functional.py 37.1 KB
Newer Older
1
import math
2
3
4
import numbers
import warnings
from collections.abc import Iterable
vfdev's avatar
vfdev committed
5
from typing import Any
6
7
8

import numpy as np
from numpy import sin, cos, tan
9
from PIL import Image, ImageOps, ImageEnhance, __version__ as PILLOW_VERSION
10
11
12

import torch
from torch import Tensor
vfdev's avatar
vfdev committed
13
from torch.jit.annotations import List, Tuple
14

15
16
17
18
19
try:
    import accimage
except ImportError:
    accimage = None

20
21
22
from . import functional_pil as F_pil
from . import functional_tensor as F_t

23

vfdev's avatar
vfdev committed
24
25
26
27
28
29
30
31
_is_pil_image = F_pil._is_pil_image


def _get_image_size(img: Tensor) -> List[int]:
    """Returns image sizea as (w, h)
    """
    if isinstance(img, torch.Tensor):
        return F_t._get_image_size(img)
32

vfdev's avatar
vfdev committed
33
    return F_pil._get_image_size(img)
34

vfdev's avatar
vfdev committed
35
36
37

@torch.jit.unused
def _is_numpy(img: Any) -> bool:
38
39
40
    return isinstance(img, np.ndarray)


vfdev's avatar
vfdev committed
41
42
@torch.jit.unused
def _is_numpy_image(img: Any) -> bool:
43
    return img.ndim in {2, 3}
44
45
46
47
48
49
50
51
52
53
54
55
56


def to_tensor(pic):
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.

    See ``ToTensor`` for more details.

    Args:
        pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
vfdev's avatar
vfdev committed
57
    if not(F_pil._is_pil_image(pic) or _is_numpy(pic)):
58
59
        raise TypeError('pic should be PIL Image or ndarray. Got {}'.format(type(pic)))

60
61
62
    if _is_numpy(pic) and not _is_numpy_image(pic):
        raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndim))

63
64
    if isinstance(pic, np.ndarray):
        # handle numpy array
surgan12's avatar
surgan12 committed
65
66
67
        if pic.ndim == 2:
            pic = pic[:, :, None]

68
69
        img = torch.from_numpy(pic.transpose((2, 0, 1)))
        # backward compatibility
70
71
72
73
        if isinstance(img, torch.ByteTensor):
            return img.float().div(255)
        else:
            return img
74
75
76
77
78
79
80
81
82
83
84

    if accimage is not None and isinstance(pic, accimage.Image):
        nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.float32)
        pic.copyto(nppic)
        return torch.from_numpy(nppic)

    # handle PIL Image
    if pic.mode == 'I':
        img = torch.from_numpy(np.array(pic, np.int32, copy=False))
    elif pic.mode == 'I;16':
        img = torch.from_numpy(np.array(pic, np.int16, copy=False))
85
86
    elif pic.mode == 'F':
        img = torch.from_numpy(np.array(pic, np.float32, copy=False))
87
88
    elif pic.mode == '1':
        img = 255 * torch.from_numpy(np.array(pic, np.uint8, copy=False))
89
90
    else:
        img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
91
92

    img = img.view(pic.size[1], pic.size[0], len(pic.getbands()))
93
    # put it from HWC to CHW format
94
    img = img.permute((2, 0, 1)).contiguous()
95
96
97
98
99
100
    if isinstance(img, torch.ByteTensor):
        return img.float().div(255)
    else:
        return img


101
102
103
104
105
106
107
108
109
110
111
def pil_to_tensor(pic):
    """Convert a ``PIL Image`` to a tensor of the same type.

    See ``AsTensor`` for more details.

    Args:
        pic (PIL Image): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
vfdev's avatar
vfdev committed
112
    if not(F_pil._is_pil_image(pic)):
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
        raise TypeError('pic should be PIL Image. Got {}'.format(type(pic)))

    if accimage is not None and isinstance(pic, accimage.Image):
        nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.float32)
        pic.copyto(nppic)
        return torch.as_tensor(nppic)

    # handle PIL Image
    img = torch.as_tensor(np.asarray(pic))
    img = img.view(pic.size[1], pic.size[0], len(pic.getbands()))
    # put it from HWC to CHW format
    img = img.permute((2, 0, 1))
    return img


128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
def convert_image_dtype(image: torch.Tensor, dtype: torch.dtype = torch.float) -> torch.Tensor:
    """Convert a tensor image to the given ``dtype`` and scale the values accordingly

    Args:
        image (torch.Tensor): Image to be converted
        dtype (torch.dtype): Desired data type of the output

    Returns:
        (torch.Tensor): Converted image

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """
    if image.dtype == dtype:
        return image

    if image.dtype.is_floating_point:
        # float to float
        if dtype.is_floating_point:
            return image.to(dtype)

        # float to int
        if (image.dtype == torch.float32 and dtype in (torch.int32, torch.int64)) or (
            image.dtype == torch.float64 and dtype == torch.int64
        ):
            msg = f"The cast from {image.dtype} to {dtype} cannot be performed safely."
            raise RuntimeError(msg)

        eps = 1e-3
        return image.mul(torch.iinfo(dtype).max + 1 - eps).to(dtype)
    else:
        # int to float
        if dtype.is_floating_point:
            max = torch.iinfo(image.dtype).max
            image = image.to(dtype)
            return image / max

        # int to int
        input_max = torch.iinfo(image.dtype).max
        output_max = torch.iinfo(dtype).max

        if input_max > output_max:
            factor = (input_max + 1) // (output_max + 1)
            image = image // factor
            return image.to(dtype)
        else:
            factor = (output_max + 1) // (input_max + 1)
            image = image.to(dtype)
            return image * factor


187
188
189
def to_pil_image(pic, mode=None):
    """Convert a tensor or an ndarray to PIL Image.

190
    See :class:`~torchvision.transforms.ToPILImage` for more details.
191
192
193
194
195

    Args:
        pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).

196
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
197
198
199
200

    Returns:
        PIL Image: Image converted to PIL Image.
    """
Varun Agrawal's avatar
Varun Agrawal committed
201
    if not(isinstance(pic, torch.Tensor) or isinstance(pic, np.ndarray)):
202
203
        raise TypeError('pic should be Tensor or ndarray. Got {}.'.format(type(pic)))

Varun Agrawal's avatar
Varun Agrawal committed
204
205
206
207
208
209
    elif isinstance(pic, torch.Tensor):
        if pic.ndimension() not in {2, 3}:
            raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndimension()))

        elif pic.ndimension() == 2:
            # if 2D image, add channel dimension (CHW)
Surgan Jandial's avatar
Surgan Jandial committed
210
            pic = pic.unsqueeze(0)
Varun Agrawal's avatar
Varun Agrawal committed
211
212
213
214
215
216
217
218
219

    elif isinstance(pic, np.ndarray):
        if pic.ndim not in {2, 3}:
            raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndim))

        elif pic.ndim == 2:
            # if 2D image, add channel dimension (HWC)
            pic = np.expand_dims(pic, 2)

220
    npimg = pic
221
    if isinstance(pic, torch.FloatTensor) and mode != 'F':
222
        pic = pic.mul(255).byte()
Varun Agrawal's avatar
Varun Agrawal committed
223
    if isinstance(pic, torch.Tensor):
224
225
226
227
228
229
230
231
232
233
234
        npimg = np.transpose(pic.numpy(), (1, 2, 0))

    if not isinstance(npimg, np.ndarray):
        raise TypeError('Input pic must be a torch.Tensor or NumPy ndarray, ' +
                        'not {}'.format(type(npimg)))

    if npimg.shape[2] == 1:
        expected_mode = None
        npimg = npimg[:, :, 0]
        if npimg.dtype == np.uint8:
            expected_mode = 'L'
vfdev's avatar
vfdev committed
235
        elif npimg.dtype == np.int16:
236
            expected_mode = 'I;16'
vfdev's avatar
vfdev committed
237
        elif npimg.dtype == np.int32:
238
239
240
241
242
243
244
245
            expected_mode = 'I'
        elif npimg.dtype == np.float32:
            expected_mode = 'F'
        if mode is not None and mode != expected_mode:
            raise ValueError("Incorrect mode ({}) supplied for input type {}. Should be {}"
                             .format(mode, np.dtype, expected_mode))
        mode = expected_mode

surgan12's avatar
surgan12 committed
246
247
248
249
250
251
252
253
    elif npimg.shape[2] == 2:
        permitted_2_channel_modes = ['LA']
        if mode is not None and mode not in permitted_2_channel_modes:
            raise ValueError("Only modes {} are supported for 2D inputs".format(permitted_2_channel_modes))

        if mode is None and npimg.dtype == np.uint8:
            mode = 'LA'

254
    elif npimg.shape[2] == 4:
surgan12's avatar
surgan12 committed
255
        permitted_4_channel_modes = ['RGBA', 'CMYK', 'RGBX']
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
        if mode is not None and mode not in permitted_4_channel_modes:
            raise ValueError("Only modes {} are supported for 4D inputs".format(permitted_4_channel_modes))

        if mode is None and npimg.dtype == np.uint8:
            mode = 'RGBA'
    else:
        permitted_3_channel_modes = ['RGB', 'YCbCr', 'HSV']
        if mode is not None and mode not in permitted_3_channel_modes:
            raise ValueError("Only modes {} are supported for 3D inputs".format(permitted_3_channel_modes))
        if mode is None and npimg.dtype == np.uint8:
            mode = 'RGB'

    if mode is None:
        raise TypeError('Input type {} is not supported'.format(npimg.dtype))

    return Image.fromarray(npimg, mode=mode)


surgan12's avatar
surgan12 committed
274
def normalize(tensor, mean, std, inplace=False):
275
276
    """Normalize a tensor image with mean and standard deviation.

