Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
vision
Commits
e12d200c
Unverified
Commit
e12d200c
authored
Dec 06, 2023
by
Aleksei Nikiforov
Committed by
GitHub
Dec 06, 2023
Browse files
S390x big endian fixes (#8149)
Fixes for multiple tests on s390x
parent
526ec93e
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
21 additions
and
9 deletions
+21
-9
test/test_transforms.py
test/test_transforms.py
+5
-4
torchvision/datasets/mnist.py
torchvision/datasets/mnist.py
+13
-3
torchvision/transforms/functional.py
torchvision/transforms/functional.py
+3
-2
No files found.
test/test_transforms.py
View file @
e12d200c
...
@@ -2,6 +2,7 @@ import math
...
@@ -2,6 +2,7 @@ import math
import
os
import
os
import
random
import
random
import
re
import
re
import
sys
from
functools
import
partial
from
functools
import
partial
import
numpy
as
np
import
numpy
as
np
...
@@ -614,7 +615,7 @@ class TestToPil:
...
@@ -614,7 +615,7 @@ class TestToPil:
img_data_short
=
torch
.
ShortTensor
(
1
,
4
,
4
).
random_
()
img_data_short
=
torch
.
ShortTensor
(
1
,
4
,
4
).
random_
()
expected_output
=
img_data_short
.
numpy
()
expected_output
=
img_data_short
.
numpy
()
yield
img_data_short
,
expected_output
,
"I;16"
yield
img_data_short
,
expected_output
,
"I;16"
if
sys
.
byteorder
==
"little"
else
"I;16B"
img_data_int
=
torch
.
IntTensor
(
1
,
4
,
4
).
random_
()
img_data_int
=
torch
.
IntTensor
(
1
,
4
,
4
).
random_
()
expected_output
=
img_data_int
.
numpy
()
expected_output
=
img_data_int
.
numpy
()
...
@@ -631,7 +632,7 @@ class TestToPil:
...
@@ -631,7 +632,7 @@ class TestToPil:
img_data_short
=
torch
.
ShortTensor
(
4
,
4
).
random_
()
img_data_short
=
torch
.
ShortTensor
(
4
,
4
).
random_
()
expected_output
=
img_data_short
.
numpy
()
expected_output
=
img_data_short
.
numpy
()
yield
img_data_short
,
expected_output
,
"I;16"
yield
img_data_short
,
expected_output
,
"I;16"
if
sys
.
byteorder
==
"little"
else
"I;16B"
img_data_int
=
torch
.
IntTensor
(
4
,
4
).
random_
()
img_data_int
=
torch
.
IntTensor
(
4
,
4
).
random_
()
expected_output
=
img_data_int
.
numpy
()
expected_output
=
img_data_int
.
numpy
()
...
@@ -662,7 +663,7 @@ class TestToPil:
...
@@ -662,7 +663,7 @@ class TestToPil:
[
[
(
torch
.
Tensor
(
4
,
4
,
1
).
uniform_
().
numpy
(),
"L"
),
(
torch
.
Tensor
(
4
,
4
,
1
).
uniform_
().
numpy
(),
"L"
),
(
torch
.
ByteTensor
(
4
,
4
,
1
).
random_
(
0
,
255
).
numpy
(),
"L"
),
(
torch
.
ByteTensor
(
4
,
4
,
1
).
random_
(
0
,
255
).
numpy
(),
"L"
),
(
torch
.
ShortTensor
(
4
,
4
,
1
).
random_
().
numpy
(),
"I;16"
),
(
torch
.
ShortTensor
(
4
,
4
,
1
).
random_
().
numpy
(),
"I;16"
if
sys
.
byteorder
==
"little"
else
"I;16B"
),
(
torch
.
IntTensor
(
4
,
4
,
1
).
random_
().
numpy
(),
"I"
),
(
torch
.
IntTensor
(
4
,
4
,
1
).
random_
().
numpy
(),
"I"
),
],
],
)
)
...
@@ -744,7 +745,7 @@ class TestToPil:
...
@@ -744,7 +745,7 @@ class TestToPil:
[
[
(
torch
.
Tensor
(
4
,
4
).
uniform_
().
numpy
(),
"L"
),
(
torch
.
Tensor
(
4
,
4
).
uniform_
().
numpy
(),
"L"
),
(
torch
.
ByteTensor
(
4
,
4
).
random_
(
0
,
255
).
numpy
(),
"L"
),
(
torch
.
ByteTensor
(
4
,
4
).
random_
(
0
,
255
).
numpy
(),
"L"
),
(
torch
.
ShortTensor
(
4
,
4
).
random_
().
numpy
(),
"I;16"
),
(
torch
.
ShortTensor
(
4
,
4
).
random_
().
numpy
(),
"I;16"
if
sys
.
byteorder
==
"little"
else
"I;16B"
),
(
torch
.
IntTensor
(
4
,
4
).
random_
().
numpy
(),
"I"
),
(
torch
.
IntTensor
(
4
,
4
).
random_
().
numpy
(),
"I"
),
],
],
)
)
...
...
torchvision/datasets/mnist.py
View file @
e12d200c
...
