functional.py 65.6 KB
Newer Older
1
import math
2
import numbers
3
import sys
4
import warnings
5
from enum import Enum
6
from typing import Any, List, Optional, Tuple, Union
7
8
9

import numpy as np
import torch
10
from PIL import Image
11
12
from torch import Tensor

13
14
15
16
17
try:
    import accimage
except ImportError:
    accimage = None

18
from ..utils import _log_api_usage_once
19
from . import _functional_pil as F_pil, _functional_tensor as F_t
20

21

22
class InterpolationMode(Enum):
23
    """Interpolation modes
24
25
    Available interpolation methods are ``nearest``, ``nearest-exact``, ``bilinear``, ``bicubic``, ``box``, ``hamming``,
    and ``lanczos``.
26
    """
27

28
    NEAREST = "nearest"
29
    NEAREST_EXACT = "nearest-exact"
30
31
32
33
34
35
36
37
38
    BILINEAR = "bilinear"
    BICUBIC = "bicubic"
    # For PIL compatibility
    BOX = "box"
    HAMMING = "hamming"
    LANCZOS = "lanczos"


# TODO: Once torchscript supports Enums with staticmethod
39
40
# this can be put into InterpolationMode as staticmethod
def _interpolation_modes_from_int(i: int) -> InterpolationMode:
41
    inverse_modes_mapping = {
42
43
44
45
46
47
        0: InterpolationMode.NEAREST,
        2: InterpolationMode.BILINEAR,
        3: InterpolationMode.BICUBIC,
        4: InterpolationMode.BOX,
        5: InterpolationMode.HAMMING,
        1: InterpolationMode.LANCZOS,
48
49
50
51
52
    }
    return inverse_modes_mapping[i]


pil_modes_mapping = {
53
54
55
    InterpolationMode.NEAREST: 0,
    InterpolationMode.BILINEAR: 2,
    InterpolationMode.BICUBIC: 3,
56
    InterpolationMode.NEAREST_EXACT: 0,
57
58
59
    InterpolationMode.BOX: 4,
    InterpolationMode.HAMMING: 5,
    InterpolationMode.LANCZOS: 1,
60
61
}

vfdev's avatar
vfdev committed
62
63
64
_is_pil_image = F_pil._is_pil_image


65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
def get_dimensions(img: Tensor) -> List[int]:
    """Returns the dimensions of an image as [channels, height, width].

    Args:
        img (PIL Image or Tensor): The image to be checked.

    Returns:
        List[int]: The image dimensions.
    """
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(get_dimensions)
    if isinstance(img, torch.Tensor):
        return F_t.get_dimensions(img)

    return F_pil.get_dimensions(img)


82
83
84
85
86
87
88
89
def get_image_size(img: Tensor) -> List[int]:
    """Returns the size of an image as [width, height].

    Args:
        img (PIL Image or Tensor): The image to be checked.

    Returns:
        List[int]: The image size.
vfdev's avatar
vfdev committed
90
    """
91
92
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(get_image_size)
vfdev's avatar
vfdev committed
93
    if isinstance(img, torch.Tensor):
94
        return F_t.get_image_size(img)
95

96
    return F_pil.get_image_size(img)
97

vfdev's avatar
vfdev committed
98

99
100
101
102
103
104
105
106
def get_image_num_channels(img: Tensor) -> int:
    """Returns the number of channels of an image.

    Args:
        img (PIL Image or Tensor): The image to be checked.

    Returns:
        int: The number of channels.
107
    """
108
109
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(get_image_num_channels)
110
    if isinstance(img, torch.Tensor):
111
        return F_t.get_image_num_channels(img)
112

113
    return F_pil.get_image_num_channels(img)
114
115


vfdev's avatar
vfdev committed
116
117
@torch.jit.unused
def _is_numpy(img: Any) -> bool:
118
119
120
    return isinstance(img, np.ndarray)


vfdev's avatar
vfdev committed
121
122
@torch.jit.unused
def _is_numpy_image(img: Any) -> bool:
123
    return img.ndim in {2, 3}
124
125


126
def to_tensor(pic) -> Tensor:
127
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.
128
    This function does not support torchscript.
129

130
    See :class:`~torchvision.transforms.ToTensor` for more details.
131
132
133
134
135
136
137

    Args:
        pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
138
139
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(to_tensor)
140
    if not (F_pil._is_pil_image(pic) or _is_numpy(pic)):
141
        raise TypeError(f"pic should be PIL Image or ndarray. Got {type(pic)}")
142

143
    if _is_numpy(pic) and not _is_numpy_image(pic):
144
        raise ValueError(f"pic should be 2/3 dimensional. Got {pic.ndim} dimensions.")
145

146
147
    default_float_dtype = torch.get_default_dtype()

148
149
    if isinstance(pic, np.ndarray):
        # handle numpy array
surgan12's avatar
surgan12 committed
150
151
152
        if pic.ndim == 2:
            pic = pic[:, :, None]

153
        img = torch.from_numpy(pic.transpose((2, 0, 1))).contiguous()
154
        # backward compatibility
155
        if isinstance(img, torch.ByteTensor):
156
            return img.to(dtype=default_float_dtype).div(255)
157
158
        else:
            return img
159
160

    if accimage is not None and isinstance(pic, accimage.Image):
161
        nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.float32)
162
        pic.copyto(nppic)
163
        return torch.from_numpy(nppic).to(dtype=default_float_dtype)
164
165

    # handle PIL Image
166
    mode_to_nptype = {"I": np.int32, "I;16" if sys.byteorder == "little" else "I;16B": np.int16, "F": np.float32}
167
    img = torch.from_numpy(np.array(pic, mode_to_nptype.get(pic.mode, np.uint8), copy=True))
168

169
    if pic.mode == "1":
170
        img = 255 * img
171
    img = img.view(pic.size[1], pic.size[0], F_pil.get_image_num_channels(pic))
172
    # put it from HWC to CHW format
173
    img = img.permute((2, 0, 1)).contiguous()
174
    if isinstance(img, torch.ByteTensor):
175
        return img.to(dtype=default_float_dtype).div(255)
176
177
178
179
    else:
        return img


180
def pil_to_tensor(pic: Any) -> Tensor:
181
    """Convert a ``PIL Image`` to a tensor of the same type.
182
    This function does not support torchscript.
183

vfdev's avatar
vfdev committed
184
    See :class:`~torchvision.transforms.PILToTensor` for more details.
185

186
187
188
189
    .. note::

        A deep copy of the underlying array is performed.

190
191
192
193
194
195
    Args:
        pic (PIL Image): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
196
197
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(pil_to_tensor)
198
    if not F_pil._is_pil_image(pic):
199
        raise TypeError(f"pic should be PIL Image. Got {type(pic)}")
200
201

    if accimage is not None and isinstance(pic, accimage.Image):
202
203
        # accimage format is always uint8 internally, so always return uint8 here
        nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.uint8)
204
205
206
207
        pic.copyto(nppic)
        return torch.as_tensor(nppic)

    # handle PIL Image
208
    img = torch.as_tensor(np.array(pic, copy=True))
209
    img = img.view(pic.size[1], pic.size[0], F_pil.get_image_num_channels(pic))
210
211
212
213
214
    # put it from HWC to CHW format
    img = img.permute((2, 0, 1))
    return img


215
216
def convert_image_dtype(image: torch.Tensor, dtype: torch.dtype = torch.float) -> torch.Tensor:
    """Convert a tensor image to the given ``dtype`` and scale the values accordingly
217
    This function does not support PIL Image.
218
219
220
221
222
223

    Args:
        image (torch.Tensor): Image to be converted
        dtype (torch.dtype): Desired data type of the output

    Returns:
vfdev's avatar
vfdev committed
224
        Tensor: Converted image
225
226
227
228
229
230
231
232
233
234
235
236

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """
237
238
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(convert_image_dtype)
239
    if not isinstance(image, torch.Tensor):
240
        raise TypeError("Input img should be Tensor Image")
241
242

    return F_t.convert_image_dtype(image, dtype)
243
244


245
def to_pil_image(pic, mode=None):
246
    """Convert a tensor or an ndarray to PIL Image. This function does not support torchscript.
247

248
    See :class:`~torchvision.transforms.ToPILImage` for more details.
249
250
251
252
253

    Args:
        pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).

