normalize(tensor: Tensor, mean: List[float], std: List[float], inplace: bool = False) -> Tensor:
300
    """Normalize a tensor image with mean and standard deviation.
301
    This transform does not support PIL Image.
302

303
    .. note::
surgan12's avatar
surgan12 committed
304
        This transform acts out of place by default, i.e., it does not mutates the input tensor.
305

306
    See :class:`~torchvision.transforms.Normalize` for more details.
307
308

    Args:
309
        tensor (Tensor): Tensor image of size (C, H, W) or (B, C, H, W) to be normalized.
310
        mean (sequence): Sequence of means for each channel.
311
        std (sequence): Sequence of standard deviations for each channel.
312
        inplace(bool,optional): Bool to make this operation inplace.
313
314
315
316

    Returns:
        Tensor: Normalized Tensor image.
    """
317
318
    if not isinstance(tensor, torch.Tensor):
        raise TypeError('Input tensor should be a torch tensor. Got {}.'.format(type(tensor)))
319

320
321
    if tensor.ndim < 3:
        raise ValueError('Expected tensor to be a tensor image of size (..., C, H, W). Got tensor.size() = '
322
                         '{}.'.format(tensor.size()))
323

surgan12's avatar
surgan12 committed
324
325
326
    if not inplace:
        tensor = tensor.clone()

327
328
329
    dtype = tensor.dtype
    mean = torch.as_tensor(mean, dtype=dtype, device=tensor.device)
    std = torch.as_tensor(std, dtype=dtype, device=tensor.device)
330
331
    if (std == 0).any():
        raise ValueError('std evaluated to zero after conversion to {}, leading to division by zero.'.format(dtype))
332
    if mean.ndim == 1:
333
        mean = mean.view(-1, 1, 1)
334
    if std.ndim == 1:
335
        std = std.view(-1, 1, 1)
336
    tensor.sub_(mean).div_(std)
337
    return tensor
338
339


340
def resize(img: Tensor, size: List[int], interpolation: InterpolationMode = InterpolationMode.BILINEAR) -> Tensor:
vfdev's avatar
vfdev committed
341
    r"""Resize the input image to the given size.
342
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
343
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
344
345

    Args:
vfdev's avatar
vfdev committed
346
        img (PIL Image or Tensor): Image to be resized.
347
348
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), the output size will be matched to this. If size is an int,
Vitaliy Chiley's avatar
Vitaliy Chiley committed
349
            the smaller edge of the image will be matched to this number maintaining
350
            the aspect ratio. i.e, if height > width, then image will be rescaled to
vfdev's avatar
vfdev committed
351
            :math:`\left(\text{size} \times \frac{\text{height}}{\text{width}}, \text{size}\right)`.
352
            In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
353
354
355
356
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`.
            Default is ``InterpolationMode.BILINEAR``. If input is Tensor, only ``InterpolationMode.NEAREST``,
            ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported.
357
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
358
359

    Returns:
vfdev's avatar
vfdev committed
360
        PIL Image or Tensor: Resized image.
361
    """
362
363
364
    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
365
366
            "Argument interpolation should be of type InterpolationMode instead of int. "
            "Please, use InterpolationMode enum."
367
368
369
        )
        interpolation = _interpolation_modes_from_int(interpolation)

370
371
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
372

vfdev's avatar
vfdev committed
373
    if not isinstance(img, torch.Tensor):
374
375
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.resize(img, size=size, interpolation=pil_interpolation)
vfdev's avatar
vfdev committed
376

377
    return F_t.resize(img, size=size, interpolation=interpolation.value)
378
379
380
381
382
383
384
385


def scale(*args, **kwargs):
    warnings.warn("The use of the transforms.Scale transform is deprecated, " +
                  "please use transforms.Resize instead.")
    return resize(*args, **kwargs)


386
387
def pad(img: Tensor, padding: List[int], fill: int = 0, padding_mode: str = "constant") -> Tensor:
    r"""Pad the given image on all sides with the given "pad" value.
388
    If the image is torch Tensor, it is expected
389
390
391
    to have [..., H, W] shape, where ... means at most 2 leading dimensions for mode reflect and symmetric,
    at most 3 leading dimensions for mode edge,
    and an arbitrary number of leading dimensions for mode constant
392
393

    Args:
394
        img (PIL Image or Tensor): Image to be padded.
395
396
397
        padding (int or sequence): Padding on each border. If a single int is provided this
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
398
            this is the padding for the left, top, right and bottom borders respectively.
399
400
401
402
403
404
            In torchscript mode padding as single int is not supported, use a sequence of length 1: ``[padding, ]``.
        fill (number or str or tuple): Pixel fill value for constant fill. Default is 0.
            If a tuple of length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant.
            Only number is supported for torch Tensor.
            Only int or str or tuple value is supported for PIL Image.
405
        padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
406
407
408

            - constant: pads with a constant value, this value is specified with fill

409
410
            - edge: pads with the last value on the edge of the image,
                    if input a 5D torch Tensor, the last 3 dimensions will be padded instead of the last 2
411
412
413
414
415
416
417
418
419
420

            - reflect: pads with reflection of image (without repeating the last value on the edge)

                       padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                       will result in [3, 2, 1, 2, 3, 4, 3, 2]

            - symmetric: pads with reflection of image (repeating the last value on the edge)

                         padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                         will result in [2, 1, 1, 2, 3, 4, 4, 3]
421
422

    Returns:
423
        PIL Image or Tensor: Padded image.
424
    """
425
426
    if not isinstance(img, torch.Tensor):
        return F_pil.pad(img, padding=padding, fill=fill, padding_mode=padding_mode)
427

428
    return F_t.pad(img, padding=padding, fill=fill, padding_mode=padding_mode)
429
430


vfdev's avatar
vfdev committed
431
432
def crop(img: Tensor, top: int, left: int, height: int, width: int) -> Tensor:
    """Crop the given image at specified location and output size.
433
434
    If the image is torch Tensor, it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
435

436
    Args:
vfdev's avatar
vfdev committed
437
        img (PIL Image or Tensor): Image to be cropped. (0,0) denotes the top left corner of the image.
438
439
440
441
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
442

443
    Returns:
vfdev's avatar
vfdev committed
444
        PIL Image or Tensor: Cropped image.
445
446
    """

vfdev's avatar
vfdev committed
447
448
    if not isinstance(img, torch.Tensor):
        return F_pil.crop(img, top, left, height, width)
449

vfdev's avatar
vfdev committed
450
    return F_t.crop(img, top, left, height, width)
451

vfdev's avatar
vfdev committed
452
453
454

def center_crop(img: Tensor, output_size: List[int]) -> Tensor:
    """Crops the given image at the center.
455
    If the image is torch Tensor, it is expected
456
457
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
    If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.
458

459
    Args:
vfdev's avatar
vfdev committed
460
        img (PIL Image or Tensor): Image to be cropped.
461
        output_size (sequence or int): (height, width) of the crop box. If int or sequence with single int,
vfdev's avatar
vfdev committed
462
463
            it is used for both directions.

464
    Returns:
vfdev's avatar
vfdev committed
465
        PIL Image or Tensor: Cropped image.
466
    """
467
468
    if isinstance(output_size, numbers.Number):
        output_size = (int(output_size), int(output_size))
vfdev's avatar
vfdev committed
469
470
471
472
    elif isinstance(output_size, (tuple, list)) and len(output_size) == 1:
        output_size = (output_size[0], output_size[0])

    image_width, image_height = _get_image_size(img)
473
    crop_height, crop_width = output_size
vfdev's avatar
vfdev committed
474

475
476
477
478
479
480
481
482
483
484
485
486
    if crop_width > image_width or crop_height > image_height:
        padding_ltrb = [
            (crop_width - image_width) // 2 if crop_width > image_width else 0,
            (crop_height - image_height) // 2 if crop_height > image_height else 0,
            (crop_width - image_width + 1) // 2 if crop_width > image_width else 0,
            (crop_height - image_height + 1) // 2 if crop_height > image_height else 0,
        ]
        img = pad(img, padding_ltrb, fill=0)  # PIL uses fill value 0
        image_width, image_height = _get_image_size(img)
        if crop_width == image_width and crop_height == image_height:
            return img

487
488
    crop_top = int(round((image_height - crop_height) / 2.))
    crop_left = int(round((image_width - crop_width) / 2.))
489
    return crop(img, crop_top, crop_left, crop_height, crop_width)
490
491


492
def resized_crop(
493
        img: Tensor, top: int, left: int, height: int, width: int, size: List[int],
494
        interpolation: InterpolationMode = InterpolationMode.BILINEAR
495
496
) -> Tensor:
    """Crop the given image and resize it to desired size.
497
    If the image is torch Tensor, it is expected
498
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
499

500
    Notably used in :class:`~torchvision.transforms.RandomResizedCrop`.
501
502

    Args:
503
        img (PIL Image or Tensor): Image to be cropped. (0,0) denotes the top left corner of the image.
504
505
506
507
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
508
        size (sequence or int): Desired output size. Same semantics as ``resize``.
509
510
511
512
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`.
            Default is ``InterpolationMode.BILINEAR``. If input is Tensor, only ``InterpolationMode.NEAREST``,
            ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported.
513
514
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.

515
    Returns:
516
        PIL Image or Tensor: Cropped image.
517
    """
518
    img = crop(img, top, left, height, width)
519
520
521
522
    img = resize(img, size, interpolation)
    return img


523
def hflip(img: Tensor) -> Tensor:
524
    """Horizontally flip the given image.
525
526

    Args:
vfdev's avatar
vfdev committed
527
        img (PIL Image or Tensor): Image to be flipped. If img
528
            is a Tensor, it is expected to be in [..., H, W] format,
529
            where ... means it can have an arbitrary number of leading
530
            dimensions.
531
532

    Returns:
vfdev's avatar
vfdev committed
533
        PIL Image or Tensor:  Horizontally flipped image.
534
    """
535
536
    if not isinstance(img, torch.Tensor):
        return F_pil.hflip(img)
537

538
    return F_t.hflip(img)
539
540


541
542
543
def _get_perspective_coeffs(
        startpoints: List[List[int]], endpoints: List[List[int]]
) -> List[float]:
544
545
    """Helper function to get the coefficients (a, b, c, d, e, f, g, h) for the perspective transforms.