@@ -510,15 +510,25 @@ def read_sn3_pascalvincent_tensor(path: str, strict: bool = True) -> torch.Tenso
...
@@ -510,15 +510,25 @@ def read_sn3_pascalvincent_tensor(path: str, strict: bool = True) -> torch.Tenso
# read
# read
with
open
(
path
,
"rb"
)
as
f
:
with
open
(
path
,
"rb"
)
as
f
:
data
=
f
.
read
()
data
=
f
.
read
()
# parse
# parse
magic
=
get_int
(
data
[
0
:
4
])
if
sys
.
byteorder
==
"little"
:
nd
=
magic
%
256
magic
=
get_int
(
data
[
0
:
4
])
ty
=
magic
//
256
nd
=
magic
%
256
ty
=
magic
//
256
else
:
nd
=
get_int
(
data
[
0
:
1
])
ty
=
get_int
(
data
[
1
:
2
])
+
get_int
(
data
[
2
:
3
])
*
256
+
get_int
(
data
[
3
:
4
])
*
256
*
256
assert
1
<=
nd
<=
3
assert
1
<=
nd
<=
3
assert
8
<=
ty
<=
14
assert
8
<=
ty
<=
14
torch_type
=
SN3_PASCALVINCENT_TYPEMAP
[
ty
]
torch_type
=
SN3_PASCALVINCENT_TYPEMAP
[
ty
]
s
=
[
get_int
(
data
[
4
*
(
i
+
1
)
:
4
*
(
i
+
2
)])
for
i
in
range
(
nd
)]
s
=
[
get_int
(
data
[
4
*
(
i
+
1
)
:
4
*
(
i
+
2
)])
for
i
in
range
(
nd
)]
if
sys
.
byteorder
==
"big"
:
for
i
in
range
(
len
(
s
)):
s
[
i
]
=
int
.
from_bytes
(
s
[
i
].
to_bytes
(
4
,
byteorder
=
"little"
),
byteorder
=
"big"
,
signed
=
False
)
parsed
=
torch
.
frombuffer
(
bytearray
(
data
),
dtype
=
torch_type
,
offset
=
(
4
*
(
nd
+
1
)))
parsed
=
torch
.
frombuffer
(
bytearray
(
data
),
dtype
=
torch_type
,
offset
=
(
4
*
(
nd
+
1
)))
# The MNIST format uses the big endian byte order, while `torch.frombuffer` uses whatever the system uses. In case
# The MNIST format uses the big endian byte order, while `torch.frombuffer` uses whatever the system uses. In case
...
...
torchvision/transforms/functional.py
View file @
e12d200c
import
math
import
math
import
numbers
import
numbers
import
sys
import
warnings
import
warnings
from
enum
import
Enum
from
enum
import
Enum
from
typing
import
Any
,
List
,
Optional
,
Tuple
,
Union
from
typing
import
Any
,
List
,
Optional
,
Tuple
,
Union
...
@@ -162,7 +163,7 @@ def to_tensor(pic) -> Tensor:
...
@@ -162,7 +163,7 @@ def to_tensor(pic) -> Tensor:
return
torch
.
from_numpy
(
nppic
).
to
(
dtype
=
default_float_dtype
)
return
torch
.
from_numpy
(
nppic
).
to
(
dtype
=
default_float_dtype
)
# handle PIL Image
# handle PIL Image
mode_to_nptype
=
{
"I"
:
np
.
int32
,
"I;16"
:
np
.
int16
,
"F"
:
np
.
float32
}
mode_to_nptype
=
{
"I"
:
np
.
int32
,
"I;16"
if
sys
.
byteorder
==
"little"
else
"I;16B"
:
np
.
int16
,
"F"
:
np
.
float32
}
img
=
torch
.
from_numpy
(
np
.
array
(
pic
,
mode_to_nptype
.
get
(
pic
.
mode
,
np
.
uint8
),
copy
=
True
))
img
=
torch
.
from_numpy
(
np
.
array
(
pic
,
mode_to_nptype
.
get
(
pic
.
mode
,
np
.
uint8
),
copy
=
True
))
if
pic
.
mode
==
"1"
:
if
pic
.
mode
==
"1"
:
...
@@ -285,7 +286,7 @@ def to_pil_image(pic, mode=None):
...
@@ -285,7 +286,7 @@ def to_pil_image(pic, mode=None):
if
npimg
.
dtype
==
np
.
uint8
:
if
npimg
.
dtype
==
np
.
uint8
:
expected_mode
=
"L"
expected_mode
=
"L"
elif
npimg
.
dtype
==
np
.
int16
:
elif
npimg
.
dtype
==
np
.
int16
:
expected_mode
=
"I;16"
expected_mode
=
"I;16"
if
sys
.
byteorder
==
"little"
else
"I;16B"
elif
npimg
.
dtype
==
np
.
int32
:
elif
npimg
.
dtype
==
np
.
int32
:
expected_mode
=
"I"
expected_mode
=
"I"
elif
npimg
.
dtype
==
np
.
float32
:
elif
npimg
.
dtype
==
np
.
float32
:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment