functional.py 41 KB
Newer Older
1
import math
2
3
import numbers
import warnings
vfdev's avatar
vfdev committed
4
from typing import Any, Optional
5
6

import numpy as np
vfdev's avatar
vfdev committed
7
from PIL import Image
8
9
10

import torch
from torch import Tensor
vfdev's avatar
vfdev committed
11
from torch.jit.annotations import List, Tuple
12

13
14
15
16
17
try:
    import accimage
except ImportError:
    accimage = None

18
19
20
from . import functional_pil as F_pil
from . import functional_tensor as F_t

21

vfdev's avatar
vfdev committed
22
_is_pil_image = F_pil._is_pil_image
vfdev's avatar
vfdev committed
23
_parse_fill = F_pil._parse_fill
vfdev's avatar
vfdev committed
24
25
26
27
28
29
30


def _get_image_size(img: Tensor) -> List[int]:
    """Returns image sizea as (w, h)
    """
    if isinstance(img, torch.Tensor):
        return F_t._get_image_size(img)
31

vfdev's avatar
vfdev committed
32
    return F_pil._get_image_size(img)
33

vfdev's avatar
vfdev committed
34

35
36
37
38
39
40
41
def _get_image_num_channels(img: Tensor) -> int:
    if isinstance(img, torch.Tensor):
        return F_t._get_image_num_channels(img)

    return F_pil._get_image_num_channels(img)


vfdev's avatar
vfdev committed
42
43
@torch.jit.unused
def _is_numpy(img: Any) -> bool:
44
45
46
    return isinstance(img, np.ndarray)


vfdev's avatar
vfdev committed
47
48
@torch.jit.unused
def _is_numpy_image(img: Any) -> bool:
49
    return img.ndim in {2, 3}
50
51
52
53
54
55
56
57
58
59
60
61
62


def to_tensor(pic):
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.

    See ``ToTensor`` for more details.

    Args:
        pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
vfdev's avatar
vfdev committed
63
    if not(F_pil._is_pil_image(pic) or _is_numpy(pic)):
64
65
        raise TypeError('pic should be PIL Image or ndarray. Got {}'.format(type(pic)))

66
67
68
    if _is_numpy(pic) and not _is_numpy_image(pic):
        raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndim))

69
70
    if isinstance(pic, np.ndarray):
        # handle numpy array
surgan12's avatar
surgan12 committed
71
72
73
        if pic.ndim == 2:
            pic = pic[:, :, None]

74
        img = torch.from_numpy(pic.transpose((2, 0, 1))).contiguous()
75
        # backward compatibility
76
77
78
79
        if isinstance(img, torch.ByteTensor):
            return img.float().div(255)
        else:
            return img
80
81
82
83
84
85
86
87
88
89
90

    if accimage is not None and isinstance(pic, accimage.Image):
        nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.float32)
        pic.copyto(nppic)
        return torch.from_numpy(nppic)

    # handle PIL Image
    if pic.mode == 'I':
        img = torch.from_numpy(np.array(pic, np.int32, copy=False))
    elif pic.mode == 'I;16':
        img = torch.from_numpy(np.array(pic, np.int16, copy=False))
91
92
    elif pic.mode == 'F':
        img = torch.from_numpy(np.array(pic, np.float32, copy=False))
93
94
    elif pic.mode == '1':
        img = 255 * torch.from_numpy(np.array(pic, np.uint8, copy=False))
95
96
    else:
        img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
97
98

    img = img.view(pic.size[1], pic.size[0], len(pic.getbands()))
99
    # put it from HWC to CHW format
100
    img = img.permute((2, 0, 1)).contiguous()
101
102
103
104
105
106
    if isinstance(img, torch.ByteTensor):
        return img.float().div(255)
    else:
        return img


107
108
109
def pil_to_tensor(pic):
    """Convert a ``PIL Image`` to a tensor of the same type.

vfdev's avatar
vfdev committed
110
    See :class:`~torchvision.transforms.PILToTensor` for more details.
111
112
113
114
115
116
117

    Args:
        pic (PIL Image): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
vfdev's avatar
vfdev committed
118
    if not(F_pil._is_pil_image(pic)):
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
        raise TypeError('pic should be PIL Image. Got {}'.format(type(pic)))

    if accimage is not None and isinstance(pic, accimage.Image):
        nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.float32)
        pic.copyto(nppic)
        return torch.as_tensor(nppic)

    # handle PIL Image
    img = torch.as_tensor(np.asarray(pic))
    img = img.view(pic.size[1], pic.size[0], len(pic.getbands()))
    # put it from HWC to CHW format
    img = img.permute((2, 0, 1))
    return img


134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
def convert_image_dtype(image: torch.Tensor, dtype: torch.dtype = torch.float) -> torch.Tensor:
    """Convert a tensor image to the given ``dtype`` and scale the values accordingly

    Args:
        image (torch.Tensor): Image to be converted
        dtype (torch.dtype): Desired data type of the output

    Returns:
        (torch.Tensor): Converted image

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """
    if image.dtype == dtype:
        return image

    if image.dtype.is_floating_point:
        # float to float
        if dtype.is_floating_point:
            return image.to(dtype)

        # float to int
        if (image.dtype == torch.float32 and dtype in (torch.int32, torch.int64)) or (
            image.dtype == torch.float64 and dtype == torch.int64
        ):
            msg = f"The cast from {image.dtype} to {dtype} cannot be performed safely."
            raise RuntimeError(msg)

170
171
172
173
174
        # https://github.com/pytorch/vision/pull/2078#issuecomment-612045321
        # For data in the range 0-1, (float * 255).to(uint) is only 255
        # when float is exactly 1.0.
        # `max + 1 - epsilon` provides more evenly distributed mapping of
        # ranges of floats to ints.
175
        eps = 1e-3
176
177
        result = image.mul(torch.iinfo(dtype).max + 1 - eps)
        return result.to(dtype)
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
    else:
        # int to float
        if dtype.is_floating_point:
            max = torch.iinfo(image.dtype).max
            image = image.to(dtype)
            return image / max

        # int to int
        input_max = torch.iinfo(image.dtype).max
        output_max = torch.iinfo(dtype).max

        if input_max > output_max:
            factor = (input_max + 1) // (output_max + 1)
            image = image // factor
            return image.to(dtype)
        else:
            factor = (output_max + 1) // (input_max + 1)
            image = image.to(dtype)
            return image * factor


199
200
201
def to_pil_image(pic, mode=None):
    """Convert a tensor or an ndarray to PIL Image.

202
    See :class:`~torchvision.transforms.ToPILImage` for more details.
203
204
205
206
207

    Args:
        pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).

208
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
209
210
211
212

    Returns:
        PIL Image: Image converted to PIL Image.
    """
Varun Agrawal's avatar
Varun Agrawal committed
213
    if not(isinstance(pic, torch.Tensor) or isinstance(pic, np.ndarray)):
214
215
        raise TypeError('pic should be Tensor or ndarray. Got {}.'.format(type(pic)))

Varun Agrawal's avatar
Varun Agrawal committed
216
217
218
219
220
221
    elif isinstance(pic, torch.Tensor):
        if pic.ndimension() not in {2, 3}:
            raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndimension()))

        elif pic.ndimension() == 2:
            # if 2D image, add channel dimension (CHW)
Surgan Jandial's avatar
Surgan Jandial committed
222
            pic = pic.unsqueeze(0)
Varun Agrawal's avatar
Varun Agrawal committed
223
224
225
226
227
228
229
230
231

    elif isinstance(pic, np.ndarray):
        if pic.ndim not in {2, 3}:
            raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndim))

        elif pic.ndim == 2:
            # if 2D image, add channel dimension (HWC)
            pic = np.expand_dims(pic, 2)

232
    npimg = pic
Varun Agrawal's avatar
Varun Agrawal committed
233
    if isinstance(pic, torch.Tensor):
234
235
236
        if pic.is_floating_point() and mode != 'F':
            pic = pic.mul(255).byte()
        npimg = np.transpose(pic.cpu().numpy(), (1, 2, 0))
237
238
239
240
241
242
243
244
245
246

    if not isinstance(npimg, np.ndarray):
        raise TypeError('Input pic must be a torch.Tensor or NumPy ndarray, ' +
                        'not {}'.format(type(npimg)))

    if npimg.shape[2] == 1:
        expected_mode = None
        npimg = npimg[:, :, 0]
        if npimg.dtype == np.uint8:
            expected_mode = 'L'
vfdev's avatar
vfdev committed
247
        elif npimg.dtype == np.int16:
248
            expected_mode = 'I;16'
vfdev's avatar
vfdev committed
249
        elif npimg.dtype == np.int32:
250
251
252
253
254
255
256
257
            expected_mode = 'I'
        elif npimg.dtype == np.float32:
            expected_mode = 'F'
        if mode is not None and mode != expected_mode:
            raise ValueError("Incorrect mode ({}) supplied for input type {}. Should be {}"
                             .format(mode, np.dtype, expected_mode))
        mode = expected_mode

surgan12's avatar
surgan12 committed
258
259
260
261
262
263
264
265
    elif npimg.shape[2] == 2:
        permitted_2_channel_modes = ['LA']
        if mode is not None and mode not in permitted_2_channel_modes:
            raise ValueError("Only modes {} are supported for 2D inputs".format(permitted_2_channel_modes))

        if mode is None and npimg.dtype == np.uint8:
            mode = 'LA'

266
    elif npimg.shape[2] == 4:
surgan12's avatar
surgan12 committed
267
        permitted_4_channel_modes = ['RGBA', 'CMYK', 'RGBX']
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
        if mode is not None and mode not in permitted_4_channel_modes:
            raise ValueError("Only modes {} are supported for 4D inputs".format(permitted_4_channel_modes))

        if mode is None and npimg.dtype == np.uint8:
            mode = 'RGBA'
    else:
        permitted_3_channel_modes = ['RGB', 'YCbCr', 'HSV']
        if mode is not None and mode not in permitted_3_channel_modes:
            raise ValueError("Only modes {} are supported for 3D inputs".format(permitted_3_channel_modes))
        if mode is None and npimg.dtype == np.uint8:
            mode = 'RGB'

    if mode is None:
        raise TypeError('Input type {} is not supported'.format(npimg.dtype))

    return Image.fromarray(npimg, mode=mode)


286
def normalize(tensor: Tensor, mean: List[float], std: List[float], inplace: bool = False) -> Tensor:
287
288
    """Normalize a tensor image with mean and standard deviation.