Vitaliy Chiley's avatar
Vitaliy Chiley committed
546
    In Perspective Transform each pixel (x, y) in the original image gets transformed as,
547
548
549
     (x, y) -> ( (ax + by + c) / (gx + hy + 1), (dx + ey + f) / (gx + hy + 1) )

    Args:
550
551
552
553
554
        startpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the original image.
        endpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the transformed image.

555
556
557
    Returns:
        octuple (a, b, c, d, e, f, g, h) for transforming each pixel.
    """
558
559
560
561
562
    a_matrix = torch.zeros(2 * len(startpoints), 8, dtype=torch.float)

    for i, (p1, p2) in enumerate(zip(endpoints, startpoints)):
        a_matrix[2 * i, :] = torch.tensor([p1[0], p1[1], 1, 0, 0, 0, -p2[0] * p1[0], -p2[0] * p1[1]])
        a_matrix[2 * i + 1, :] = torch.tensor([0, 0, 0, p1[0], p1[1], 1, -p2[1] * p1[0], -p2[1] * p1[1]])
563

564
565
    b_matrix = torch.tensor(startpoints, dtype=torch.float).view(8)
    res = torch.lstsq(b_matrix, a_matrix)[0]
566

567
568
    output: List[float] = res.squeeze(1).tolist()
    return output
569
570


571
572
573
574
def perspective(
        img: Tensor,
        startpoints: List[List[int]],
        endpoints: List[List[int]],
575
        interpolation: InterpolationMode = InterpolationMode.BILINEAR,
576
        fill: Optional[List[float]] = None
577
578
) -> Tensor:
    """Perform perspective transform of the given image.
579
    If the image is torch Tensor, it is expected
580
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
581
582

    Args:
583
584
585
586
587
        img (PIL Image or Tensor): Image to be transformed.
        startpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the original image.
        endpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the transformed image.
588
589
590
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
591
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
592
593
594
595
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
            In torchscript mode single int/float value is not supported, please use a sequence
            of length 1: ``[value, ]``.
596
            If input is PIL Image, the options is only available for ``Pillow>=5.0.0``.
597

598
    Returns:
599
        PIL Image or Tensor: transformed Image.
600
    """
601

602
    coeffs = _get_perspective_coeffs(startpoints, endpoints)
603

604
605
606
    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
607
608
            "Argument interpolation should be of type InterpolationMode instead of int. "
            "Please, use InterpolationMode enum."
609
610
611
        )
        interpolation = _interpolation_modes_from_int(interpolation)

612
613
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
614

615
    if not isinstance(img, torch.Tensor):
616
617
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.perspective(img, coeffs, interpolation=pil_interpolation, fill=fill)
618

619
    return F_t.perspective(img, coeffs, interpolation=interpolation.value, fill=fill)
620
621


622
def vflip(img: Tensor) -> Tensor:
623
    """Vertically flip the given image.
624
625

    Args:
vfdev's avatar
vfdev committed
626
        img (PIL Image or Tensor): Image to be flipped. If img
627
            is a Tensor, it is expected to be in [..., H, W] format,
628
            where ... means it can have an arbitrary number of leading
629
            dimensions.
630
631

    Returns:
632
        PIL Image or Tensor:  Vertically flipped image.
633
    """
634
635
    if not isinstance(img, torch.Tensor):
        return F_pil.vflip(img)
636

637
    return F_t.vflip(img)
638
639


vfdev's avatar
vfdev committed
640
641
def five_crop(img: Tensor, size: List[int]) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]:
    """Crop the given image into four corners and the central crop.
642
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
643
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
644
645
646
647
648
649

    .. Note::
        This transform returns a tuple of images and there may be a
        mismatch in the number of inputs and targets your ``Dataset`` returns.

    Args:
vfdev's avatar
vfdev committed
650
651
652
        img (PIL Image or Tensor): Image to be cropped.
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
653
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
654

655
    Returns:
656
657
       tuple: tuple (tl, tr, bl, br, center)
                Corresponding top left, top right, bottom left, bottom right and center crop.
658
659
660
    """
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
vfdev's avatar
vfdev committed
661
662
    elif isinstance(size, (tuple, list)) and len(size) == 1:
        size = (size[0], size[0])
663

vfdev's avatar
vfdev committed
664
665
666
667
    if len(size) != 2:
        raise ValueError("Please provide only two dimensions (h, w) for size.")

    image_width, image_height = _get_image_size(img)
668
669
670
671
672
    crop_height, crop_width = size
    if crop_width > image_width or crop_height > image_height:
        msg = "Requested crop size {} is bigger than input size {}"
        raise ValueError(msg.format(size, (image_height, image_width)))

vfdev's avatar
vfdev committed
673
674
675
676
677
678
679
680
    tl = crop(img, 0, 0, crop_height, crop_width)
    tr = crop(img, 0, image_width - crop_width, crop_height, crop_width)
    bl = crop(img, image_height - crop_height, 0, crop_height, crop_width)
    br = crop(img, image_height - crop_height, image_width - crop_width, crop_height, crop_width)

    center = center_crop(img, [crop_height, crop_width])

    return tl, tr, bl, br, center
681
682


vfdev's avatar
vfdev committed
683
684
685
def ten_crop(img: Tensor, size: List[int], vertical_flip: bool = False) -> List[Tensor]:
    """Generate ten cropped images from the given image.
    Crop the given image into four corners and the central crop plus the
686
    flipped version of these (horizontal flipping is used by default).
687
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
688
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
689
690
691
692
693

    .. Note::
        This transform returns a tuple of images and there may be a
        mismatch in the number of inputs and targets your ``Dataset`` returns.

694
    Args:
vfdev's avatar
vfdev committed
695
        img (PIL Image or Tensor): Image to be cropped.
696
        size (sequence or int): Desired output size of the crop. If size is an
697
            int instead of sequence like (h, w), a square crop (size, size) is
698
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
699
        vertical_flip (bool): Use vertical flipping instead of horizontal
700
701

    Returns:
702
703
704
        tuple: tuple (tl, tr, bl, br, center, tl_flip, tr_flip, bl_flip, br_flip, center_flip)
            Corresponding top left, top right, bottom left, bottom right and
            center crop and same for the flipped image.
705
706
707
    """
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
vfdev's avatar
vfdev committed
708
709
710
711
712
    elif isinstance(size, (tuple, list)) and len(size) == 1:
        size = (size[0], size[0])

    if len(size) != 2:
        raise ValueError("Please provide only two dimensions (h, w) for size.")
713
714
715
716
717
718
719
720
721
722
723
724

    first_five = five_crop(img, size)

    if vertical_flip:
        img = vflip(img)
    else:
        img = hflip(img)

    second_five = five_crop(img, size)
    return first_five + second_five


725
def adjust_brightness(img: Tensor, brightness_factor: float) -> Tensor:
726
    """Adjust brightness of an image.
727
728

    Args:
vfdev's avatar
vfdev committed
729
        img (PIL Image or Tensor): Image to be adjusted.
730
        If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
731
        where ... means it can have an arbitrary number of leading dimensions.
732
733
734
735
736
        brightness_factor (float):  How much to adjust the brightness. Can be
            any non negative number. 0 gives a black image, 1 gives the
            original image while 2 increases the brightness by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
737
        PIL Image or Tensor: Brightness adjusted image.
738
    """
739
740
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_brightness(img, brightness_factor)
741

742
    return F_t.adjust_brightness(img, brightness_factor)
743
744


745
def adjust_contrast(img: Tensor, contrast_factor: float) -> Tensor:
746
    """Adjust contrast of an image.
747
748

    Args:
vfdev's avatar
vfdev committed
749
        img (PIL Image or Tensor): Image to be adjusted.
750
751
        If img is torch Tensor, it is expected to be in [..., 3, H, W] format,
        where ... means it can have an arbitrary number of leading dimensions.
752
753
754
755
756
        contrast_factor (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives a solid gray image, 1 gives the
            original image while 2 increases the contrast by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
757
        PIL Image or Tensor: Contrast adjusted image.
758
    """
759
760
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_contrast(img, contrast_factor)
761

762
    return F_t.adjust_contrast(img, contrast_factor)
763
764


765
def adjust_saturation(img: Tensor, saturation_factor: float) -> Tensor:
766
767
768
    """Adjust color saturation of an image.

    Args:
vfdev's avatar
vfdev committed
769
        img (PIL Image or Tensor): Image to be adjusted.
770
771
        If img is torch Tensor, it is expected to be in [..., 3, H, W] format,
        where ... means it can have an arbitrary number of leading dimensions.
772
773
774
775
776
        saturation_factor (float):  How much to adjust the saturation. 0 will
            give a black and white image, 1 will give the original image while
            2 will enhance the saturation by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
777
        PIL Image or Tensor: Saturation adjusted image.
778
    """
779
780
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_saturation(img, saturation_factor)
781

782
    return F_t.adjust_saturation(img, saturation_factor)
783
784


785
def adjust_hue(img: Tensor, hue_factor: float) -> Tensor:
786
787
788
789
790
791
792
793
794
    """Adjust hue of an image.

    The image hue is adjusted by converting the image to HSV and
    cyclically shifting the intensities in the hue channel (H).
    The image is then converted back to original image mode.

    `hue_factor` is the amount of shift in H channel and must be in the
    interval `[-0.5, 0.5]`.

795
796
797
    See `Hue`_ for more details.

    .. _Hue: https://en.wikipedia.org/wiki/Hue
798
799

    Args:
800
        img (PIL Image or Tensor): Image to be adjusted.
801
802
803
        If img is torch Tensor, it is expected to be in [..., 3, H, W] format,
        where ... means it can have an arbitrary number of leading dimensions.
        If img is PIL Image mode "1", "L", "I", "F" and modes with transparency (alpha channel) are not supported.
804
805
806
807
808
809
810
        hue_factor (float):  How much to shift the hue channel. Should be in
            [-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
            HSV space in positive and negative direction respectively.
            0 means no shift. Therefore, both -0.5 and 0.5 will give an image
            with complementary colors while 0 gives the original image.

    Returns:
811
        PIL Image or Tensor: Hue adjusted image.
812
    """
813
814
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_hue(img, hue_factor)
815

816
    return F_t.adjust_hue(img, hue_factor)
817
818


819
def adjust_gamma(img: Tensor, gamma: float, gain: float = 1) -> Tensor:
820
    r"""Perform gamma correction on an image.
821
822
823
824

    Also known as Power Law Transform. Intensities in RGB mode are adjusted
    based on the following equation:

825
826
827
828
    .. math::
        I_{\text{out}} = 255 \times \text{gain} \times \left(\frac{I_{\text{in}}}{255}\right)^{\gamma}

    See `Gamma Correction`_ for more details.
829

830
    .. _Gamma Correction: https://en.wikipedia.org/wiki/Gamma_correction
831
832

    Args:
833
        img (PIL Image or Tensor): PIL Image to be adjusted.
834
        If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
835
        where ... means it can have an arbitrary number of leading dimensions.
836
        If img is PIL Image, modes with transparency (alpha channel) are not supported.
837
838
839
        gamma (float): Non negative real number, same as :math:`\gamma` in the equation.
            gamma larger than 1 make the shadows darker,
            while gamma smaller than 1 make dark regions lighter.
840
        gain (float): The constant multiplier.
841
842
    Returns:
        PIL Image or Tensor: Gamma correction adjusted image.
843
    """
844
845
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_gamma(img, gamma, gain)
846

847
    return F_t.adjust_gamma(img, gamma, gain)
848
849


vfdev's avatar
vfdev committed
850
def _get_inverse_affine_matrix(
vfdev's avatar
vfdev committed
851
        center: List[float], angle: float, translate: List[float], scale: float, shear: List[float]
vfdev's avatar
vfdev committed
852
) -> List[float]:
853
854
855
856
857
858
859
    # Helper method to compute inverse matrix for affine transformation

    # As it is explained in PIL.Image.rotate
    # We need compute INVERSE of affine transformation matrix: M = T * C * RSS * C^-1
    # where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1]
    #       C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1]
    #       RSS is rotation with scale and shear matrix
860
861
862
863
864
865
866
867
868
869
    #       RSS(a, s, (sx, sy)) =
    #       = R(a) * S(s) * SHy(sy) * SHx(sx)
    #       = [ s*cos(a - sy)/cos(sy), s*(-cos(a - sy)*tan(x)/cos(y) - sin(a)), 0 ]
    #         [ s*sin(a + sy)/cos(sy), s*(-sin(a - sy)*tan(x)/cos(y) + cos(a)), 0 ]
    #         [ 0                    , 0                                      , 1 ]
    #
    # where R is a rotation matrix, S is a scaling matrix, and SHx and SHy are the shears:
    # SHx(s) = [1, -tan(s)] and SHy(s) = [1      , 0]
    #          [0, 1      ]              [-tan(s), 1]
    #
870
871
    # Thus, the inverse is M^-1 = C * RSS^-1 * C^-1 * T^-1

872
873
874
875
876
877
878
    rot = math.radians(angle)
    sx, sy = [math.radians(s) for s in shear]

    cx, cy = center
    tx, ty = translate

    # RSS without scaling
vfdev's avatar
vfdev committed
879
880
881
882
    a = math.cos(rot - sy) / math.cos(sy)
    b = -math.cos(rot - sy) * math.tan(sx) / math.cos(sy) - math.sin(rot)
    c = math.sin(rot - sy) / math.cos(sy)
    d = -math.sin(rot - sy) * math.tan(sx) / math.cos(sy) + math.cos(rot)
883
884

    # Inverted rotation matrix with scale and shear
885
    # det([[a, b], [c, d]]) == 1, since det(rotation) = 1 and det(shear) = 1
vfdev's avatar
vfdev committed
886
887
    matrix = [d, -b, 0.0, -c, a, 0.0]
    matrix = [x / scale for x in matrix]
888
889

    # Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
vfdev's avatar
vfdev committed
890
891
    matrix[2] += matrix[0] * (-cx - tx) + matrix[1] * (-cy - ty)
    matrix[5] += matrix[3] * (-cx - tx) + matrix[4] * (-cy - ty)
892
893

    # Apply center translation: C * RSS^-1 * C^-1 * T^-1
vfdev's avatar
vfdev committed
894
895
    matrix[2] += cx
    matrix[5] += cy
896

vfdev's avatar
vfdev committed
897
    return matrix
898

vfdev's avatar
vfdev committed
899

vfdev's avatar
vfdev committed
900
def rotate(
901
        img: Tensor, angle: float, interpolation: InterpolationMode = InterpolationMode.NEAREST,
902
        expand: bool = False, center: Optional[List[int]] = None,
903
        fill: Optional[List[float]] = None, resample: Optional[int] = None
vfdev's avatar
vfdev committed
904
905
) -> Tensor:
    """Rotate the image by angle.
906
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
907
908
909
910
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.

    Args:
        img (PIL Image or Tensor): image to be rotated.
911
        angle (number): rotation angle value in degrees, counter-clockwise.
912
913
914
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
915
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
vfdev's avatar
vfdev committed
916
917
918
919
        expand (bool, optional): Optional expansion flag.
            If true, expands the output image to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
920
        center (sequence, optional): Optional center of rotation. Origin is the upper left corner.
vfdev's avatar
vfdev committed
921
            Default is the center of the image.
922
923
924
925
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
            In torchscript mode single int/float value is not supported, please use a sequence
            of length 1: ``[value, ]``.
926
            If input is PIL Image, the options is only available for ``Pillow>=5.2.0``.
vfdev's avatar
vfdev committed
927
928
929
930
931
932
933

    Returns:
        PIL Image or Tensor: Rotated image.