277
    .. note::
surgan12's avatar
surgan12 committed
278
        This transform acts out of place by default, i.e., it does not mutates the input tensor.
279

280
    See :class:`~torchvision.transforms.Normalize` for more details.
281
282
283
284

    Args:
        tensor (Tensor): Tensor image of size (C, H, W) to be normalized.
        mean (sequence): Sequence of means for each channel.
285
        std (sequence): Sequence of standard deviations for each channel.
286
        inplace(bool,optional): Bool to make this operation inplace.
287
288
289
290

    Returns:
        Tensor: Normalized Tensor image.
    """
291
292
    if not torch.is_tensor(tensor):
        raise TypeError('tensor should be a torch tensor. Got {}.'.format(type(tensor)))
293

294
295
296
    if tensor.ndimension() != 3:
        raise ValueError('Expected tensor to be a tensor image of size (C, H, W). Got tensor.size() = '
                         '{}.'.format(tensor.size()))
297

surgan12's avatar
surgan12 committed
298
299
300
    if not inplace:
        tensor = tensor.clone()

301
302
303
    dtype = tensor.dtype
    mean = torch.as_tensor(mean, dtype=dtype, device=tensor.device)
    std = torch.as_tensor(std, dtype=dtype, device=tensor.device)
304
305
    if (std == 0).any():
        raise ValueError('std evaluated to zero after conversion to {}, leading to division by zero.'.format(dtype))
306
307
308
309
310
    if mean.ndim == 1:
        mean = mean[:, None, None]
    if std.ndim == 1:
        std = std[:, None, None]
    tensor.sub_(mean).div_(std)
311
    return tensor
312
313
314


def resize(img, size, interpolation=Image.BILINEAR):
315
    r"""Resize the input PIL Image to the given size.
316
317
318
319
320

    Args:
        img (PIL Image): Image to be resized.
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), the output size will be matched to this. If size is an int,
Vitaliy Chiley's avatar
Vitaliy Chiley committed
321
            the smaller edge of the image will be matched to this number maintaining
322
            the aspect ratio. i.e, if height > width, then image will be rescaled to
323
            :math:`\left(\text{size} \times \frac{\text{height}}{\text{width}}, \text{size}\right)`
324
325
326
327
328
329
        interpolation (int, optional): Desired interpolation. Default is
            ``PIL.Image.BILINEAR``

    Returns:
        PIL Image: Resized image.
    """
vfdev's avatar
vfdev committed
330
    if not F_pil._is_pil_image(img):
331
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
Tongzhou Wang's avatar
Tongzhou Wang committed
332
    if not (isinstance(size, int) or (isinstance(size, Iterable) and len(size) == 2)):
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
        raise TypeError('Got inappropriate size arg: {}'.format(size))

    if isinstance(size, int):
        w, h = img.size
        if (w <= h and w == size) or (h <= w and h == size):
            return img
        if w < h:
            ow = size
            oh = int(size * h / w)
            return img.resize((ow, oh), interpolation)
        else:
            oh = size
            ow = int(size * w / h)
            return img.resize((ow, oh), interpolation)
    else:
        return img.resize(size[::-1], interpolation)


def scale(*args, **kwargs):
    warnings.warn("The use of the transforms.Scale transform is deprecated, " +
                  "please use transforms.Resize instead.")
    return resize(*args, **kwargs)


357
358
359
360
def pad(img: Tensor, padding: List[int], fill: int = 0, padding_mode: str = "constant") -> Tensor:
    r"""Pad the given image on all sides with the given "pad" value.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
361
362

    Args:
363
364
        img (PIL Image or Tensor): Image to be padded.
        padding (int or tuple or list): Padding on each border. If a single int is provided this
365
366
            is used to pad all borders. If tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple of length 4 is provided
367
368
369
370
            this is the padding for the left, top, right and bottom borders respectively.
            In torchscript mode padding as single int is not supported, use a tuple or
            list of length 1: ``[padding, ]``.
        fill (int or str or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
371
            length 3, it is used to fill R, G, B channels respectively.
372
            This value is only used when the padding_mode is constant. Only int value is supported for Tensors.
373
        padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
vfdev's avatar
vfdev committed
374
            Mode symmetric is not yet supported for Tensor inputs.
375
376
377
378
379
380
381
382
383
384
385
386
387
388

            - constant: pads with a constant value, this value is specified with fill

            - edge: pads with the last value on the edge of the image

            - reflect: pads with reflection of image (without repeating the last value on the edge)

                       padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                       will result in [3, 2, 1, 2, 3, 4, 3, 2]

            - symmetric: pads with reflection of image (repeating the last value on the edge)

                         padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                         will result in [2, 1, 1, 2, 3, 4, 4, 3]
389
390

    Returns:
391
        PIL Image or Tensor: Padded image.
392
    """
393
394
    if not isinstance(img, torch.Tensor):
        return F_pil.pad(img, padding=padding, fill=fill, padding_mode=padding_mode)
395