254
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
255
256
257
258

    Returns:
        PIL Image: Image converted to PIL Image.
    """
259
260
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(to_pil_image)
261

262
263
264
265
266
    if isinstance(pic, torch.Tensor):
        if pic.ndim == 3:
            pic = pic.permute((1, 2, 0))
        pic = pic.numpy(force=True)
    elif not isinstance(pic, np.ndarray):
267
        raise TypeError(f"pic should be Tensor or ndarray. Got {type(pic)}.")
268

269
270
271
272
273
    if pic.ndim == 2:
        # if 2D image, add channel dimension (HWC)
        pic = np.expand_dims(pic, 2)
    if pic.ndim != 3:
        raise ValueError(f"pic should be 2/3 dimensional. Got {pic.ndim} dimensions.")
Varun Agrawal's avatar
Varun Agrawal committed
274

275
276
    if pic.shape[-1] > 4:
        raise ValueError(f"pic should not have > 4 channels. Got {pic.shape[-1]} channels.")
277

278
279
    npimg = pic

280
281
    if np.issubdtype(npimg.dtype, np.floating) and mode != "F":
        npimg = (npimg * 255).astype(np.uint8)
282
283
284
285
286

    if npimg.shape[2] == 1:
        expected_mode = None
        npimg = npimg[:, :, 0]
        if npimg.dtype == np.uint8:
287
            expected_mode = "L"
vfdev's avatar
vfdev committed
288
        elif npimg.dtype == np.int16:
289
            expected_mode = "I;16" if sys.byteorder == "little" else "I;16B"
vfdev's avatar
vfdev committed
290
        elif npimg.dtype == np.int32:
291
            expected_mode = "I"
292
        elif npimg.dtype == np.float32:
293
            expected_mode = "F"
294
        if mode is not None and mode != expected_mode:
295
            raise ValueError(f"Incorrect mode ({mode}) supplied for input type {np.dtype}. Should be {expected_mode}")
296
297
        mode = expected_mode

surgan12's avatar
surgan12 committed
298
    elif npimg.shape[2] == 2:
299
        permitted_2_channel_modes = ["LA"]
surgan12's avatar
surgan12 committed
300
        if mode is not None and mode not in permitted_2_channel_modes:
301
            raise ValueError(f"Only modes {permitted_2_channel_modes} are supported for 2D inputs")
surgan12's avatar
surgan12 committed
302
303

        if mode is None and npimg.dtype == np.uint8:
304
            mode = "LA"
surgan12's avatar
surgan12 committed
305

306
    elif npimg.shape[2] == 4:
307
        permitted_4_channel_modes = ["RGBA", "CMYK", "RGBX"]
308
        if mode is not None and mode not in permitted_4_channel_modes:
309
            raise ValueError(f"Only modes {permitted_4_channel_modes} are supported for 4D inputs")
310
311

        if mode is None and npimg.dtype == np.uint8:
312
            mode = "RGBA"
313
    else:
314
        permitted_3_channel_modes = ["RGB", "YCbCr", "HSV"]
315
        if mode is not None and mode not in permitted_3_channel_modes:
316
            raise ValueError(f"Only modes {permitted_3_channel_modes} are supported for 3D inputs")
317
        if mode is None and npimg.dtype == np.uint8:
318
            mode = "RGB"
319
320

    if mode is None:
321
        raise TypeError(f"Input type {npimg.dtype} is not supported")
322
323
324
325

    return Image.fromarray(npimg, mode=mode)


326
def normalize(tensor: Tensor, mean: List[float], std: List[float], inplace: bool = False) -> Tensor:
327
    """Normalize a float tensor image with mean and standard deviation.
328
    This transform does not support PIL Image.
329

330
    .. note::
surgan12's avatar
surgan12 committed
331
        This transform acts out of place by default, i.e., it does not mutates the input tensor.
332

333
    See :class:`~torchvision.transforms.Normalize` for more details.
334
335

    Args:
336
        tensor (Tensor): Float tensor image of size (C, H, W) or (B, C, H, W) to be normalized.
337
        mean (sequence): Sequence of means for each channel.
338
        std (sequence): Sequence of standard deviations for each channel.
339
        inplace(bool,optional): Bool to make this operation inplace.
340
341
342
343

    Returns:
        Tensor: Normalized Tensor image.
    """
344
345
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(normalize)
346
    if not isinstance(tensor, torch.Tensor):
347
        raise TypeError(f"img should be Tensor Image. Got {type(tensor)}")
348

349
    return F_t.normalize(tensor, mean=mean, std=std, inplace=inplace)
350
351


vfdev's avatar
vfdev committed
352
353
354
def _compute_resized_output_size(
    image_size: Tuple[int, int], size: List[int], max_size: Optional[int] = None
) -> List[int]:
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
    if len(size) == 1:  # specified size only for the smallest edge
        h, w = image_size
        short, long = (w, h) if w <= h else (h, w)
        requested_new_short = size if isinstance(size, int) else size[0]

        new_short, new_long = requested_new_short, int(requested_new_short * long / short)

        if max_size is not None:
            if max_size <= requested_new_short:
                raise ValueError(
                    f"max_size = {max_size} must be strictly greater than the requested "
                    f"size for the smaller edge size = {size}"
                )
            if new_long > max_size:
                new_short, new_long = int(max_size * new_short / new_long), max_size

        new_w, new_h = (new_short, new_long) if w <= h else (new_long, new_short)
    else:  # specified both h and w
        new_w, new_h = size[1], size[0]
    return [new_h, new_w]


377
378
379
380
381
def resize(
    img: Tensor,
    size: List[int],
    interpolation: InterpolationMode = InterpolationMode.BILINEAR,
    max_size: Optional[int] = None,
382
    antialias: Optional[bool] = True,
383
) -> Tensor:
vfdev's avatar
vfdev committed
384
    r"""Resize the input image to the given size.
385
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
386
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
387
388

    Args:
vfdev's avatar
vfdev committed
389
        img (PIL Image or Tensor): Image to be resized.
390
391
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), the output size will be matched to this. If size is an int,
Vitaliy Chiley's avatar
Vitaliy Chiley committed
392
            the smaller edge of the image will be matched to this number maintaining
393
            the aspect ratio. i.e, if height > width, then image will be rescaled to
vfdev's avatar
vfdev committed
394
            :math:`\left(\text{size} \times \frac{\text{height}}{\text{width}}, \text{size}\right)`.
395
396
397

            .. note::
                In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
398
399
400
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`.
            Default is ``InterpolationMode.BILINEAR``. If input is Tensor, only ``InterpolationMode.NEAREST``,
401
402
            ``InterpolationMode.NEAREST_EXACT``, ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are
            supported.
403
            The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
404
        max_size (int, optional): The maximum allowed for the longer edge of
405
            the resized image. If the longer edge of the image is greater
Nicolas Hug's avatar
Nicolas Hug committed
406
            than ``max_size`` after being resized according to ``size``,
407
408
            ``size`` will be overruled so that the longer edge is equal to
            ``max_size``.
Nicolas Hug's avatar
Nicolas Hug committed
409
            As a result, the smaller edge may be shorter than ``size``. This
410
411
            is only supported if ``size`` is an int (or a sequence of length
            1 in torchscript mode).
412
413
414
415
416
417
418
        antialias (bool, optional): Whether to apply antialiasing.
            It only affects **tensors** with bilinear or bicubic modes and it is
            ignored otherwise: on PIL images, antialiasing is always applied on
            bilinear or bicubic modes; on other modes (for PIL images and
            tensors), antialiasing makes no sense and this parameter is ignored.
            Possible values are:

419
            - ``True`` (default): will apply antialiasing for bilinear or bicubic modes.
420
421
422
423
424
425
426
427
              Other mode aren't affected. This is probably what you want to use.
            - ``False``: will not apply antialiasing for tensors on any mode. PIL
              images are still antialiased on bilinear or bicubic modes, because
              PIL doesn't support no antialias.
            - ``None``: equivalent to ``False`` for tensors and ``True`` for
              PIL images. This value exists for legacy reasons and you probably
              don't want to use it unless you really know what you are doing.