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

    """
934
935
936
937
938
939
940
941
942
    if resample is not None:
        warnings.warn(
            "Argument resample is deprecated and will be removed since v0.10.0. Please, use interpolation instead"
        )
        interpolation = _interpolation_modes_from_int(resample)

    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
943
944
            "Argument interpolation should be of type InterpolationMode instead of int. "
            "Please, use InterpolationMode enum."
945
946
947
        )
        interpolation = _interpolation_modes_from_int(interpolation)

vfdev's avatar
vfdev committed
948
949
950
951
952
953
    if not isinstance(angle, (int, float)):
        raise TypeError("Argument angle should be int or float")

    if center is not None and not isinstance(center, (list, tuple)):
        raise TypeError("Argument center should be a sequence")

954
955
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
956

vfdev's avatar
vfdev committed
957
    if not isinstance(img, torch.Tensor):
958
959
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.rotate(img, angle=angle, interpolation=pil_interpolation, expand=expand, center=center, fill=fill)
vfdev's avatar
vfdev committed
960
961
962
963

    center_f = [0.0, 0.0]
    if center is not None:
        img_size = _get_image_size(img)
964
965
966
        # Center values should be in pixel coordinates but translated such that (0, 0) corresponds to image center.
        center_f = [1.0 * (c - s * 0.5) for c, s in zip(center, img_size)]

vfdev's avatar
vfdev committed
967
968
969
    # due to current incoherence of rotation angle direction between affine and rotate implementations
    # we need to set -angle.
    matrix = _get_inverse_affine_matrix(center_f, -angle, [0.0, 0.0], 1.0, [0.0, 0.0])
970
    return F_t.rotate(img, matrix=matrix, interpolation=interpolation.value, expand=expand, fill=fill)
vfdev's avatar
vfdev committed
971
972


vfdev's avatar
vfdev committed
973
974
def affine(
        img: Tensor, angle: float, translate: List[int], scale: float, shear: List[float],
975
976
        interpolation: InterpolationMode = InterpolationMode.NEAREST, fill: Optional[List[float]] = None,
        resample: Optional[int] = None, fillcolor: Optional[List[float]] = None
vfdev's avatar
vfdev committed
977
978
) -> Tensor:
    """Apply affine transformation on the image keeping image center invariant.
979
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
980
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
981
982

    Args:
vfdev's avatar
vfdev committed
983
        img (PIL Image or Tensor): image to transform.
984
985
        angle (number): rotation angle in degrees between -180 and 180, clockwise direction.
        translate (sequence of integers): horizontal and vertical translations (post-rotation translation)
986
        scale (float): overall scale
987
988
        shear (float or sequence): shear angle value in degrees between -180 to 180, clockwise direction.
            If a sequence is specified, the first value corresponds to a shear parallel to the x axis, while
vfdev's avatar
vfdev committed
989
            the second value corresponds to a shear parallel to the y axis.
990
991
992
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
993
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
994
995
996
997
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
            In torchscript mode single int/float value is not supported, please use a sequence
            of length 1: ``[value, ]``.
998
999
            If input is PIL Image, the options is only available for ``Pillow>=5.0.0``.
        fillcolor (sequence, int, float): deprecated argument and will be removed since v0.10.0.
1000
            Please use the ``fill`` parameter instead.
1001
        resample (int, optional): deprecated argument and will be removed since v0.10.0.
1002
            Please use the ``interpolation`` parameter instead.
vfdev's avatar
vfdev committed
1003
1004
1005

    Returns:
        PIL Image or Tensor: Transformed image.
1006
    """
1007
1008
1009
1010
1011
1012
1013
1014
1015
    if resample is not None:
        warnings.warn(
            "Argument resample is deprecated and will be removed since v0.10.0. Please, use interpolation instead"
        )
        interpolation = _interpolation_modes_from_int(resample)

    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
1016
1017
            "Argument interpolation should be of type InterpolationMode instead of int. "
            "Please, use InterpolationMode enum."
1018
1019
1020
1021
1022
1023
1024
1025
1026
        )
        interpolation = _interpolation_modes_from_int(interpolation)

    if fillcolor is not None:
        warnings.warn(
            "Argument fillcolor is deprecated and will be removed since v0.10.0. Please, use fill instead"
        )
        fill = fillcolor

vfdev's avatar
vfdev committed
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
    if not isinstance(angle, (int, float)):
        raise TypeError("Argument angle should be int or float")

    if not isinstance(translate, (list, tuple)):
        raise TypeError("Argument translate should be a sequence")

    if len(translate) != 2:
        raise ValueError("Argument translate should be a sequence of length 2")

    if scale <= 0.0:
        raise ValueError("Argument scale should be positive")

    if not isinstance(shear, (numbers.Number, (list, tuple))):
        raise TypeError("Shear should be either a single value or a sequence of two values")