396
    return F_t.pad(img, padding=padding, fill=fill, padding_mode=padding_mode)
397
398


vfdev's avatar
vfdev committed
399
400
401
402
403
def crop(img: Tensor, top: int, left: int, height: int, width: int) -> Tensor:
    """Crop the given image at specified location and output size.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
404

405
    Args:
vfdev's avatar
vfdev committed
406
        img (PIL Image or Tensor): Image to be cropped. (0,0) denotes the top left corner of the image.
407
408
409
410
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
411

412
    Returns:
vfdev's avatar
vfdev committed
413
        PIL Image or Tensor: Cropped image.
414
415
    """

vfdev's avatar
vfdev committed
416
417
    if not isinstance(img, torch.Tensor):
        return F_pil.crop(img, top, left, height, width)
418

vfdev's avatar
vfdev committed
419
    return F_t.crop(img, top, left, height, width)
420

vfdev's avatar
vfdev committed
421
422
423
424
425

def center_crop(img: Tensor, output_size: List[int]) -> Tensor:
    """Crops the given image at the center.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
426

427
    Args:
vfdev's avatar
vfdev committed
428
429
430
431
        img (PIL Image or Tensor): Image to be cropped.
        output_size (sequence or int): (height, width) of the crop box. If int or sequence with single int
            it is used for both directions.

432
    Returns:
vfdev's avatar
vfdev committed
433
        PIL Image or Tensor: Cropped image.
434
    """
435
436
    if isinstance(output_size, numbers.Number):
        output_size = (int(output_size), int(output_size))
vfdev's avatar
vfdev committed
437
438
439
440
    elif isinstance(output_size, (tuple, list)) and len(output_size) == 1:
        output_size = (output_size[0], output_size[0])

    image_width, image_height = _get_image_size(img)
441
    crop_height, crop_width = output_size
vfdev's avatar
vfdev committed
442
443
444
445
446
447
448
449
450

    # crop_top = int(round((image_height - crop_height) / 2.))
    # Result can be different between python func and scripted func
    # Temporary workaround:
    crop_top = int((image_height - crop_height + 1) * 0.5)
    # crop_left = int(round((image_width - crop_width) / 2.))
    # Result can be different between python func and scripted func
    # Temporary workaround:
    crop_left = int((image_width - crop_width + 1) * 0.5)
451
    return crop(img, crop_top, crop_left, crop_height, crop_width)
452
453


454
def resized_crop(img, top, left, height, width, size, interpolation=Image.BILINEAR):
455
456
    """Crop the given PIL Image and resize it to desired size.

457
    Notably used in :class:`~torchvision.transforms.RandomResizedCrop`.
458
459

    Args:
460
461
462
463
464
        img (PIL Image): Image to be cropped. (0,0) denotes the top left corner of the image.
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
465
        size (sequence or int): Desired output size. Same semantics as ``resize``.
466
467
468
469
470
        interpolation (int, optional): Desired interpolation. Default is
            ``PIL.Image.BILINEAR``.
    Returns:
        PIL Image: Cropped image.
    """
vfdev's avatar
vfdev committed
471
    assert F_pil._is_pil_image(img), 'img should be PIL Image'
472
    img = crop(img, top, left, height, width)
473
474
475
476
    img = resize(img, size, interpolation)
    return img


477
def hflip(img: Tensor) -> Tensor:
vfdev's avatar
vfdev committed
478
    """Horizontally flip the given PIL Image or Tensor.
479
480

    Args:
vfdev's avatar
vfdev committed
481
        img (PIL Image or Tensor): Image to be flipped. If img
482
483
484
            is a Tensor, it is expected to be in [..., H, W] format,
            where ... means it can have an arbitrary number of trailing
            dimensions.
485
486

    Returns:
vfdev's avatar
vfdev committed
487
        PIL Image or Tensor:  Horizontally flipped image.
488
    """
489
490
    if not isinstance(img, torch.Tensor):
        return F_pil.hflip(img)
491

492
    return F_t.hflip(img)
493
494


495
496
497
498
499
500
501
502
def _parse_fill(fill, img, min_pil_version):
    """Helper function to get the fill color for rotate and perspective transforms.

    Args:
        fill (n-tuple or int or float): Pixel fill value for area outside the transformed
            image. If int or float, the value is used for all bands respectively.
            Defaults to 0 for all bands.
        img (PIL Image): Image to be filled.
503
        min_pil_version (str): The minimum PILLOW version for when the ``fillcolor`` option
504
505
506
507
508
            was first introduced in the calling function. (e.g. rotate->5.2.0, perspective->5.0.0)

    Returns:
        dict: kwarg for ``fillcolor``
    """
509
510
511
    major_found, minor_found = (int(v) for v in PILLOW_VERSION.split('.')[:2])
    major_required, minor_required = (int(v) for v in min_pil_version.split('.')[:2])
    if major_found < major_required or (major_found == major_required and minor_found < minor_required):
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
        if fill is None:
            return {}
        else:
            msg = ("The option to fill background area of the transformed image, "
                   "requires pillow>={}")
            raise RuntimeError(msg.format(min_pil_version))

    num_bands = len(img.getbands())
    if fill is None:
        fill = 0
    if isinstance(fill, (int, float)) and num_bands > 1:
        fill = tuple([fill] * num_bands)
    if not isinstance(fill, (int, float)) and len(fill) != num_bands:
        msg = ("The number of elements in 'fill' does not match the number of "
               "bands of the image ({} != {})")
        raise ValueError(msg.format(len(fill), num_bands))

    return {"fillcolor": fill}


532
533
534
def _get_perspective_coeffs(startpoints, endpoints):
    """Helper function to get the coefficients (a, b, c, d, e, f, g, h) for the perspective transforms.