289
    .. note::
surgan12's avatar
surgan12 committed
290
        This transform acts out of place by default, i.e., it does not mutates the input tensor.
291

292
    See :class:`~torchvision.transforms.Normalize` for more details.
293
294

    Args:
295
        tensor (Tensor): Tensor image of size (C, H, W) or (B, C, H, W) to be normalized.
296
        mean (sequence): Sequence of means for each channel.
297
        std (sequence): Sequence of standard deviations for each channel.
298
        inplace(bool,optional): Bool to make this operation inplace.
299
300
301
302

    Returns:
        Tensor: Normalized Tensor image.
    """
303
304
    if not isinstance(tensor, torch.Tensor):
        raise TypeError('Input tensor should be a torch tensor. Got {}.'.format(type(tensor)))
305

306
307
    if tensor.ndim < 3:
        raise ValueError('Expected tensor to be a tensor image of size (..., C, H, W). Got tensor.size() = '
308
                         '{}.'.format(tensor.size()))
309

surgan12's avatar
surgan12 committed
310
311
312
    if not inplace:
        tensor = tensor.clone()

313
314
315
    dtype = tensor.dtype
    mean = torch.as_tensor(mean, dtype=dtype, device=tensor.device)
    std = torch.as_tensor(std, dtype=dtype, device=tensor.device)
316
317
    if (std == 0).any():
        raise ValueError('std evaluated to zero after conversion to {}, leading to division by zero.'.format(dtype))
318
    if mean.ndim == 1:
319
        mean = mean.view(-1, 1, 1)
320
    if std.ndim == 1:
321
        std = std.view(-1, 1, 1)
322
    tensor.sub_(mean).div_(std)
323
    return tensor
324
325


vfdev's avatar
vfdev committed
326
def resize(img: Tensor, size: List[int], interpolation: int = Image.BILINEAR) -> Tensor:
vfdev's avatar
vfdev committed
327
328
329
    r"""Resize the input image to the given size.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
330
331

    Args:
vfdev's avatar
vfdev committed
332
        img (PIL Image or Tensor): Image to be resized.
333
334
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), the output size will be matched to this. If size is an int,
Vitaliy Chiley's avatar
Vitaliy Chiley committed
335
            the smaller edge of the image will be matched to this number maintaining
336
            the aspect ratio. i.e, if height > width, then image will be rescaled to
vfdev's avatar
vfdev committed
337
338
339
            :math:`\left(\text{size} \times \frac{\text{height}}{\text{width}}, \text{size}\right)`.
            In torchscript mode padding as single int is not supported, use a tuple or
            list of length 1: ``[size, ]``.
vfdev's avatar
vfdev committed
340
341
342
        interpolation (int, optional): Desired interpolation enum defined by `filters`_.
            Default is ``PIL.Image.BILINEAR``. If input is Tensor, only ``PIL.Image.NEAREST``, ``PIL.Image.BILINEAR``
            and ``PIL.Image.BICUBIC`` are supported.
343
344

    Returns:
vfdev's avatar
vfdev committed
345
        PIL Image or Tensor: Resized image.
346
    """
vfdev's avatar
vfdev committed
347
348
349
350
    if not isinstance(img, torch.Tensor):
        return F_pil.resize(img, size=size, interpolation=interpolation)

    return F_t.resize(img, size=size, interpolation=interpolation)
351
352
353
354
355
356
357
358


def scale(*args, **kwargs):
    warnings.warn("The use of the transforms.Scale transform is deprecated, " +
                  "please use transforms.Resize instead.")
    return resize(*args, **kwargs)


359
360
361
362
def pad(img: Tensor, padding: List[int], fill: int = 0, padding_mode: str = "constant") -> Tensor:
    r"""Pad the given image on all sides with the given "pad" value.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
363
364

    Args:
365
366
        img (PIL Image or Tensor): Image to be padded.
        padding (int or tuple or list): Padding on each border. If a single int is provided this
367
368
            is used to pad all borders. If tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple of length 4 is provided
369
370
371
372
            this is the padding for the left, top, right and bottom borders respectively.
            In torchscript mode padding as single int is not supported, use a tuple or
            list of length 1: ``[padding, ]``.
        fill (int or str or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
373
            length 3, it is used to fill R, G, B channels respectively.
374
            This value is only used when the padding_mode is constant. Only int value is supported for Tensors.
375
        padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
vfdev's avatar
vfdev committed
376
            Mode symmetric is not yet supported for Tensor inputs.
377
378
379
380
381
382
383
384
385
386
387
388
389
390

            - constant: pads with a constant value, this value is specified with fill

            - edge: pads with the last value on the edge of the image

            - reflect: pads with reflection of image (without repeating the last value on the edge)

                       padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                       will result in [3, 2, 1, 2, 3, 4, 3, 2]

            - symmetric: pads with reflection of image (repeating the last value on the edge)

                         padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                         will result in [2, 1, 1, 2, 3, 4, 4, 3]
391
392

    Returns:
393
        PIL Image or Tensor: Padded image.
394
    """
395
396
    if not isinstance(img, torch.Tensor):
        return F_pil.pad(img, padding=padding, fill=fill, padding_mode=padding_mode)
397

398
    return F_t.pad(img, padding=padding, fill=fill, padding_mode=padding_mode)
399
400


vfdev's avatar
vfdev committed
401
402
403
404
405
def crop(img: Tensor, top: int, left: int, height: int, width: int) -> Tensor:
    """Crop the given image at specified location and output size.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
406