1042
1043
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
1044

vfdev's avatar
vfdev committed
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
    if isinstance(angle, int):
        angle = float(angle)

    if isinstance(translate, tuple):
        translate = list(translate)

    if isinstance(shear, numbers.Number):
        shear = [shear, 0.0]

    if isinstance(shear, tuple):
        shear = list(shear)

    if len(shear) == 1:
        shear = [shear[0], shear[0]]

    if len(shear) != 2:
        raise ValueError("Shear should be a sequence containing two values. Got {}".format(shear))

    img_size = _get_image_size(img)
    if not isinstance(img, torch.Tensor):
        # center = (img_size[0] * 0.5 + 0.5, img_size[1] * 0.5 + 0.5)
        # it is visually better to estimate the center without 0.5 offset
        # otherwise image rotated by 90 degrees is shifted vs output image of torch.rot90 or F_t.affine
        center = [img_size[0] * 0.5, img_size[1] * 0.5]
        matrix = _get_inverse_affine_matrix(center, angle, translate, scale, shear)
1070
1071
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.affine(img, matrix=matrix, interpolation=pil_interpolation, fill=fill)
1072

1073
1074
    translate_f = [1.0 * t for t in translate]
    matrix = _get_inverse_affine_matrix([0.0, 0.0], angle, translate_f, scale, shear)
1075
    return F_t.affine(img, matrix=matrix, interpolation=interpolation.value, fill=fill)
1076
1077


1078
@torch.jit.unused
1079
def to_grayscale(img, num_output_channels=1):
1080
    """Convert PIL image of any mode (RGB, HSV, LAB, etc) to grayscale version of image.
1081
    This transform does not support torch Tensor.
1082
1083

    Args:
1084
        img (PIL Image): PIL Image to be converted to grayscale.
1085
        num_output_channels (int): number of channels of the output image. Value can be 1 or 3. Default is 1.
1086
1087

    Returns:
1088
1089
1090
1091
        PIL Image: Grayscale version of the image.
            if num_output_channels = 1 : returned image is single channel

            if num_output_channels = 3 : returned image is 3 channel with r = g = b
1092
    """
1093
1094
    if isinstance(img, Image.Image):
        return F_pil.to_grayscale(img, num_output_channels)
1095

1096
1097
1098
1099
1100
    raise TypeError("Input should be PIL Image")


def rgb_to_grayscale(img: Tensor, num_output_channels: int = 1) -> Tensor:
    """Convert RGB image to grayscale version of image.
1101
1102
    If the image is torch Tensor, it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121

    Note:
        Please, note that this method supports only RGB images as input. For inputs in other color spaces,
        please, consider using meth:`~torchvision.transforms.functional.to_grayscale` with PIL Image.

    Args:
        img (PIL Image or Tensor): RGB Image to be converted to grayscale.
        num_output_channels (int): number of channels of the output image. Value can be 1 or 3. Default, 1.

    Returns:
        PIL Image or Tensor: Grayscale version of the image.
            if num_output_channels = 1 : returned image is single channel

            if num_output_channels = 3 : returned image is 3 channel with r = g = b
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.to_grayscale(img, num_output_channels)

    return F_t.rgb_to_grayscale(img, num_output_channels)
1122
1123


1124
def erase(img: Tensor, i: int, j: int, h: int, w: int, v: Tensor, inplace: bool = False) -> Tensor:
1125
    """ Erase the input Tensor Image with given value.
1126
    This transform does not support PIL Image.
1127
1128
1129
1130
1131
1132
1133
1134

    Args:
        img (Tensor Image): Tensor image of size (C, H, W) to be erased
        i (int): i in (i,j) i.e coordinates of the upper left corner.
        j (int): j in (i,j) i.e coordinates of the upper left corner.
        h (int): Height of the erased region.
        w (int): Width of the erased region.
        v: Erasing value.
Zhun Zhong's avatar
Zhun Zhong committed
1135
        inplace(bool, optional): For in-place operations. By default is set False.
1136
1137
1138
1139
1140
1141
1142

    Returns:
        Tensor Image: Erased image.
    """
    if not isinstance(img, torch.Tensor):
        raise TypeError('img should be Tensor Image. Got {}'.format(type(img)))

1143
1144
1145
    if not inplace:
        img = img.clone()

vfdev's avatar
vfdev committed
1146
    img[..., i:i + h, j:j + w] = v
1147
    return img
1148
1149
1150


def gaussian_blur(img: Tensor, kernel_size: List[int], sigma: Optional[List[float]] = None) -> Tensor:
1151
1152
1153
    """Performs Gaussian blurring on the image by given kernel.
    If the image is torch Tensor, it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1154
1155
1156
1157
1158

    Args:
        img (PIL Image or Tensor): Image to be blurred
        kernel_size (sequence of ints or int): Gaussian kernel size. Can be a sequence of integers
            like ``(kx, ky)`` or a single integer for square kernels.
1159
            In torchscript mode kernel_size as single int is not supported, use a sequence of length 1: ``[ksize, ]``.
1160
1161
1162
1163
1164
        sigma (sequence of floats or float, optional): Gaussian kernel standard deviation. Can be a
            sequence of floats like ``(sigma_x, sigma_y)`` or a single float to define the
            same sigma in both X/Y directions. If None, then it is computed using
            ``kernel_size`` as ``sigma = 0.3 * ((kernel_size - 1) * 0.5 - 1) + 0.8``.
            Default, None. In torchscript mode sigma as single float is
1165
            not supported, use a sequence of length 1: ``[sigma, ]``.
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206