428
429
            The default value changed from ``None`` to ``True`` in
            v0.17, for the PIL and Tensor backends to be consistent.
430
431

    Returns:
vfdev's avatar
vfdev committed
432
        PIL Image or Tensor: Resized image.
433
    """
434
435
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(resize)
436

437
438
439
440
441
442
    if isinstance(interpolation, int):
        interpolation = _interpolation_modes_from_int(interpolation)
    elif not isinstance(interpolation, InterpolationMode):
        raise TypeError(
            "Argument interpolation should be a InterpolationMode or a corresponding Pillow integer constant"
        )
443

444
445
446
447
448
449
450
451
452
453
454
455
456
457
    if isinstance(size, (list, tuple)):
        if len(size) not in [1, 2]:
            raise ValueError(
                f"Size must be an int or a 1 or 2 element tuple/list, not a {len(size)} element tuple/list"
            )
        if max_size is not None and len(size) != 1:
            raise ValueError(
                "max_size should only be passed if size specifies the length of the smaller edge, "
                "i.e. size should be an int or a sequence of length 1 in torchscript mode."
            )

    _, image_height, image_width = get_dimensions(img)
    if isinstance(size, int):
        size = [size]
vfdev's avatar
vfdev committed
458
    output_size = _compute_resized_output_size((image_height, image_width), size, max_size)
459

460
    if [image_height, image_width] == output_size:
461
462
        return img

vfdev's avatar
vfdev committed
463
    if not isinstance(img, torch.Tensor):
464
        if antialias is False:
465
            warnings.warn("Anti-alias option is always applied for PIL Image input. Argument antialias is ignored.")
466
        pil_interpolation = pil_modes_mapping[interpolation]
467
        return F_pil.resize(img, size=output_size, interpolation=pil_interpolation)
vfdev's avatar
vfdev committed
468

469
    return F_t.resize(img, size=output_size, interpolation=interpolation.value, antialias=antialias)
470
471


472
def pad(img: Tensor, padding: List[int], fill: Union[int, float] = 0, padding_mode: str = "constant") -> Tensor:
473
    r"""Pad the given image on all sides with the given "pad" value.
474
    If the image is torch Tensor, it is expected
475
476
477
    to have [..., H, W] shape, where ... means at most 2 leading dimensions for mode reflect and symmetric,
    at most 3 leading dimensions for mode edge,
    and an arbitrary number of leading dimensions for mode constant
478
479

    Args:
480
        img (PIL Image or Tensor): Image to be padded.
481
482
483
        padding (int or sequence): Padding on each border. If a single int is provided this
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
484
            this is the padding for the left, top, right and bottom borders respectively.
485
486
487
488

            .. note::
                In torchscript mode padding as single int is not supported, use a sequence of
                length 1: ``[padding, ]``.
489
        fill (number or tuple): Pixel fill value for constant fill. Default is 0.
490
491
492
            If a tuple of length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant.
            Only number is supported for torch Tensor.
493
            Only int or tuple value is supported for PIL Image.
494
495
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
            Default is constant.
496
497
498

            - constant: pads with a constant value, this value is specified with fill

499
500
            - edge: pads with the last value at the edge of the image.
              If input a 5D torch Tensor, the last 3 dimensions will be padded instead of the last 2
501

502
503
504
            - reflect: pads with reflection of image without repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
              will result in [3, 2, 1, 2, 3, 4, 3, 2]
505

506
507
508
            - symmetric: pads with reflection of image repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
              will result in [2, 1, 1, 2, 3, 4, 4, 3]
509
510

    Returns:
511
        PIL Image or Tensor: Padded image.
512
    """
513
514
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(pad)
515
516
    if not isinstance(img, torch.Tensor):
        return F_pil.pad(img, padding=padding, fill=fill, padding_mode=padding_mode)
517

518
    return F_t.pad(img, padding=padding, fill=fill, padding_mode=padding_mode)
519
520


vfdev's avatar
vfdev committed
521
522
def crop(img: Tensor, top: int, left: int, height: int, width: int) -> Tensor:
    """Crop the given image at specified location and output size.
523
    If the image is torch Tensor, it is expected
524
525
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
    If image size is smaller than output size along any edge, image is padded with 0 and then cropped.
526

527
    Args:
vfdev's avatar
vfdev committed
528
        img (PIL Image or Tensor): Image to be cropped. (0,0) denotes the top left corner of the image.
529
530
531
532
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
533

534
    Returns:
vfdev's avatar
vfdev committed
535
        PIL Image or Tensor: Cropped image.
536
537
    """

538
539
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(crop)
vfdev's avatar
vfdev committed
540
541
    if not isinstance(img, torch.Tensor):
        return F_pil.crop(img, top, left, height, width)
542

vfdev's avatar
vfdev committed
543
    return F_t.crop(img, top, left, height, width)
544

vfdev's avatar
vfdev committed
545
546
547

def center_crop(img: Tensor, output_size: List[int]) -> Tensor:
    """Crops the given image at the center.
548
    If the image is torch Tensor, it is expected
549
550
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
    If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.
551

552
    Args:
vfdev's avatar
vfdev committed
553
        img (PIL Image or Tensor): Image to be cropped.
554
        output_size (sequence or int): (height, width) of the crop box. If int or sequence with single int,
vfdev's avatar
vfdev committed
555
556
            it is used for both directions.

557
    Returns:
vfdev's avatar
vfdev committed
558
        PIL Image or Tensor: Cropped image.
559
    """
560
561
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(center_crop)
562
563
    if isinstance(output_size, numbers.Number):
        output_size = (int(output_size), int(output_size))
vfdev's avatar
vfdev committed
564
565
566
    elif isinstance(output_size, (tuple, list)) and len(output_size) == 1:
        output_size = (output_size[0], output_size[0])

567
    _, image_height, image_width = get_dimensions(img)
568
    crop_height, crop_width = output_size
vfdev's avatar
vfdev committed
569

570
571
572
573
574
575
576
577
    if crop_width > image_width or crop_height > image_height:
        padding_ltrb = [
            (crop_width - image_width) // 2 if crop_width > image_width else 0,
            (crop_height - image_height) // 2 if crop_height > image_height else 0,
            (crop_width - image_width + 1) // 2 if crop_width > image_width else 0,
            (crop_height - image_height + 1) // 2 if crop_height > image_height else 0,
        ]
        img = pad(img, padding_ltrb, fill=0)  # PIL uses fill value 0
578
        _, image_height, image_width = get_dimensions(img)
579
580
581
        if crop_width == image_width and crop_height == image_height:
            return img

582
583
    crop_top = int(round((image_height - crop_height) / 2.0))
    crop_left = int(round((image_width - crop_width) / 2.0))
584
    return crop(img, crop_top, crop_left, crop_height, crop_width)
585
586


587
def resized_crop(
588
589
590
591
592
593
594
    img: Tensor,
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
    interpolation: InterpolationMode = InterpolationMode.BILINEAR,
595
    antialias: Optional[bool] = True,
596
597
) -> Tensor:
    """Crop the given image and resize it to desired size.
598
    If the image is torch Tensor, it is expected
599
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
600