407
    Args:
vfdev's avatar
vfdev committed
408
        img (PIL Image or Tensor): Image to be cropped. (0,0) denotes the top left corner of the image.
409
410
411
412
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
413

414
    Returns:
vfdev's avatar
vfdev committed
415
        PIL Image or Tensor: Cropped image.
416
417
    """

vfdev's avatar
vfdev committed
418
419
    if not isinstance(img, torch.Tensor):
        return F_pil.crop(img, top, left, height, width)
420

vfdev's avatar
vfdev committed
421
    return F_t.crop(img, top, left, height, width)
422

vfdev's avatar
vfdev committed
423
424
425
426
427

def center_crop(img: Tensor, output_size: List[int]) -> Tensor:
    """Crops the given image at the center.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
428

429
    Args:
vfdev's avatar
vfdev committed
430
431
432
433
        img (PIL Image or Tensor): Image to be cropped.
        output_size (sequence or int): (height, width) of the crop box. If int or sequence with single int
            it is used for both directions.

434
    Returns:
vfdev's avatar
vfdev committed
435
        PIL Image or Tensor: Cropped image.
436
    """
437
438
    if isinstance(output_size, numbers.Number):
        output_size = (int(output_size), int(output_size))
vfdev's avatar
vfdev committed
439
440
441
442
    elif isinstance(output_size, (tuple, list)) and len(output_size) == 1:
        output_size = (output_size[0], output_size[0])

    image_width, image_height = _get_image_size(img)
443
    crop_height, crop_width = output_size
vfdev's avatar
vfdev committed
444
445
446
447
448
449
450
451
452

    # crop_top = int(round((image_height - crop_height) / 2.))
    # Result can be different between python func and scripted func
    # Temporary workaround:
    crop_top = int((image_height - crop_height + 1) * 0.5)
    # crop_left = int(round((image_width - crop_width) / 2.))
    # Result can be different between python func and scripted func
    # Temporary workaround:
    crop_left = int((image_width - crop_width + 1) * 0.5)
453
    return crop(img, crop_top, crop_left, crop_height, crop_width)
454
455


456
457
458
459
460
461
def resized_crop(
        img: Tensor, top: int, left: int, height: int, width: int, size: List[int], interpolation: int = Image.BILINEAR
) -> Tensor:
    """Crop the given image and resize it to desired size.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
462

463
    Notably used in :class:`~torchvision.transforms.RandomResizedCrop`.
464
465

    Args:
466
        img (PIL Image or Tensor): Image to be cropped. (0,0) denotes the top left corner of the image.
467
468
469
470
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
471
        size (sequence or int): Desired output size. Same semantics as ``resize``.
vfdev's avatar
vfdev committed
472
473
474
        interpolation (int, optional): Desired interpolation enum defined by `filters`_.
            Default is ``PIL.Image.BILINEAR``. If input is Tensor, only ``PIL.Image.NEAREST``, ``PIL.Image.BILINEAR``
            and ``PIL.Image.BICUBIC`` are supported.
475
    Returns:
476
        PIL Image or Tensor: Cropped image.
477
    """
478
    img = crop(img, top, left, height, width)
479
480
481
482
    img = resize(img, size, interpolation)
    return img


483
def hflip(img: Tensor) -> Tensor:
vfdev's avatar
vfdev committed
484
    """Horizontally flip the given PIL Image or Tensor.
485
486

    Args:
vfdev's avatar
vfdev committed
487
        img (PIL Image or Tensor): Image to be flipped. If img
488
489
490
            is a Tensor, it is expected to be in [..., H, W] format,
            where ... means it can have an arbitrary number of trailing
            dimensions.
491
492

    Returns:
vfdev's avatar
vfdev committed
493
        PIL Image or Tensor:  Horizontally flipped image.
494
    """
495
496
    if not isinstance(img, torch.Tensor):
        return F_pil.hflip(img)
497

498
    return F_t.hflip(img)
499
500


501
502
503
def _get_perspective_coeffs(
        startpoints: List[List[int]], endpoints: List[List[int]]
) -> List[float]:
504
505
    """Helper function to get the coefficients (a, b, c, d, e, f, g, h) for the perspective transforms.

Vitaliy Chiley's avatar
Vitaliy Chiley committed
506
    In Perspective Transform each pixel (x, y) in the original image gets transformed as,
507
508
509
     (x, y) -> ( (ax + by + c) / (gx + hy + 1), (dx + ey + f) / (gx + hy + 1) )

    Args:
510
511
512
513
514
        startpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the original image.
        endpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the transformed image.

515
516
517
    Returns:
        octuple (a, b, c, d, e, f, g, h) for transforming each pixel.
    """
518
519
520
521
522
    a_matrix = torch.zeros(2 * len(startpoints), 8, dtype=torch.float)

    for i, (p1, p2) in enumerate(zip(endpoints, startpoints)):
        a_matrix[2 * i, :] = torch.tensor([p1[0], p1[1], 1, 0, 0, 0, -p2[0] * p1[0], -p2[0] * p1[1]])
        a_matrix[2 * i + 1, :] = torch.tensor([0, 0, 0, p1[0], p1[1], 1, -p2[1] * p1[0], -p2[1] * p1[1]])
523

524
525
    b_matrix = torch.tensor(startpoints, dtype=torch.float).view(8)
    res = torch.lstsq(b_matrix, a_matrix)[0]
526

527
528
    output: List[float] = res.squeeze(1).tolist()
    return output
529
530