    Returns:
        PIL Image or Tensor: Gaussian Blurred version of the image.
    """
    if not isinstance(kernel_size, (int, list, tuple)):
        raise TypeError('kernel_size should be int or a sequence of integers. Got {}'.format(type(kernel_size)))
    if isinstance(kernel_size, int):
        kernel_size = [kernel_size, kernel_size]
    if len(kernel_size) != 2:
        raise ValueError('If kernel_size is a sequence its length should be 2. Got {}'.format(len(kernel_size)))
    for ksize in kernel_size:
        if ksize % 2 == 0 or ksize < 0:
            raise ValueError('kernel_size should have odd and positive integers. Got {}'.format(kernel_size))

    if sigma is None:
        sigma = [ksize * 0.15 + 0.35 for ksize in kernel_size]

    if sigma is not None and not isinstance(sigma, (int, float, list, tuple)):
        raise TypeError('sigma should be either float or sequence of floats. Got {}'.format(type(sigma)))
    if isinstance(sigma, (int, float)):
        sigma = [float(sigma), float(sigma)]
    if isinstance(sigma, (list, tuple)) and len(sigma) == 1:
        sigma = [sigma[0], sigma[0]]
    if len(sigma) != 2:
        raise ValueError('If sigma is a sequence, its length should be 2. Got {}'.format(len(sigma)))
    for s in sigma:
        if s <= 0.:
            raise ValueError('sigma should have positive values. Got {}'.format(sigma))

    t_img = img
    if not isinstance(img, torch.Tensor):
        if not F_pil._is_pil_image(img):
            raise TypeError('img should be PIL Image or Tensor. Got {}'.format(type(img)))

        t_img = to_tensor(img)

    output = F_t.gaussian_blur(t_img, kernel_size, sigma)

    if not isinstance(img, torch.Tensor):
        output = to_pil_image(output)
    return output
1207
1208
1209


def invert(img: Tensor) -> Tensor:
1210
    """Invert the colors of an RGB/grayscale image.
1211
1212
1213

    Args:
        img (PIL Image or Tensor): Image to have its colors inverted.
1214
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1215
1216
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227

    Returns:
        PIL Image or Tensor: Color inverted image.
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.invert(img)

    return F_t.invert(img)


def posterize(img: Tensor, bits: int) -> Tensor:
1228
    """Posterize an image by reducing the number of bits for each color channel.
1229
1230
1231

    Args:
        img (PIL Image or Tensor): Image to have its colors posterized.
1232
            If img is torch Tensor, it should be of type torch.uint8 and
1233
1234
1235
            it is expected to be in [..., 1 or 3, H, W] format, where ... means
            it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
        bits (int): The number of bits to keep for each channel (0-8).
    Returns:
        PIL Image or Tensor: Posterized image.
    """
    if not (0 <= bits <= 8):
        raise ValueError('The number if bits should be between 0 and 8. Got {}'.format(bits))

    if not isinstance(img, torch.Tensor):
        return F_pil.posterize(img, bits)

    return F_t.posterize(img, bits)


def solarize(img: Tensor, threshold: float) -> Tensor:
1250
    """Solarize an RGB/grayscale image by inverting all pixel values above a threshold.
1251
1252
1253

    Args:
        img (PIL Image or Tensor): Image to have its colors inverted.
1254
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1255
1256
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
        threshold (float): All pixels equal or above this value are inverted.
    Returns:
        PIL Image or Tensor: Solarized image.
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.solarize(img, threshold)

    return F_t.solarize(img, threshold)


def adjust_sharpness(img: Tensor, sharpness_factor: float) -> Tensor:
1268
    """Adjust the sharpness of an image.
1269
1270
1271

    Args:
        img (PIL Image or Tensor): Image to be adjusted.
1272
        If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1273
        where ... means it can have an arbitrary number of leading dimensions.
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
        sharpness_factor (float):  How much to adjust the sharpness. Can be
            any non negative number. 0 gives a blurred image, 1 gives the
            original image while 2 increases the sharpness by a factor of 2.

    Returns:
        PIL Image or Tensor: Sharpness adjusted image.
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_sharpness(img, sharpness_factor)

    return F_t.adjust_sharpness(img, sharpness_factor)


def autocontrast(img: Tensor) -> Tensor:
1288
    """Maximize contrast of an image by remapping its
1289
1290
1291
1292
1293
    pixels per channel so that the lowest becomes black and the lightest
    becomes white.

    Args:
        img (PIL Image or Tensor): Image on which autocontrast is applied.
1294
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1295
1296
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307

    Returns:
        PIL Image or Tensor: An image that was autocontrasted.
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.autocontrast(img)

    return F_t.autocontrast(img)


def equalize(img: Tensor) -> Tensor:
1308
    """Equalize the histogram of an image by applying
1309
1310
1311
1312
1313
    a non-linear mapping to the input in order to create a uniform
    distribution of grayscale values in the output.

    Args:
        img (PIL Image or Tensor): Image on which equalize is applied.
1314
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1315
1316
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "P", "L" or "RGB".
1317
1318
1319
1320
1321
1322
1323
1324

    Returns:
        PIL Image or Tensor: An image that was equalized.
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.equalize(img)

    return F_t.equalize(img)