Vitaliy Chiley's avatar
Vitaliy Chiley committed
535
    In Perspective Transform each pixel (x, y) in the original image gets transformed as,
536
537
538
     (x, y) -> ( (ax + by + c) / (gx + hy + 1), (dx + ey + f) / (gx + hy + 1) )

    Args:
Vitaliy Chiley's avatar
Vitaliy Chiley committed
539
        List containing [top-left, top-right, bottom-right, bottom-left] of the original image,
vfdev's avatar
vfdev committed
540
        List containing [top-left, top-right, bottom-right, bottom-left] of the transformed image
541
542
543
544
545
546
547
548
549
550
551
    Returns:
        octuple (a, b, c, d, e, f, g, h) for transforming each pixel.
    """
    matrix = []

    for p1, p2 in zip(endpoints, startpoints):
        matrix.append([p1[0], p1[1], 1, 0, 0, 0, -p2[0] * p1[0], -p2[0] * p1[1]])
        matrix.append([0, 0, 0, p1[0], p1[1], 1, -p2[1] * p1[0], -p2[1] * p1[1]])

    A = torch.tensor(matrix, dtype=torch.float)
    B = torch.tensor(startpoints, dtype=torch.float).view(8)
552
    res = torch.lstsq(B, A)[0]
553
554
555
    return res.squeeze_(1).tolist()


556
def perspective(img, startpoints, endpoints, interpolation=Image.BICUBIC, fill=None):
557
558
559
560
    """Perform perspective transform of the given PIL Image.

    Args:
        img (PIL Image): Image to be transformed.
Vitaliy Chiley's avatar
Vitaliy Chiley committed
561
        startpoints: List containing [top-left, top-right, bottom-right, bottom-left] of the original image
562
        endpoints: List containing [top-left, top-right, bottom-right, bottom-left] of the transformed image
563
        interpolation: Default- Image.BICUBIC
564
565
566
567
        fill (n-tuple or int or float): Pixel fill value for area outside the rotated
            image. If int or float, the value is used for all bands respectively.
            This option is only available for ``pillow>=5.0.0``.

568
569
570
    Returns:
        PIL Image:  Perspectively transformed Image.
    """
571

vfdev's avatar
vfdev committed
572
    if not F_pil._is_pil_image(img):
573
574
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

575
576
    opts = _parse_fill(fill, img, '5.0.0')

577
    coeffs = _get_perspective_coeffs(startpoints, endpoints)
578
    return img.transform(img.size, Image.PERSPECTIVE, coeffs, interpolation, **opts)
579
580


581
582
def vflip(img: Tensor) -> Tensor:
    """Vertically flip the given PIL Image or torch Tensor.
583
584

    Args:
vfdev's avatar
vfdev committed
585
        img (PIL Image or Tensor): Image to be flipped. If img
586
587
588
            is a Tensor, it is expected to be in [..., H, W] format,
            where ... means it can have an arbitrary number of trailing
            dimensions.
589
590
591
592

    Returns:
        PIL Image:  Vertically flipped image.
    """
593
594
    if not isinstance(img, torch.Tensor):
        return F_pil.vflip(img)
595

596
    return F_t.vflip(img)
597
598


vfdev's avatar
vfdev committed
599
600
601
602
def five_crop(img: Tensor, size: List[int]) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]:
    """Crop the given image into four corners and the central crop.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
603
604
605
606
607
608

    .. Note::
        This transform returns a tuple of images and there may be a
        mismatch in the number of inputs and targets your ``Dataset`` returns.

    Args:
vfdev's avatar
vfdev committed
609
610
611
612
        img (PIL Image or Tensor): Image to be cropped.
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
613

614
    Returns:
615
616
       tuple: tuple (tl, tr, bl, br, center)
                Corresponding top left, top right, bottom left, bottom right and center crop.
617
618
619
    """
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
vfdev's avatar
vfdev committed
620
621
    elif isinstance(size, (tuple, list)) and len(size) == 1:
        size = (size[0], size[0])
622

vfdev's avatar
vfdev committed
623
624
625
626
    if len(size) != 2:
        raise ValueError("Please provide only two dimensions (h, w) for size.")