601
    Notably used in :class:`~torchvision.transforms.RandomResizedCrop`.
602
603

    Args:
604
        img (PIL Image or Tensor): Image to be cropped. (0,0) denotes the top left corner of the image.
605
606
607
608
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
609
        size (sequence or int): Desired output size. Same semantics as ``resize``.
610
611
612
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`.
            Default is ``InterpolationMode.BILINEAR``. If input is Tensor, only ``InterpolationMode.NEAREST``,
613
614
            ``InterpolationMode.NEAREST_EXACT``, ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are
            supported.
615
            The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
616
617
618
619
620
621
622
        antialias (bool, optional): Whether to apply antialiasing.
            It only affects **tensors** with bilinear or bicubic modes and it is
            ignored otherwise: on PIL images, antialiasing is always applied on
            bilinear or bicubic modes; on other modes (for PIL images and
            tensors), antialiasing makes no sense and this parameter is ignored.
            Possible values are:

623
            - ``True`` (default): will apply antialiasing for bilinear or bicubic modes.
624
625
626
627
628
629
630
631
              Other mode aren't affected. This is probably what you want to use.
            - ``False``: will not apply antialiasing for tensors on any mode. PIL
              images are still antialiased on bilinear or bicubic modes, because
              PIL doesn't support no antialias.
            - ``None``: equivalent to ``False`` for tensors and ``True`` for
              PIL images. This value exists for legacy reasons and you probably
              don't want to use it unless you really know what you are doing.

632
633
            The default value changed from ``None`` to ``True`` in
            v0.17, for the PIL and Tensor backends to be consistent.
634
    Returns:
635
        PIL Image or Tensor: Cropped image.
636
    """
637
638
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(resized_crop)
639
    img = crop(img, top, left, height, width)
640
    img = resize(img, size, interpolation, antialias=antialias)
641
642
643
    return img


644
def hflip(img: Tensor) -> Tensor:
645
    """Horizontally flip the given image.
646
647

    Args:
vfdev's avatar
vfdev committed
648
        img (PIL Image or Tensor): Image to be flipped. If img
649
            is a Tensor, it is expected to be in [..., H, W] format,
650
            where ... means it can have an arbitrary number of leading
651
            dimensions.
652
653

    Returns:
vfdev's avatar
vfdev committed
654
        PIL Image or Tensor:  Horizontally flipped image.
655
    """
656
657
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(hflip)
658
659
    if not isinstance(img, torch.Tensor):
        return F_pil.hflip(img)
660

661
    return F_t.hflip(img)
662
663


664
def _get_perspective_coeffs(startpoints: List[List[int]], endpoints: List[List[int]]) -> List[float]:
665
666
    """Helper function to get the coefficients (a, b, c, d, e, f, g, h) for the perspective transforms.

Vitaliy Chiley's avatar
Vitaliy Chiley committed
667
    In Perspective Transform each pixel (x, y) in the original image gets transformed as,
668
669
670
     (x, y) -> ( (ax + by + c) / (gx + hy + 1), (dx + ey + f) / (gx + hy + 1) )

    Args:
671
672
673
674
675
        startpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the original image.
        endpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the transformed image.

676
677
678
    Returns:
        octuple (a, b, c, d, e, f, g, h) for transforming each pixel.
    """
679
680
681
682
683
    if len(startpoints) != 4 or len(endpoints) != 4:
        raise ValueError(
            f"Please provide exactly four corners, got {len(startpoints)} startpoints and {len(endpoints)} endpoints."
        )
    a_matrix = torch.zeros(2 * len(startpoints), 8, dtype=torch.float64)
684
685
686
687

    for i, (p1, p2) in enumerate(zip(endpoints, startpoints)):
        a_matrix[2 * i, :] = torch.tensor([p1[0], p1[1], 1, 0, 0, 0, -p2[0] * p1[0], -p2[0] * p1[1]])
        a_matrix[2 * i + 1, :] = torch.tensor([0, 0, 0, p1[0], p1[1], 1, -p2[1] * p1[0], -p2[1] * p1[1]])
688

689
690
691
    b_matrix = torch.tensor(startpoints, dtype=torch.float64).view(8)
    # do least squares in double precision to prevent numerical issues
    res = torch.linalg.lstsq(a_matrix, b_matrix, driver="gels").solution.to(torch.float32)
692

693
    output: List[float] = res.tolist()
694
    return output
695
696


697
def perspective(
698
699
700
701
702
    img: Tensor,
    startpoints: List[List[int]],
    endpoints: List[List[int]],
    interpolation: InterpolationMode = InterpolationMode.BILINEAR,
    fill: Optional[List[float]] = None,
703
704
) -> Tensor:
    """Perform perspective transform of the given image.
705
    If the image is torch Tensor, it is expected
706
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
707
708

    Args:
709
710
711
712
713
        img (PIL Image or Tensor): Image to be transformed.
        startpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the original image.
        endpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the transformed image.
714
715
716
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
717
            The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
718
719
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
720
721
722
723

            .. note::
                In torchscript mode single int/float value is not supported, please use a sequence
                of length 1: ``[value, ]``.
724

725
    Returns:
726
        PIL Image or Tensor: transformed Image.
727
    """
728
729
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(perspective)
730

731
    coeffs = _get_perspective_coeffs(startpoints, endpoints)
732

733
734
735
736
737
738
    if isinstance(interpolation, int):
        interpolation = _interpolation_modes_from_int(interpolation)
    elif not isinstance(interpolation, InterpolationMode):
        raise TypeError(
            "Argument interpolation should be a InterpolationMode or a corresponding Pillow integer constant"
        )
739

740
    if not isinstance(img, torch.Tensor):
741
742
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.perspective(img, coeffs, interpolation=pil_interpolation, fill=fill)
743

744
    return F_t.perspective(img, coeffs, interpolation=interpolation.value, fill=fill)
745
746


747
def vflip(img: Tensor) -> Tensor:
748
    """Vertically flip the given image.
749
750

    Args:
vfdev's avatar
vfdev committed
751
        img (PIL Image or Tensor): Image to be flipped. If img
752
            is a Tensor, it is expected to be in [..., H, W] format,
753
            where ... means it can have an arbitrary number of leading
754
            dimensions.
755
756

    Returns:
757
        PIL Image or Tensor:  Vertically flipped image.
758
    """
759
760
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(vflip)
761
762
    if not isinstance(img, torch.Tensor):
        return F_pil.vflip(img)
763

764
    return F_t.vflip(img)
765
766


vfdev's avatar
vfdev committed
767
768
def five_crop(img: Tensor, size: List[int]) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]:
    """Crop the given image into four corners and the central crop.
769
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
770
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
771
772
773
774
775
776

    .. Note::
        This transform returns a tuple of images and there may be a
        mismatch in the number of inputs and targets your ``Dataset`` returns.

    Args:
vfdev's avatar
vfdev committed
777
778
779
        img (PIL Image or Tensor): Image to be cropped.
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
780
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
781

782
    Returns:
783
       tuple: tuple (tl, tr, bl, br, center)
784
       Corresponding top left, top right, bottom left, bottom right and center crop.
785
    """
786
787
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(five_crop)
788
789
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
vfdev's avatar
vfdev committed
790
791
    elif isinstance(size, (tuple, list)) and len(size) == 1:
        size = (size[0], size[0])
792

vfdev's avatar
vfdev committed
793
794
795
    if len(size) != 2:
        raise ValueError("Please provide only two dimensions (h, w) for size.")

796
    _, image_height, image_width = get_dimensions(img)
797
798
799
800
801
    crop_height, crop_width = size
    if crop_width > image_width or crop_height > image_height:
        msg = "Requested crop size {} is bigger than input size {}"
        raise ValueError(msg.format(size, (image_height, image_width)))

vfdev's avatar
vfdev committed
802
803
804
805
806
807
808
809
    tl = crop(img, 0, 0, crop_height, crop_width)
    tr = crop(img, 0, image_width - crop_width, crop_height, crop_width)
    bl = crop(img, image_height - crop_height, 0, crop_height, crop_width)
    br = crop(img, image_height - crop_height, image_width - crop_width, crop_height, crop_width)

    center = center_crop(img, [crop_height, crop_width])

    return tl, tr, bl, br, center
810
811


Philip Meier's avatar
Philip Meier committed
812
813
814
def ten_crop(
    img: Tensor, size: List[int], vertical_flip: bool = False
) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor]:
vfdev's avatar
vfdev committed
815
816
    """Generate ten cropped images from the given image.
    Crop the given image into four corners and the central crop plus the
817
    flipped version of these (horizontal flipping is used by default).
818
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
819
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
820
821
822
823
824

    .. Note::
        This transform returns a tuple of images and there may be a
        mismatch in the number of inputs and targets your ``Dataset`` returns.

825
    Args:
vfdev's avatar
vfdev committed
826
        img (PIL Image or Tensor): Image to be cropped.
827
        size (sequence or int): Desired output size of the crop. If size is an
828
            int instead of sequence like (h, w), a square crop (size, size) is
829
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
830
        vertical_flip (bool): Use vertical flipping instead of horizontal
831
832

    Returns:
833
        tuple: tuple (tl, tr, bl, br, center, tl_flip, tr_flip, bl_flip, br_flip, center_flip)
834
835
        Corresponding top left, top right, bottom left, bottom right and
        center crop and same for the flipped image.
836
    """
837
838
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(ten_crop)
839
840
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
vfdev's avatar
vfdev committed
841
842
843
844
845
    elif isinstance(size, (tuple, list)) and len(size) == 1:
        size = (size[0], size[0])

    if len(size) != 2:
        raise ValueError("Please provide only two dimensions (h, w) for size.")
846
847
848
849
850
851
852
853
854
855
856
857

    first_five = five_crop(img, size)

    if vertical_flip:
        img = vflip(img)
    else:
        img = hflip(img)

    second_five = five_crop(img, size)
    return first_five + second_five


858
def adjust_brightness(img: Tensor, brightness_factor: float) -> Tensor:
859
    """Adjust brightness of an image.
860
861

    Args:
vfdev's avatar
vfdev committed
862
        img (PIL Image or Tensor): Image to be adjusted.
863
864
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
865
        brightness_factor (float):  How much to adjust the brightness. Can be
866
            any non-negative number. 0 gives a black image, 1 gives the
867
868
869
            original image while 2 increases the brightness by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
870
        PIL Image or Tensor: Brightness adjusted image.
871
    """
872
873
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(adjust_brightness)
874
875
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_brightness(img, brightness_factor)
876

877
    return F_t.adjust_brightness(img, brightness_factor)
878
879


880
def adjust_contrast(img: Tensor, contrast_factor: float) -> Tensor:
881
    """Adjust contrast of an image.
882
883

    Args:
vfdev's avatar
vfdev committed
884
        img (PIL Image or Tensor): Image to be adjusted.
885
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
886
            where ... means it can have an arbitrary number of leading dimensions.
887
        contrast_factor (float): How much to adjust the contrast. Can be any
888
            non-negative number. 0 gives a solid gray image, 1 gives the
889
890
891
            original image while 2 increases the contrast by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
892
        PIL Image or Tensor: Contrast adjusted image.
893
    """
894
895
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(adjust_contrast)
896
897
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_contrast(img, contrast_factor)
898

899
    return F_t.adjust_contrast(img, contrast_factor)
900
901


902
def adjust_saturation(img: Tensor, saturation_factor: float) -> Tensor:
903
904
905
    """Adjust color saturation of an image.

    Args:
vfdev's avatar
vfdev committed
906
        img (PIL Image or Tensor): Image to be adjusted.
907
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
908
            where ... means it can have an arbitrary number of leading dimensions.
909
910
911
912
913
        saturation_factor (float):  How much to adjust the saturation. 0 will
            give a black and white image, 1 will give the original image while
            2 will enhance the saturation by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
914
        PIL Image or Tensor: Saturation adjusted image.
915
    """
916
917
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(adjust_saturation)
918
919
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_saturation(img, saturation_factor)
920

921
    return F_t.adjust_saturation(img, saturation_factor)
922
923


924
def adjust_hue(img: Tensor, hue_factor: float) -> Tensor:
925
926
927
928
929
930
931
932
933
    """Adjust hue of an image.

    The image hue is adjusted by converting the image to HSV and
    cyclically shifting the intensities in the hue channel (H).
    The image is then converted back to original image mode.

    `hue_factor` is the amount of shift in H channel and must be in the
    interval `[-0.5, 0.5]`.

934
935
936
    See `Hue`_ for more details.

    .. _Hue: https://en.wikipedia.org/wiki/Hue
937
938

    Args:
939
        img (PIL Image or Tensor): Image to be adjusted.
940
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
941
            where ... means it can have an arbitrary number of leading dimensions.
942
            If img is PIL Image mode "1", "I", "F" and modes with transparency (alpha channel) are not supported.
943
944
945
            Note: the pixel values of the input image has to be non-negative for conversion to HSV space;
            thus it does not work if you normalize your image to an interval with negative values,
            or use an interpolation that generates negative values before using this function.
946
947
948
949
950
951
952
        hue_factor (float):  How much to shift the hue channel. Should be in
            [-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
            HSV space in positive and negative direction respectively.
            0 means no shift. Therefore, both -0.5 and 0.5 will give an image
            with complementary colors while 0 gives the original image.

    Returns:
953
        PIL Image or Tensor: Hue adjusted image.
954
    """
955
956
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(adjust_hue)
957
958
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_hue(img, hue_factor)
959

960
    return F_t.adjust_hue(img, hue_factor)
961
962


963
def adjust_gamma(img: Tensor, gamma: float, gain: float = 1) -> Tensor:
964
    r"""Perform gamma correction on an image.
965
966
967
968

    Also known as Power Law Transform. Intensities in RGB mode are adjusted
    based on the following equation:

969
970
971
972
    .. math::
        I_{\text{out}} = 255 \times \text{gain} \times \left(\frac{I_{\text{in}}}{255}\right)^{\gamma}

    See `Gamma Correction`_ for more details.
973

974
    .. _Gamma Correction: https://en.wikipedia.org/wiki/Gamma_correction
975
976

    Args:
977
        img (PIL Image or Tensor): PIL Image to be adjusted.
978
979
980
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, modes with transparency (alpha channel) are not supported.
981
982
983
        gamma (float): Non negative real number, same as :math:`\gamma` in the equation.
            gamma larger than 1 make the shadows darker,
            while gamma smaller than 1 make dark regions lighter.
984
        gain (float): The constant multiplier.
985
986
    Returns:
        PIL Image or Tensor: Gamma correction adjusted image.
987
    """
988
989
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(adjust_gamma)
990
991
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_gamma(img, gamma, gain)
992

993
    return F_t.adjust_gamma(img, gamma, gain)
994
995


vfdev's avatar
vfdev committed
996
def _get_inverse_affine_matrix(
997
    center: List[float], angle: float, translate: List[float], scale: float, shear: List[float], inverted: bool = True
vfdev's avatar
vfdev committed
998
) -> List[float]:
999
1000
    # Helper method to compute inverse matrix for affine transformation