531
532
533
534
535
536
537
538
539
540
def perspective(
        img: Tensor,
        startpoints: List[List[int]],
        endpoints: List[List[int]],
        interpolation: int = 2,
        fill: Optional[int] = None
) -> Tensor:
    """Perform perspective transform of the given image.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
541
542

    Args:
543
544
545
546
547
548
549
        img (PIL Image or Tensor): Image to be transformed.
        startpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the original image.
        endpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the transformed image.
        interpolation (int): Interpolation type. If input is Tensor, only ``PIL.Image.NEAREST`` and
            ``PIL.Image.BILINEAR`` are supported. Default, ``PIL.Image.BILINEAR`` for PIL images and Tensors.
550
551
        fill (n-tuple or int or float): Pixel fill value for area outside the rotated
            image. If int or float, the value is used for all bands respectively.
552
553
            This option is only available for ``pillow>=5.0.0``. This option is not supported for Tensor
            input. Fill value for the area outside the transform in the output image is always 0.
554

555
    Returns:
556
        PIL Image or Tensor: transformed Image.
557
    """
558

559
    coeffs = _get_perspective_coeffs(startpoints, endpoints)
560

561
562
    if not isinstance(img, torch.Tensor):
        return F_pil.perspective(img, coeffs, interpolation=interpolation, fill=fill)
563

564
    return F_t.perspective(img, coeffs, interpolation=interpolation, fill=fill)
565
566


567
568
def vflip(img: Tensor) -> Tensor:
    """Vertically flip the given PIL Image or torch Tensor.
569
570

    Args:
vfdev's avatar
vfdev committed
571
        img (PIL Image or Tensor): Image to be flipped. If img
572
573
574
            is a Tensor, it is expected to be in [..., H, W] format,
            where ... means it can have an arbitrary number of trailing
            dimensions.
575
576
577
578

    Returns:
        PIL Image:  Vertically flipped image.
    """
579
580
    if not isinstance(img, torch.Tensor):
        return F_pil.vflip(img)
581

582
    return F_t.vflip(img)
583
584


vfdev's avatar
vfdev committed
585
586
587
588
def five_crop(img: Tensor, size: List[int]) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]:
    """Crop the given image into four corners and the central crop.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
589
590
591
592
593
594

    .. Note::
        This transform returns a tuple of images and there may be a
        mismatch in the number of inputs and targets your ``Dataset`` returns.

    Args:
vfdev's avatar
vfdev committed
595
596
597
598
        img (PIL Image or Tensor): Image to be cropped.
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
599

600
    Returns:
601
602
       tuple: tuple (tl, tr, bl, br, center)
                Corresponding top left, top right, bottom left, bottom right and center crop.
603
604
605
    """
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
vfdev's avatar
vfdev committed
606
607
    elif isinstance(size, (tuple, list)) and len(size) == 1:
        size = (size[0], size[0])
608

vfdev's avatar
vfdev committed
609
610
611
612
    if len(size) != 2:
        raise ValueError("Please provide only two dimensions (h, w) for size.")

    image_width, image_height = _get_image_size(img)
613
614
615
616
617
    crop_height, crop_width = size
    if crop_width > image_width or crop_height > image_height:
        msg = "Requested crop size {} is bigger than input size {}"
        raise ValueError(msg.format(size, (image_height, image_width)))

vfdev's avatar
vfdev committed
618
619
620
621
622
623
624
625
    tl = crop(img, 0, 0, crop_height, crop_width)
    tr = crop(img, 0, image_width - crop_width, crop_height, crop_width)
    bl = crop(img, image_height - crop_height, 0, crop_height, crop_width)
    br = crop(img, image_height - crop_height, image_width - crop_width, crop_height, crop_width)

    center = center_crop(img, [crop_height, crop_width])

    return tl, tr, bl, br, center
626
627


vfdev's avatar
vfdev committed
628
629
630
def ten_crop(img: Tensor, size: List[int], vertical_flip: bool = False) -> List[Tensor]:
    """Generate ten cropped images from the given image.
    Crop the given image into four corners and the central crop plus the
631
    flipped version of these (horizontal flipping is used by default).
vfdev's avatar
vfdev committed
632
633
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
634
635
636
637
638

    .. Note::
        This transform returns a tuple of images and there may be a
        mismatch in the number of inputs and targets your ``Dataset`` returns.

639
    Args:
vfdev's avatar
vfdev committed
640
        img (PIL Image or Tensor): Image to be cropped.
641
        size (sequence or int): Desired output size of the crop. If size is an
642
            int instead of sequence like (h, w), a square crop (size, size) is
vfdev's avatar
vfdev committed
643
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
644
        vertical_flip (bool): Use vertical flipping instead of horizontal
645
646

    Returns:
647
648
649
        tuple: tuple (tl, tr, bl, br, center, tl_flip, tr_flip, bl_flip, br_flip, center_flip)
            Corresponding top left, top right, bottom left, bottom right and
            center crop and same for the flipped image.
650
651
652
    """
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
vfdev's avatar
vfdev committed
653
654
655
656
657
    elif isinstance(size, (tuple, list)) and len(size) == 1:
        size = (size[0], size[0])

    if len(size) != 2:
        raise ValueError("Please provide only two dimensions (h, w) for size.")
658
659
660
661
662
663
664
665
666
667
668
669

    first_five = five_crop(img, size)

    if vertical_flip:
        img = vflip(img)
    else:
        img = hflip(img)

    second_five = five_crop(img, size)
    return first_five + second_five


670
def adjust_brightness(img: Tensor, brightness_factor: float) -> Tensor:
671
672
673
    """Adjust brightness of an Image.