    image_width, image_height = _get_image_size(img)
627
628
629
630
631
    crop_height, crop_width = size
    if crop_width > image_width or crop_height > image_height:
        msg = "Requested crop size {} is bigger than input size {}"
        raise ValueError(msg.format(size, (image_height, image_width)))

vfdev's avatar
vfdev committed
632
633
634
635
636
637
638
639
    tl = crop(img, 0, 0, crop_height, crop_width)
    tr = crop(img, 0, image_width - crop_width, crop_height, crop_width)
    bl = crop(img, image_height - crop_height, 0, crop_height, crop_width)
    br = crop(img, image_height - crop_height, image_width - crop_width, crop_height, crop_width)

    center = center_crop(img, [crop_height, crop_width])

    return tl, tr, bl, br, center
640
641


vfdev's avatar
vfdev committed
642
643
644
def ten_crop(img: Tensor, size: List[int], vertical_flip: bool = False) -> List[Tensor]:
    """Generate ten cropped images from the given image.
    Crop the given image into four corners and the central crop plus the
645
    flipped version of these (horizontal flipping is used by default).
vfdev's avatar
vfdev committed
646
647
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
648
649
650
651
652

    .. Note::
        This transform returns a tuple of images and there may be a
        mismatch in the number of inputs and targets your ``Dataset`` returns.

653
    Args:
vfdev's avatar
vfdev committed
654
        img (PIL Image or Tensor): Image to be cropped.
655
        size (sequence or int): Desired output size of the crop. If size is an
656
            int instead of sequence like (h, w), a square crop (size, size) is
vfdev's avatar
vfdev committed
657
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
658
        vertical_flip (bool): Use vertical flipping instead of horizontal
659
660

    Returns:
661
662
663
        tuple: tuple (tl, tr, bl, br, center, tl_flip, tr_flip, bl_flip, br_flip, center_flip)
            Corresponding top left, top right, bottom left, bottom right and
            center crop and same for the flipped image.
664
665
666
    """
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
vfdev's avatar
vfdev committed
667
668
669
670
671
    elif isinstance(size, (tuple, list)) and len(size) == 1:
        size = (size[0], size[0])

    if len(size) != 2:
        raise ValueError("Please provide only two dimensions (h, w) for size.")
672
673
674
675
676
677
678
679
680
681
682
683

    first_five = five_crop(img, size)

    if vertical_flip:
        img = vflip(img)
    else:
        img = hflip(img)

    second_five = five_crop(img, size)
    return first_five + second_five


684
def adjust_brightness(img: Tensor, brightness_factor: float) -> Tensor:
685
686
687
    """Adjust brightness of an Image.

    Args:
vfdev's avatar
vfdev committed
688
        img (PIL Image or Tensor): Image to be adjusted.
689
690
691
692
693
        brightness_factor (float):  How much to adjust the brightness. Can be
            any non negative number. 0 gives a black image, 1 gives the
            original image while 2 increases the brightness by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
694
        PIL Image or Tensor: Brightness adjusted image.
695
    """
696
697
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_brightness(img, brightness_factor)
698

699
    return F_t.adjust_brightness(img, brightness_factor)
700
701


702
def adjust_contrast(img: Tensor, contrast_factor: float) -> Tensor:
703
704
705
    """Adjust contrast of an Image.

    Args:
vfdev's avatar
vfdev committed
706
        img (PIL Image or Tensor): Image to be adjusted.
707
708
709
710
711
        contrast_factor (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives a solid gray image, 1 gives the
            original image while 2 increases the contrast by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
712
        PIL Image or Tensor: Contrast adjusted image.
713
    """
714
715
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_contrast(img, contrast_factor)
716

717
    return F_t.adjust_contrast(img, contrast_factor)
718
719


720
def adjust_saturation(img: Tensor, saturation_factor: float) -> Tensor:
721
722
723
    """Adjust color saturation of an image.

    Args:
vfdev's avatar
vfdev committed
724
        img (PIL Image or Tensor): Image to be adjusted.
725
726
727
728
729
        saturation_factor (float):  How much to adjust the saturation. 0 will
            give a black and white image, 1 will give the original image while
            2 will enhance the saturation by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
730
        PIL Image or Tensor: Saturation adjusted image.
731
    """
732
733
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_saturation(img, saturation_factor)
734

735
    return F_t.adjust_saturation(img, saturation_factor)
736
737


738
def adjust_hue(img: Tensor, hue_factor: float) -> Tensor:
739
740
741
742
743
744
745
746
747
    """Adjust hue of an image.

    The image hue is adjusted by converting the image to HSV and
    cyclically shifting the intensities in the hue channel (H).
    The image is then converted back to original image mode.

    `hue_factor` is the amount of shift in H channel and must be in the
    interval `[-0.5, 0.5]`.

748
749
750
    See `Hue`_ for more details.

    .. _Hue: https://en.wikipedia.org/wiki/Hue
751
752
753
754
755
756
757
758
759
760
761
762

    Args:
        img (PIL Image): PIL Image to be adjusted.
        hue_factor (float):  How much to shift the hue channel. Should be in
            [-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
            HSV space in positive and negative direction respectively.
            0 means no shift. Therefore, both -0.5 and 0.5 will give an image
            with complementary colors while 0 gives the original image.