1001
1002
1003
    # Pillow requires inverse affine transformation matrix:
    # Affine matrix is : M = T * C * RotateScaleShear * C^-1
    #
1004
1005
    # where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1]
    #       C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1]
1006
1007
1008
    #       RotateScaleShear is rotation with scale and shear matrix
    #
    #       RotateScaleShear(a, s, (sx, sy)) =
1009
    #       = R(a) * S(s) * SHy(sy) * SHx(sx)
1010
    #       = [ s*cos(a - sy)/cos(sy), s*(-cos(a - sy)*tan(sx)/cos(sy) - sin(a)), 0 ]
1011
    #         [ s*sin(a - sy)/cos(sy), s*(-sin(a - sy)*tan(sx)/cos(sy) + cos(a)), 0 ]
1012
1013
1014
1015
1016
    #         [ 0                    , 0                                      , 1 ]
    # where R is a rotation matrix, S is a scaling matrix, and SHx and SHy are the shears:
    # SHx(s) = [1, -tan(s)] and SHy(s) = [1      , 0]
    #          [0, 1      ]              [-tan(s), 1]
    #
1017
    # Thus, the inverse is M^-1 = C * RotateScaleShear^-1 * C^-1 * T^-1
1018

1019
    rot = math.radians(angle)
1020
1021
    sx = math.radians(shear[0])
    sy = math.radians(shear[1])
1022
1023
1024
1025
1026

    cx, cy = center
    tx, ty = translate

    # RSS without scaling
vfdev's avatar
vfdev committed
1027
1028
1029
1030
    a = math.cos(rot - sy) / math.cos(sy)
    b = -math.cos(rot - sy) * math.tan(sx) / math.cos(sy) - math.sin(rot)
    c = math.sin(rot - sy) / math.cos(sy)
    d = -math.sin(rot - sy) * math.tan(sx) / math.cos(sy) + math.cos(rot)
1031

1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
    if inverted:
        # Inverted rotation matrix with scale and shear
        # det([[a, b], [c, d]]) == 1, since det(rotation) = 1 and det(shear) = 1
        matrix = [d, -b, 0.0, -c, a, 0.0]
        matrix = [x / scale for x in matrix]
        # Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
        matrix[2] += matrix[0] * (-cx - tx) + matrix[1] * (-cy - ty)
        matrix[5] += matrix[3] * (-cx - tx) + matrix[4] * (-cy - ty)
        # Apply center translation: C * RSS^-1 * C^-1 * T^-1
        matrix[2] += cx
        matrix[5] += cy
    else:
        matrix = [a, b, 0.0, c, d, 0.0]
        matrix = [x * scale for x in matrix]
        # Apply inverse of center translation: RSS * C^-1
        matrix[2] += matrix[0] * (-cx) + matrix[1] * (-cy)
        matrix[5] += matrix[3] * (-cx) + matrix[4] * (-cy)
        # Apply translation and center : T * C * RSS * C^-1
        matrix[2] += cx + tx
        matrix[5] += cy + ty
1052

vfdev's avatar
vfdev committed
1053
    return matrix
1054

vfdev's avatar
vfdev committed
1055

vfdev's avatar
vfdev committed
1056
def rotate(
1057
1058
1059
1060
1061
1062
    img: Tensor,
    angle: float,
    interpolation: InterpolationMode = InterpolationMode.NEAREST,
    expand: bool = False,
    center: Optional[List[int]] = None,
    fill: Optional[List[float]] = None,
vfdev's avatar
vfdev committed
1063
1064
) -> Tensor:
    """Rotate the image by angle.
1065
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
1066
1067
1068
1069
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.

    Args:
        img (PIL Image or Tensor): image to be rotated.
1070
        angle (number): rotation angle value in degrees, counter-clockwise.
1071
1072
1073
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
1074
            The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
vfdev's avatar
vfdev committed
1075
1076
1077
1078
        expand (bool, optional): Optional expansion flag.
            If true, expands the output image to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
1079
        center (sequence, optional): Optional center of rotation. Origin is the upper left corner.
vfdev's avatar
vfdev committed
1080
            Default is the center of the image.
1081
1082
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
1083
1084
1085
1086

            .. note::
                In torchscript mode single int/float value is not supported, please use a sequence
                of length 1: ``[value, ]``.
vfdev's avatar
vfdev committed
1087
1088
1089
1090
1091
1092
    Returns:
        PIL Image or Tensor: Rotated image.

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

    """
1093
1094
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(rotate)
1095

1096
1097
1098
1099
1100
1101
1102
    if isinstance(interpolation, int):
        interpolation = _interpolation_modes_from_int(interpolation)
    elif not isinstance(interpolation, InterpolationMode):
        raise TypeError(
            "Argument interpolation should be a InterpolationMode or a corresponding Pillow integer constant"
        )

vfdev's avatar
vfdev committed
1103
1104
1105
1106
1107
1108
1109
    if not isinstance(angle, (int, float)):
        raise TypeError("Argument angle should be int or float")

    if center is not None and not isinstance(center, (list, tuple)):
        raise TypeError("Argument center should be a sequence")

    if not isinstance(img, torch.Tensor):
1110
1111
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.rotate(img, angle=angle, interpolation=pil_interpolation, expand=expand, center=center, fill=fill)
vfdev's avatar
vfdev committed
1112
1113
1114

    center_f = [0.0, 0.0]
    if center is not None:
1115
        _, height, width = get_dimensions(img)
1116
        # Center values should be in pixel coordinates but translated such that (0, 0) corresponds to image center.
1117
        center_f = [1.0 * (c - s * 0.5) for c, s in zip(center, [width, height])]
1118

vfdev's avatar
vfdev committed
1119
1120
1121
    # due to current incoherence of rotation angle direction between affine and rotate implementations
    # we need to set -angle.
    matrix = _get_inverse_affine_matrix(center_f, -angle, [0.0, 0.0], 1.0, [0.0, 0.0])
1122
    return F_t.rotate(img, matrix=matrix, interpolation=interpolation.value, expand=expand, fill=fill)
vfdev's avatar
vfdev committed
1123
1124


vfdev's avatar
vfdev committed
1125
def affine(
1126
1127
1128
1129
1130
1131
1132
    img: Tensor,
    angle: float,
    translate: List[int],
    scale: float,
    shear: List[float],
    interpolation: InterpolationMode = InterpolationMode.NEAREST,
    fill: Optional[List[float]] = None,
1133
    center: Optional[List[int]] = None,
vfdev's avatar
vfdev committed
1134
1135
) -> Tensor:
    """Apply affine transformation on the image keeping image center invariant.
1136
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
1137
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1138
1139

    Args:
vfdev's avatar
vfdev committed
1140
        img (PIL Image or Tensor): image to transform.
1141
1142
        angle (number): rotation angle in degrees between -180 and 180, clockwise direction.
        translate (sequence of integers): horizontal and vertical translations (post-rotation translation)
1143
        scale (float): overall scale
1144
        shear (float or sequence): shear angle value in degrees between -180 to 180, clockwise direction.
1145
1146
            If a sequence is specified, the first value corresponds to a shear parallel to the x-axis, while
            the second value corresponds to a shear parallel to the y-axis.
1147
1148
1149
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
1150
            The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
1151
1152
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
1153
1154
1155
1156

            .. note::
                In torchscript mode single int/float value is not supported, please use a sequence
                of length 1: ``[value, ]``.
1157
1158
        center (sequence, optional): Optional center of rotation. Origin is the upper left corner.
            Default is the center of the image.
vfdev's avatar
vfdev committed
1159
1160
1161

    Returns:
        PIL Image or Tensor: Transformed image.
1162
    """
1163
1164
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(affine)
1165

1166
1167
1168
1169
1170
1171
1172
    if isinstance(interpolation, int):
        interpolation = _interpolation_modes_from_int(interpolation)
    elif not isinstance(interpolation, InterpolationMode):
        raise TypeError(
            "Argument interpolation should be a InterpolationMode or a corresponding Pillow integer constant"
        )

vfdev's avatar
vfdev committed
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
    if not isinstance(angle, (int, float)):
        raise TypeError("Argument angle should be int or float")

    if not isinstance(translate, (list, tuple)):
        raise TypeError("Argument translate should be a sequence")

    if len(translate) != 2:
        raise ValueError("Argument translate should be a sequence of length 2")

    if scale <= 0.0:
        raise ValueError("Argument scale should be positive")

    if not isinstance(shear, (numbers.Number, (list, tuple))):
        raise TypeError("Shear should be either a single value or a sequence of two values")

    if isinstance(angle, int):
        angle = float(angle)

    if isinstance(translate, tuple):
        translate = list(translate)

    if isinstance(shear, numbers.Number):
        shear = [shear, 0.0]

    if isinstance(shear, tuple):
        shear = list(shear)

    if len(shear) == 1:
        shear = [shear[0], shear[0]]

    if len(shear) != 2:
1204
        raise ValueError(f"Shear should be a sequence containing two values. Got {shear}")
vfdev's avatar
vfdev committed
1205