    Args:
vfdev's avatar
vfdev committed
674
        img (PIL Image or Tensor): Image to be adjusted.
675
676
677
678
679
        brightness_factor (float):  How much to adjust the brightness. Can be
            any non negative number. 0 gives a black image, 1 gives the
            original image while 2 increases the brightness by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
680
        PIL Image or Tensor: Brightness adjusted image.
681
    """
682
683
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_brightness(img, brightness_factor)
684

685
    return F_t.adjust_brightness(img, brightness_factor)
686
687


688
def adjust_contrast(img: Tensor, contrast_factor: float) -> Tensor:
689
690
691
    """Adjust contrast of an Image.

    Args:
vfdev's avatar
vfdev committed
692
        img (PIL Image or Tensor): Image to be adjusted.
693
694
695
696
697
        contrast_factor (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives a solid gray image, 1 gives the
            original image while 2 increases the contrast by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
698
        PIL Image or Tensor: Contrast adjusted image.
699
    """
700
701
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_contrast(img, contrast_factor)
702

703
    return F_t.adjust_contrast(img, contrast_factor)
704
705


706
def adjust_saturation(img: Tensor, saturation_factor: float) -> Tensor:
707
708
709
    """Adjust color saturation of an image.

    Args:
vfdev's avatar
vfdev committed
710
        img (PIL Image or Tensor): Image to be adjusted.
711
712
713
714
715
        saturation_factor (float):  How much to adjust the saturation. 0 will
            give a black and white image, 1 will give the original image while
            2 will enhance the saturation by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
716
        PIL Image or Tensor: Saturation adjusted image.
717
    """
718
719
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_saturation(img, saturation_factor)
720

721
    return F_t.adjust_saturation(img, saturation_factor)
722
723


724
def adjust_hue(img: Tensor, hue_factor: float) -> Tensor:
725
726
727
728
729
730
731
732
733
    """Adjust hue of an image.

    The image hue is adjusted by converting the image to HSV and
    cyclically shifting the intensities in the hue channel (H).
    The image is then converted back to original image mode.

    `hue_factor` is the amount of shift in H channel and must be in the
    interval `[-0.5, 0.5]`.

734
735
736
    See `Hue`_ for more details.

    .. _Hue: https://en.wikipedia.org/wiki/Hue
737
738

    Args:
739
        img (PIL Image or Tensor): Image to be adjusted.
740
741
742
743
744
745
746
        hue_factor (float):  How much to shift the hue channel. Should be in
            [-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
            HSV space in positive and negative direction respectively.
            0 means no shift. Therefore, both -0.5 and 0.5 will give an image
            with complementary colors while 0 gives the original image.

    Returns:
747
        PIL Image or Tensor: Hue adjusted image.
748
    """
749
750
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_hue(img, hue_factor)
751

752
    return F_t.adjust_hue(img, hue_factor)
753
754


755
def adjust_gamma(img: Tensor, gamma: float, gain: float = 1) -> Tensor:
756
    r"""Perform gamma correction on an image.
757
758
759
760

    Also known as Power Law Transform. Intensities in RGB mode are adjusted
    based on the following equation:

761
762
763
764
    .. math::
        I_{\text{out}} = 255 \times \text{gain} \times \left(\frac{I_{\text{in}}}{255}\right)^{\gamma}

    See `Gamma Correction`_ for more details.
765

766
    .. _Gamma Correction: https://en.wikipedia.org/wiki/Gamma_correction
767
768

    Args:
769
        img (PIL Image or Tensor): PIL Image to be adjusted.
770
771
772
        gamma (float): Non negative real number, same as :math:`\gamma` in the equation.
            gamma larger than 1 make the shadows darker,
            while gamma smaller than 1 make dark regions lighter.
773
        gain (float): The constant multiplier.
774
775
    Returns:
        PIL Image or Tensor: Gamma correction adjusted image.
776
    """
777
778
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_gamma(img, gamma, gain)
779

780
    return F_t.adjust_gamma(img, gamma, gain)
781
782


vfdev's avatar
vfdev committed
783
def _get_inverse_affine_matrix(
vfdev's avatar
vfdev committed
784
        center: List[float], angle: float, translate: List[float], scale: float, shear: List[float]
vfdev's avatar
vfdev committed
785
) -> List[float]:
786
787
788
789
790
791
792
    # Helper method to compute inverse matrix for affine transformation

    # As it is explained in PIL.Image.rotate
    # We need compute INVERSE of affine transformation matrix: M = T * C * RSS * C^-1
    # where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1]
    #       C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1]
    #       RSS is rotation with scale and shear matrix
793
794
795
796
797
798
799
800
801
802
    #       RSS(a, s, (sx, sy)) =
    #       = R(a) * S(s) * SHy(sy) * SHx(sx)
    #       = [ s*cos(a - sy)/cos(sy), s*(-cos(a - sy)*tan(x)/cos(y) - sin(a)), 0 ]
    #         [ s*sin(a + sy)/cos(sy), s*(-sin(a - sy)*tan(x)/cos(y) + cos(a)), 0 ]
    #         [ 0                    , 0                                      , 1 ]
    #
    # where R is a rotation matrix, S is a scaling matrix, and SHx and SHy are the shears:
    # SHx(s) = [1, -tan(s)] and SHy(s) = [1      , 0]
    #          [0, 1      ]              [-tan(s), 1]
    #
803
804
    # Thus, the inverse is M^-1 = C * RSS^-1 * C^-1 * T^-1