    Returns:
        PIL Image: Hue adjusted image.
    """
763
764
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_hue(img, hue_factor)
765

766
    raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
767
768
769


def adjust_gamma(img, gamma, gain=1):
770
    r"""Perform gamma correction on an image.
771
772
773
774

    Also known as Power Law Transform. Intensities in RGB mode are adjusted
    based on the following equation:

775
776
777
778
    .. math::
        I_{\text{out}} = 255 \times \text{gain} \times \left(\frac{I_{\text{in}}}{255}\right)^{\gamma}

    See `Gamma Correction`_ for more details.
779

780
    .. _Gamma Correction: https://en.wikipedia.org/wiki/Gamma_correction
781
782
783

    Args:
        img (PIL Image): PIL Image to be adjusted.
784
785
786
        gamma (float): Non negative real number, same as :math:`\gamma` in the equation.
            gamma larger than 1 make the shadows darker,
            while gamma smaller than 1 make dark regions lighter.
787
788
        gain (float): The constant multiplier.
    """
vfdev's avatar
vfdev committed
789
    if not F_pil._is_pil_image(img):
790
791
792
793
794
795
796
797
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    if gamma < 0:
        raise ValueError('Gamma should be a non-negative real number')

    input_mode = img.mode
    img = img.convert('RGB')

798
799
    gamma_map = [255 * gain * pow(ele / 255., gamma) for ele in range(256)] * 3
    img = img.point(gamma_map)  # use PIL's point-function to accelerate this part
800

801
    img = img.convert(input_mode)
802
    return img
803
804


Philip Meier's avatar
Philip Meier committed
805
def rotate(img, angle, resample=False, expand=False, center=None, fill=None):
806
    """Rotate the image by angle.
807
808
809
810


    Args:
        img (PIL Image): PIL Image to be rotated.
811
812
813
814
        angle (float or int): In degrees degrees counter clockwise order.
        resample (``PIL.Image.NEAREST`` or ``PIL.Image.BILINEAR`` or ``PIL.Image.BICUBIC``, optional):
            An optional resampling filter. See `filters`_ for more information.
            If omitted, or if the image has mode "1" or "P", it is set to ``PIL.Image.NEAREST``.
815
816
817
818
819
820
821
        expand (bool, optional): Optional expansion flag.
            If true, expands the output image to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
        center (2-tuple, optional): Optional center of rotation.
            Origin is the upper left corner.
            Default is the center of the image.
Philip Meier's avatar
Philip Meier committed
822
823
824
        fill (n-tuple or int or float): Pixel fill value for area outside the rotated
            image. If int or float, the value is used for all bands respectively.
            Defaults to 0 for all bands. This option is only available for ``pillow>=5.2.0``.
825

826
    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters
827

828
    """
vfdev's avatar
vfdev committed
829
    if not F_pil._is_pil_image(img):
830
831
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

832
    opts = _parse_fill(fill, img, '5.2.0')
833

Philip Meier's avatar
Philip Meier committed
834
    return img.rotate(angle, resample, expand, center, **opts)
835
836


837
838
839
840
841
842
843
844
def _get_inverse_affine_matrix(center, angle, translate, scale, shear):
    # Helper method to compute inverse matrix for affine transformation

    # As it is explained in PIL.Image.rotate
    # We need compute INVERSE of affine transformation matrix: M = T * C * RSS * C^-1
    # where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1]
    #       C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1]
    #       RSS is rotation with scale and shear matrix
845
846
847
848
849
850
851
852
853
854
    #       RSS(a, s, (sx, sy)) =
    #       = R(a) * S(s) * SHy(sy) * SHx(sx)
    #       = [ s*cos(a - sy)/cos(sy), s*(-cos(a - sy)*tan(x)/cos(y) - sin(a)), 0 ]
    #         [ s*sin(a + sy)/cos(sy), s*(-sin(a - sy)*tan(x)/cos(y) + cos(a)), 0 ]
    #         [ 0                    , 0                                      , 1 ]
    #
    # where R is a rotation matrix, S is a scaling matrix, and SHx and SHy are the shears:
    # SHx(s) = [1, -tan(s)] and SHy(s) = [1      , 0]
    #          [0, 1      ]              [-tan(s), 1]
    #
855
856
    # Thus, the inverse is M^-1 = C * RSS^-1 * C^-1 * T^-1

857
    if isinstance(shear, numbers.Number):
ptrblck's avatar
ptrblck committed
858
        shear = [shear, 0]
859
860

    if not isinstance(shear, (tuple, list)) and len(shear) == 2:
ptrblck's avatar
ptrblck committed
861
862
863
        raise ValueError(
            "Shear should be a single value or a tuple/list containing " +
            "two values. Got {}".format(shear))
864
865
866
867
868
869
870
871
872
873
874
875

    rot = math.radians(angle)
    sx, sy = [math.radians(s) for s in shear]

    cx, cy = center
    tx, ty = translate

    # RSS without scaling
    a = cos(rot - sy) / cos(sy)
    b = -cos(rot - sy) * tan(sx) / cos(sy) - sin(rot)
    c = sin(rot - sy) / cos(sy)
    d = -sin(rot - sy) * tan(sx) / cos(sy) + cos(rot)
876
877

    # Inverted rotation matrix with scale and shear
878
879
880
881
    # det([[a, b], [c, d]]) == 1, since det(rotation) = 1 and det(shear) = 1
    M = [d, -b, 0,
         -c, a, 0]
    M = [x / scale for x in M]
882
883

    # Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
884
885
    M[2] += M[0] * (-cx - tx) + M[1] * (-cy - ty)
    M[5] += M[3] * (-cx - tx) + M[4] * (-cy - ty)
886
887

    # Apply center translation: C * RSS^-1 * C^-1 * T^-1
888
889
890
    M[2] += cx
    M[5] += cy
    return M
891
892
893
894
895
896
897


def affine(img, angle, translate, scale, shear, resample=0, fillcolor=None):
    """Apply affine transformation on the image keeping image center invariant

    Args:
        img (PIL Image): PIL Image to be rotated.
898
        angle (float or int): rotation angle in degrees between -180 and 180, clockwise direction.
899
900
        translate (list or tuple of integers): horizontal and vertical translations (post-rotation translation)
        scale (float): overall scale
ptrblck's avatar
ptrblck committed
901
902
903
        shear (float or tuple or list): shear angle value in degrees between -180 to 180, clockwise direction.
        If a tuple of list is specified, the first value corresponds to a shear parallel to the x axis, while
        the second value corresponds to a shear parallel to the y axis.
904
        resample (``PIL.Image.NEAREST`` or ``PIL.Image.BILINEAR`` or ``PIL.Image.BICUBIC``, optional):
905
            An optional resampling filter.
906
907
            See `filters`_ for more information.
            If omitted, or if the image has mode "1" or "P", it is set to ``PIL.Image.NEAREST``.
908
        fillcolor (int): Optional fill color for the area outside the transform in the output image. (Pillow>=5.0.0)
909
    """
vfdev's avatar
vfdev committed
910
    if not F_pil._is_pil_image(img):
911
912
913
914
915
916
917
918
919
920
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    assert isinstance(translate, (tuple, list)) and len(translate) == 2, \
        "Argument translate should be a list or tuple of length 2"

    assert scale > 0.0, "Argument scale should be positive"

    output_size = img.size
    center = (img.size[0] * 0.5 + 0.5, img.size[1] * 0.5 + 0.5)
    matrix = _get_inverse_affine_matrix(center, angle, translate, scale, shear)
921
    kwargs = {"fillcolor": fillcolor} if int(PILLOW_VERSION.split('.')[0]) >= 5 else {}
922
    return img.transform(output_size, Image.AFFINE, matrix, resample, **kwargs)
923
924


925
926
927
928
929
930
931
def to_grayscale(img, num_output_channels=1):
    """Convert image to grayscale version of image.

    Args:
        img (PIL Image): Image to be converted to grayscale.

    Returns:
932
933
934
935
        PIL Image: Grayscale version of the image.
            if num_output_channels = 1 : returned image is single channel

            if num_output_channels = 3 : returned image is 3 channel with r = g = b
936
    """
vfdev's avatar
vfdev committed
937
    if not F_pil._is_pil_image(img):
938
939
940
941
942
943
944
945
946
947
948
949
950
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    if num_output_channels == 1:
        img = img.convert('L')
    elif num_output_channels == 3:
        img = img.convert('L')
        np_img = np.array(img, dtype=np.uint8)
        np_img = np.dstack([np_img, np_img, np_img])
        img = Image.fromarray(np_img, 'RGB')
    else:
        raise ValueError('num_output_channels should be either 1 or 3')

    return img
951
952


953
def erase(img: Tensor, i: int, j: int, h: int, w: int, v: Tensor, inplace: bool = False) -> Tensor:
954
955
956
957
958
959
960
961
962
    """ Erase the input Tensor Image with given value.

    Args:
        img (Tensor Image): Tensor image of size (C, H, W) to be erased
        i (int): i in (i,j) i.e coordinates of the upper left corner.
        j (int): j in (i,j) i.e coordinates of the upper left corner.
        h (int): Height of the erased region.
        w (int): Width of the erased region.
        v: Erasing value.
Zhun Zhong's avatar
Zhun Zhong committed
963
        inplace(bool, optional): For in-place operations. By default is set False.
964
965
966
967
968
969
970

    Returns:
        Tensor Image: Erased image.
    """
    if not isinstance(img, torch.Tensor):
        raise TypeError('img should be Tensor Image. Got {}'.format(type(img)))

971
972
973
    if not inplace:
        img = img.clone()

974
975
    img[:, i:i + h, j:j + w] = v
    return img