1206
1207
1208
    if center is not None and not isinstance(center, (list, tuple)):
        raise TypeError("Argument center should be a sequence")

1209
    _, height, width = get_dimensions(img)
vfdev's avatar
vfdev committed
1210
    if not isinstance(img, torch.Tensor):
1211
        # center = (width * 0.5 + 0.5, height * 0.5 + 0.5)
vfdev's avatar
vfdev committed
1212
1213
        # it is visually better to estimate the center without 0.5 offset
        # otherwise image rotated by 90 degrees is shifted vs output image of torch.rot90 or F_t.affine
1214
        if center is None:
1215
            center = [width * 0.5, height * 0.5]
vfdev's avatar
vfdev committed
1216
        matrix = _get_inverse_affine_matrix(center, angle, translate, scale, shear)
1217
1218
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.affine(img, matrix=matrix, interpolation=pil_interpolation, fill=fill)
1219

1220
1221
    center_f = [0.0, 0.0]
    if center is not None:
1222
        _, height, width = get_dimensions(img)
1223
        # Center values should be in pixel coordinates but translated such that (0, 0) corresponds to image center.
1224
        center_f = [1.0 * (c - s * 0.5) for c, s in zip(center, [width, height])]
1225

1226
    translate_f = [1.0 * t for t in translate]
1227
    matrix = _get_inverse_affine_matrix(center_f, angle, translate_f, scale, shear)
1228
    return F_t.affine(img, matrix=matrix, interpolation=interpolation.value, fill=fill)
1229
1230


1231
1232
# Looks like to_grayscale() is a stand-alone functional that is never called
# from the transform classes. Perhaps it's still here for BC? I can't be
1233
# bothered to dig.
1234
@torch.jit.unused
1235
def to_grayscale(img, num_output_channels=1):
1236
    """Convert PIL image of any mode (RGB, HSV, LAB, etc) to grayscale version of image.
1237
    This transform does not support torch Tensor.
1238
1239

    Args:
1240
        img (PIL Image): PIL Image to be converted to grayscale.
1241
        num_output_channels (int): number of channels of the output image. Value can be 1 or 3. Default is 1.
1242
1243

    Returns:
1244
1245
        PIL Image: Grayscale version of the image.

1246
1247
        - if num_output_channels = 1 : returned image is single channel
        - if num_output_channels = 3 : returned image is 3 channel with r = g = b
1248
    """
1249
1250
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(to_grayscale)
1251
1252
    if isinstance(img, Image.Image):
        return F_pil.to_grayscale(img, num_output_channels)
1253

1254
1255
1256
1257
1258
    raise TypeError("Input should be PIL Image")


def rgb_to_grayscale(img: Tensor, num_output_channels: int = 1) -> Tensor:
    """Convert RGB image to grayscale version of image.
1259
1260
    If the image is torch Tensor, it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions
1261
1262
1263

    Note:
        Please, note that this method supports only RGB images as input. For inputs in other color spaces,
1264
        please, consider using :meth:`~torchvision.transforms.functional.to_grayscale` with PIL Image.
1265
1266
1267
1268
1269
1270
1271
1272

    Args:
        img (PIL Image or Tensor): RGB Image to be converted to grayscale.
        num_output_channels (int): number of channels of the output image. Value can be 1 or 3. Default, 1.

    Returns:
        PIL Image or Tensor: Grayscale version of the image.

1273
1274
        - if num_output_channels = 1 : returned image is single channel
        - if num_output_channels = 3 : returned image is 3 channel with r = g = b
1275
    """
1276
1277
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(rgb_to_grayscale)
1278
1279
1280
1281
    if not isinstance(img, torch.Tensor):
        return F_pil.to_grayscale(img, num_output_channels)

    return F_t.rgb_to_grayscale(img, num_output_channels)
1282
1283


1284
def erase(img: Tensor, i: int, j: int, h: int, w: int, v: Tensor, inplace: bool = False) -> Tensor:
1285
    """Erase the input Tensor Image with given value.
1286
    This transform does not support PIL Image.
1287
1288
1289
1290
1291
1292
1293
1294

    Args:
        img (Tensor Image): Tensor image of size (C, H, W) to be erased
        i (int): i in (i,j) i.e coordinates of the upper left corner.
        j (int): j in (i,j) i.e coordinates of the upper left corner.
        h (int): Height of the erased region.
        w (int): Width of the erased region.
        v: Erasing value.
1295
        inplace(bool, optional): For in-place operations. By default, is set False.
1296
1297
1298
1299

    Returns:
        Tensor Image: Erased image.
    """
1300
1301
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(erase)
1302
    if not isinstance(img, torch.Tensor):
1303
        raise TypeError(f"img should be Tensor Image. Got {type(img)}")
1304

1305
    return F_t.erase(img, i, j, h, w, v, inplace=inplace)
1306
1307
1308


def gaussian_blur(img: Tensor, kernel_size: List[int], sigma: Optional[List[float]] = None) -> Tensor:
1309
1310
    """Performs Gaussian blurring on the image by given kernel.
    If the image is torch Tensor, it is expected
Haochen Yu's avatar
Haochen Yu committed
1311
    to have [..., H, W] shape, where ... means at most one leading dimension.
1312
1313
1314
1315
1316

    Args:
        img (PIL Image or Tensor): Image to be blurred
        kernel_size (sequence of ints or int): Gaussian kernel size. Can be a sequence of integers
            like ``(kx, ky)`` or a single integer for square kernels.
1317
1318
1319
1320

            .. note::
                In torchscript mode kernel_size as single int is not supported, use a sequence of
                length 1: ``[ksize, ]``.
1321
1322
1323
1324
        sigma (sequence of floats or float, optional): Gaussian kernel standard deviation. Can be a
            sequence of floats like ``(sigma_x, sigma_y)`` or a single float to define the
            same sigma in both X/Y directions. If None, then it is computed using
            ``kernel_size`` as ``sigma = 0.3 * ((kernel_size - 1) * 0.5 - 1) + 0.8``.
1325
1326
1327
1328
1329
            Default, None.

            .. note::
                In torchscript mode sigma as single float is
                not supported, use a sequence of length 1: ``[sigma, ]``.
1330
1331
1332
1333

    Returns:
        PIL Image or Tensor: Gaussian Blurred version of the image.
    """
1334
1335
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(gaussian_blur)
1336
    if not isinstance(kernel_size, (int, list, tuple)):
1337
        raise TypeError(f"kernel_size should be int or a sequence of integers. Got {type(kernel_size)}")
1338
1339
1340
    if isinstance(kernel_size, int):
        kernel_size = [kernel_size, kernel_size]
    if len(kernel_size) != 2:
1341
        raise ValueError(f"If kernel_size is a sequence its length should be 2. Got {len(kernel_size)}")
1342
1343
    for ksize in kernel_size:
        if ksize % 2 == 0 or ksize < 0:
1344
            raise ValueError(f"kernel_size should have odd and positive integers. Got {kernel_size}")
1345
1346
1347
1348
1349

    if sigma is None:
        sigma = [ksize * 0.15 + 0.35 for ksize in kernel_size]

    if sigma is not None and not isinstance(sigma, (int, float, list, tuple)):
1350
        raise TypeError(f"sigma should be either float or sequence of floats. Got {type(sigma)}")
1351
1352
1353
1354
1355
    if isinstance(sigma, (int, float)):
        sigma = [float(sigma), float(sigma)]
    if isinstance(sigma, (list, tuple)) and len(sigma) == 1:
        sigma = [sigma[0], sigma[0]]
    if len(sigma) != 2:
1356
        raise ValueError(f"If sigma is a sequence, its length should be 2. Got {len(sigma)}")
1357
    for s in sigma:
1358
        if s <= 0.0:
1359
            raise ValueError(f"sigma should have positive values. Got {sigma}")
1360
1361
1362
1363

    t_img = img
    if not isinstance(img, torch.Tensor):
        if not F_pil._is_pil_image(img):
1364
            raise TypeError(f"img should be PIL Image or Tensor. Got {type(img)}")
1365