805
806
807
808
809
810
811
    rot = math.radians(angle)
    sx, sy = [math.radians(s) for s in shear]

    cx, cy = center
    tx, ty = translate

    # RSS without scaling
vfdev's avatar
vfdev committed
812
813
814
815
    a = math.cos(rot - sy) / math.cos(sy)
    b = -math.cos(rot - sy) * math.tan(sx) / math.cos(sy) - math.sin(rot)
    c = math.sin(rot - sy) / math.cos(sy)
    d = -math.sin(rot - sy) * math.tan(sx) / math.cos(sy) + math.cos(rot)
816
817

    # Inverted rotation matrix with scale and shear
818
    # det([[a, b], [c, d]]) == 1, since det(rotation) = 1 and det(shear) = 1
vfdev's avatar
vfdev committed
819
820
    matrix = [d, -b, 0.0, -c, a, 0.0]
    matrix = [x / scale for x in matrix]
821
822

    # Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
vfdev's avatar
vfdev committed
823
824
    matrix[2] += matrix[0] * (-cx - tx) + matrix[1] * (-cy - ty)
    matrix[5] += matrix[3] * (-cx - tx) + matrix[4] * (-cy - ty)
825
826

    # Apply center translation: C * RSS^-1 * C^-1 * T^-1
vfdev's avatar
vfdev committed
827
828
    matrix[2] += cx
    matrix[5] += cy
829

vfdev's avatar
vfdev committed
830
    return matrix
831

vfdev's avatar
vfdev committed
832

vfdev's avatar
vfdev committed
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
def rotate(
        img: Tensor, angle: float, resample: int = 0, expand: bool = False,
        center: Optional[List[int]] = None, fill: Optional[int] = None
) -> Tensor:
    """Rotate the image by angle.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.

    Args:
        img (PIL Image or Tensor): image to be rotated.
        angle (float or int): rotation angle value in degrees, counter-clockwise.
        resample (``PIL.Image.NEAREST`` or ``PIL.Image.BILINEAR`` or ``PIL.Image.BICUBIC``, optional):
            An optional resampling filter. See `filters`_ for more information.
            If omitted, or if the image has mode "1" or "P", it is set to ``PIL.Image.NEAREST``.
        expand (bool, optional): Optional expansion flag.
            If true, expands the output image to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
        center (list or tuple, optional): Optional center of rotation. Origin is the upper left corner.
            Default is the center of the image.
        fill (n-tuple or int or float): Pixel fill value for area outside the rotated
            image. If int or float, the value is used for all bands respectively.
            Defaults to 0 for all bands. This option is only available for ``pillow>=5.2.0``.
856
857
            This option is not supported for Tensor input. Fill value for the area outside the transform in the output
            image is always 0.
vfdev's avatar
vfdev committed
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876

    Returns:
        PIL Image or Tensor: Rotated image.

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

    """
    if not isinstance(angle, (int, float)):
        raise TypeError("Argument angle should be int or float")

    if center is not None and not isinstance(center, (list, tuple)):
        raise TypeError("Argument center should be a sequence")

    if not isinstance(img, torch.Tensor):
        return F_pil.rotate(img, angle=angle, resample=resample, expand=expand, center=center, fill=fill)

    center_f = [0.0, 0.0]
    if center is not None:
        img_size = _get_image_size(img)
877
878
879
        # Center values should be in pixel coordinates but translated such that (0, 0) corresponds to image center.
        center_f = [1.0 * (c - s * 0.5) for c, s in zip(center, img_size)]

vfdev's avatar
vfdev committed
880
881
882
883
884
885
    # due to current incoherence of rotation angle direction between affine and rotate implementations
    # we need to set -angle.
    matrix = _get_inverse_affine_matrix(center_f, -angle, [0.0, 0.0], 1.0, [0.0, 0.0])
    return F_t.rotate(img, matrix=matrix, resample=resample, expand=expand, fill=fill)


vfdev's avatar
vfdev committed
886
887
888
889
890
891
892
def affine(
        img: Tensor, angle: float, translate: List[int], scale: float, shear: List[float],
        resample: int = 0, fillcolor: Optional[int] = None
) -> Tensor:
    """Apply affine transformation on the image keeping image center invariant.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
893
894

    Args:
vfdev's avatar
vfdev committed
895
        img (PIL Image or Tensor): image to transform.
896
        angle (float or int): rotation angle in degrees between -180 and 180, clockwise direction.
897
898
        translate (list or tuple of integers): horizontal and vertical translations (post-rotation translation)
        scale (float): overall scale
ptrblck's avatar
ptrblck committed
899
        shear (float or tuple or list): shear angle value in degrees between -180 to 180, clockwise direction.
vfdev's avatar
vfdev committed
900
901
            If a tuple of list is specified, the first value corresponds to a shear parallel to the x axis, while
            the second value corresponds to a shear parallel to the y axis.
902
        resample (``PIL.Image.NEAREST`` or ``PIL.Image.BILINEAR`` or ``PIL.Image.BICUBIC``, optional):
vfdev's avatar
vfdev committed
903
904
905
            An optional resampling filter. See `filters`_ for more information.
            If omitted, or if the image is PIL Image and has mode "1" or "P", it is set to ``PIL.Image.NEAREST``.
            If input is Tensor, only ``PIL.Image.NEAREST`` and ``PIL.Image.BILINEAR`` are supported.
906
907
908
        fillcolor (int): Optional fill color for the area outside the transform in the output image (Pillow>=5.0.0).
            This option is not supported for Tensor input. Fill value for the area outside the transform in the output
            image is always 0.
vfdev's avatar
vfdev committed
909
910
911

    Returns:
        PIL Image or Tensor: Transformed image.
912
    """
vfdev's avatar
vfdev committed
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
    if not isinstance(angle, (int, float)):
        raise TypeError("Argument angle should be int or float")

    if not isinstance(translate, (list, tuple)):
        raise TypeError("Argument translate should be a sequence")

    if len(translate) != 2:
        raise ValueError("Argument translate should be a sequence of length 2")

    if scale <= 0.0:
        raise ValueError("Argument scale should be positive")

    if not isinstance(shear, (numbers.Number, (list, tuple))):
        raise TypeError("Shear should be either a single value or a sequence of two values")

    if isinstance(angle, int):
        angle = float(angle)

    if isinstance(translate, tuple):
        translate = list(translate)

    if isinstance(shear, numbers.Number):
        shear = [shear, 0.0]

    if isinstance(shear, tuple):
        shear = list(shear)

    if len(shear) == 1:
        shear = [shear[0], shear[0]]

    if len(shear) != 2:
        raise ValueError("Shear should be a sequence containing two values. Got {}".format(shear))

    img_size = _get_image_size(img)
    if not isinstance(img, torch.Tensor):
        # center = (img_size[0] * 0.5 + 0.5, img_size[1] * 0.5 + 0.5)
        # it is visually better to estimate the center without 0.5 offset
        # otherwise image rotated by 90 degrees is shifted vs output image of torch.rot90 or F_t.affine
        center = [img_size[0] * 0.5, img_size[1] * 0.5]
        matrix = _get_inverse_affine_matrix(center, angle, translate, scale, shear)
953

vfdev's avatar
vfdev committed
954
        return F_pil.affine(img, matrix=matrix, resample=resample, fillcolor=fillcolor)
955

956
957
    translate_f = [1.0 * t for t in translate]
    matrix = _get_inverse_affine_matrix([0.0, 0.0], angle, translate_f, scale, shear)
vfdev's avatar
vfdev committed
958
    return F_t.affine(img, matrix=matrix, resample=resample, fillcolor=fillcolor)
959
960


961
@torch.jit.unused
962
def to_grayscale(img, num_output_channels=1):
963
    """Convert PIL image of any mode (RGB, HSV, LAB, etc) to grayscale version of image.
964
965

    Args:
966
967
        img (PIL Image): PIL Image to be converted to grayscale.
        num_output_channels (int): number of channels of the output image. Value can be 1 or 3. Default, 1.
968
969

    Returns:
970
971
972
973
        PIL Image: Grayscale version of the image.
            if num_output_channels = 1 : returned image is single channel

            if num_output_channels = 3 : returned image is 3 channel with r = g = b
974
    """
975
976
    if isinstance(img, Image.Image):
        return F_pil.to_grayscale(img, num_output_channels)
977

978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
    raise TypeError("Input should be PIL Image")


def rgb_to_grayscale(img: Tensor, num_output_channels: int = 1) -> Tensor:
    """Convert RGB image to grayscale version of image.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions

    Note:
        Please, note that this method supports only RGB images as input. For inputs in other color spaces,
        please, consider using meth:`~torchvision.transforms.functional.to_grayscale` with PIL Image.

    Args:
        img (PIL Image or Tensor): RGB Image to be converted to grayscale.
        num_output_channels (int): number of channels of the output image. Value can be 1 or 3. Default, 1.

    Returns:
        PIL Image or Tensor: Grayscale version of the image.
            if num_output_channels = 1 : returned image is single channel

            if num_output_channels = 3 : returned image is 3 channel with r = g = b
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.to_grayscale(img, num_output_channels)

    return F_t.rgb_to_grayscale(img, num_output_channels)
1004
1005


1006
def erase(img: Tensor, i: int, j: int, h: int, w: int, v: Tensor, inplace: bool = False) -> Tensor:
1007
1008
1009
1010
1011
1012
1013
1014
1015
    """ Erase the input Tensor Image with given value.

    Args:
        img (Tensor Image): Tensor image of size (C, H, W) to be erased
        i (int): i in (i,j) i.e coordinates of the upper left corner.
        j (int): j in (i,j) i.e coordinates of the upper left corner.
        h (int): Height of the erased region.
        w (int): Width of the erased region.
        v: Erasing value.
Zhun Zhong's avatar
Zhun Zhong committed
1016
        inplace(bool, optional): For in-place operations. By default is set False.
1017
1018
1019
1020
1021
1022
1023

    Returns:
        Tensor Image: Erased image.
    """
    if not isinstance(img, torch.Tensor):
        raise TypeError('img should be Tensor Image. Got {}'.format(type(img)))

1024
1025
1026
    if not inplace:
        img = img.clone()

vfdev's avatar
vfdev committed
1027
    img[..., i:i + h, j:j + w] = v
1028
    return img