1366
        t_img = pil_to_tensor(img)
1367
1368
1369
1370

    output = F_t.gaussian_blur(t_img, kernel_size, sigma)

    if not isinstance(img, torch.Tensor):
1371
        output = to_pil_image(output, mode=img.mode)
1372
    return output
1373
1374
1375


def invert(img: Tensor) -> Tensor:
1376
    """Invert the colors of an RGB/grayscale image.
1377
1378
1379

    Args:
        img (PIL Image or Tensor): Image to have its colors inverted.
1380
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1381
1382
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1383
1384
1385
1386

    Returns:
        PIL Image or Tensor: Color inverted image.
    """
1387
1388
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(invert)
1389
1390
1391
1392
1393
1394
1395
    if not isinstance(img, torch.Tensor):
        return F_pil.invert(img)

    return F_t.invert(img)


def posterize(img: Tensor, bits: int) -> Tensor:
1396
    """Posterize an image by reducing the number of bits for each color channel.
1397
1398
1399

    Args:
        img (PIL Image or Tensor): Image to have its colors posterized.
1400
            If img is torch Tensor, it should be of type torch.uint8, and
1401
1402
1403
            it is expected to be in [..., 1 or 3, H, W] format, where ... means
            it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1404
1405
1406
1407
        bits (int): The number of bits to keep for each channel (0-8).
    Returns:
        PIL Image or Tensor: Posterized image.
    """
1408
1409
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(posterize)
1410
    if not (0 <= bits <= 8):
1411
        raise ValueError(f"The number if bits should be between 0 and 8. Got {bits}")
1412
1413
1414
1415
1416
1417
1418
1419

    if not isinstance(img, torch.Tensor):
        return F_pil.posterize(img, bits)

    return F_t.posterize(img, bits)


def solarize(img: Tensor, threshold: float) -> Tensor:
1420
    """Solarize an RGB/grayscale image by inverting all pixel values above a threshold.
1421
1422
1423

    Args:
        img (PIL Image or Tensor): Image to have its colors inverted.
1424
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1425
1426
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1427
1428
1429
1430
        threshold (float): All pixels equal or above this value are inverted.
    Returns:
        PIL Image or Tensor: Solarized image.
    """
1431
1432
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(solarize)
1433
1434
1435
1436
1437
1438
1439
    if not isinstance(img, torch.Tensor):
        return F_pil.solarize(img, threshold)

    return F_t.solarize(img, threshold)


def adjust_sharpness(img: Tensor, sharpness_factor: float) -> Tensor:
1440
    """Adjust the sharpness of an image.
1441
1442
1443

    Args:
        img (PIL Image or Tensor): Image to be adjusted.
1444
1445
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
1446
        sharpness_factor (float):  How much to adjust the sharpness. Can be
1447
            any non-negative number. 0 gives a blurred image, 1 gives the
1448
1449
1450
1451
1452
            original image while 2 increases the sharpness by a factor of 2.

    Returns:
        PIL Image or Tensor: Sharpness adjusted image.
    """
1453
1454
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(adjust_sharpness)
1455
1456
1457
1458
1459
1460
1461
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_sharpness(img, sharpness_factor)

    return F_t.adjust_sharpness(img, sharpness_factor)


def autocontrast(img: Tensor) -> Tensor:
1462
    """Maximize contrast of an image by remapping its
1463
1464
1465
1466
1467
    pixels per channel so that the lowest becomes black and the lightest
    becomes white.

    Args:
        img (PIL Image or Tensor): Image on which autocontrast is applied.
1468
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1469
1470
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1471
1472
1473
1474

    Returns:
        PIL Image or Tensor: An image that was autocontrasted.
    """
1475
1476
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(autocontrast)
1477
1478
1479
1480
1481
1482
1483
    if not isinstance(img, torch.Tensor):
        return F_pil.autocontrast(img)

    return F_t.autocontrast(img)


def equalize(img: Tensor) -> Tensor:
1484
    """Equalize the histogram of an image by applying
1485
1486
1487
1488
1489
    a non-linear mapping to the input in order to create a uniform
    distribution of grayscale values in the output.

    Args:
        img (PIL Image or Tensor): Image on which equalize is applied.
1490
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1491
            where ... means it can have an arbitrary number of leading dimensions.
1492
            The tensor dtype must be ``torch.uint8`` and values are expected to be in ``[0, 255]``.
1493
            If img is PIL Image, it is expected to be in mode "P", "L" or "RGB".
1494
1495
1496
1497

    Returns:
        PIL Image or Tensor: An image that was equalized.
    """
1498
1499
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(equalize)
1500
1501
1502
1503
    if not isinstance(img, torch.Tensor):
        return F_pil.equalize(img)

    return F_t.equalize(img)
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527


def elastic_transform(
    img: Tensor,
    displacement: Tensor,
    interpolation: InterpolationMode = InterpolationMode.BILINEAR,
    fill: Optional[List[float]] = None,
) -> Tensor:
    """Transform a tensor image with elastic transformations.
    Given alpha and sigma, it will generate displacement
    vectors for all pixels based on random offsets. Alpha controls the strength
    and sigma controls the smoothness of the displacements.
    The displacements are added to an identity grid and the resulting grid is
    used to grid_sample from the image.

    Applications:
        Randomly transforms the morphology of objects in images and produces a
        see-through-water-like effect.

    Args:
        img (PIL Image or Tensor): Image on which elastic_transform is applied.
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "P", "L" or "RGB".
1528
        displacement (Tensor): The displacement field. Expected shape is [1, H, W, 2].
1529
1530
1531
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`.
            Default is ``InterpolationMode.BILINEAR``.
1532
            The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
        fill (number or str or tuple): Pixel fill value for constant fill. Default is 0.
            If a tuple of length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant.
    """
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(elastic_transform)
    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
            "Argument interpolation should be of type InterpolationMode instead of int. "
            "Please, use InterpolationMode enum."
        )
        interpolation = _interpolation_modes_from_int(interpolation)

    if not isinstance(displacement, torch.Tensor):
1548
        raise TypeError("Argument displacement should be a Tensor")
1549
1550
1551
1552
1553
1554
1555

    t_img = img
    if not isinstance(img, torch.Tensor):
        if not F_pil._is_pil_image(img):
            raise TypeError(f"img should be PIL Image or Tensor. Got {type(img)}")
        t_img = pil_to_tensor(img)

1556
1557
1558
1559
1560
1561
1562
1563
1564
    shape = t_img.shape
    shape = (1,) + shape[-2:] + (2,)
    if shape != displacement.shape:
        raise ValueError(f"Argument displacement shape should be {shape}, but given {displacement.shape}")

    # TODO: if image shape is [N1, N2, ..., C, H, W] and
    # displacement is [1, H, W, 2] we need to reshape input image
    # such grid_sampler takes internal code for 4D input

1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
    output = F_t.elastic_transform(
        t_img,
        displacement,
        interpolation=interpolation.value,
        fill=fill,
    )

    if not isinstance(img, torch.Tensor):
        output = to_pil_image(output, mode=img.mode)
    return output