functional.py 65.3 KB
Newer Older
1
import math
2
import numbers
3
import sys
4
import warnings
5
from enum import Enum
6
from typing import Any, List, Optional, Tuple, Union
7
8
9

import numpy as np
import torch
10
from PIL import Image
11
12
from torch import Tensor

13
14
15
16
17
try:
    import accimage
except ImportError:
    accimage = None

18
from ..utils import _log_api_usage_once
19
from . import _functional_pil as F_pil, _functional_tensor as F_t
20

21

22
class InterpolationMode(Enum):
23
    """Interpolation modes
24
25
    Available interpolation methods are ``nearest``, ``nearest-exact``, ``bilinear``, ``bicubic``, ``box``, ``hamming``,
    and ``lanczos``.
26
    """
27

28
    NEAREST = "nearest"
29
    NEAREST_EXACT = "nearest-exact"
30
31
32
33
34
35
36
37
38
    BILINEAR = "bilinear"
    BICUBIC = "bicubic"
    # For PIL compatibility
    BOX = "box"
    HAMMING = "hamming"
    LANCZOS = "lanczos"


# TODO: Once torchscript supports Enums with staticmethod
39
40
# this can be put into InterpolationMode as staticmethod
def _interpolation_modes_from_int(i: int) -> InterpolationMode:
41
    inverse_modes_mapping = {
42
43
44
45
46
47
        0: InterpolationMode.NEAREST,
        2: InterpolationMode.BILINEAR,
        3: InterpolationMode.BICUBIC,
        4: InterpolationMode.BOX,
        5: InterpolationMode.HAMMING,
        1: InterpolationMode.LANCZOS,
48
49
50
51
52
    }
    return inverse_modes_mapping[i]


pil_modes_mapping = {
53
54
55
    InterpolationMode.NEAREST: 0,
    InterpolationMode.BILINEAR: 2,
    InterpolationMode.BICUBIC: 3,
56
    InterpolationMode.NEAREST_EXACT: 0,
57
58
59
    InterpolationMode.BOX: 4,
    InterpolationMode.HAMMING: 5,
    InterpolationMode.LANCZOS: 1,
60
61
}

vfdev's avatar
vfdev committed
62
63
64
_is_pil_image = F_pil._is_pil_image


65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
def get_dimensions(img: Tensor) -> List[int]:
    """Returns the dimensions of an image as [channels, height, width].

    Args:
        img (PIL Image or Tensor): The image to be checked.

    Returns:
        List[int]: The image dimensions.
    """
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(get_dimensions)
    if isinstance(img, torch.Tensor):
        return F_t.get_dimensions(img)

    return F_pil.get_dimensions(img)


82
83
84
85
86
87
88
89
def get_image_size(img: Tensor) -> List[int]:
    """Returns the size of an image as [width, height].

    Args:
        img (PIL Image or Tensor): The image to be checked.

    Returns:
        List[int]: The image size.
vfdev's avatar
vfdev committed
90
    """
91
92
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(get_image_size)
vfdev's avatar
vfdev committed
93
    if isinstance(img, torch.Tensor):
94
        return F_t.get_image_size(img)
95

96
    return F_pil.get_image_size(img)
97

vfdev's avatar
vfdev committed
98

99
100
101
102
103
104
105
106
def get_image_num_channels(img: Tensor) -> int:
    """Returns the number of channels of an image.

    Args:
        img (PIL Image or Tensor): The image to be checked.

    Returns:
        int: The number of channels.
107
    """
108
109
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(get_image_num_channels)
110
    if isinstance(img, torch.Tensor):
111
        return F_t.get_image_num_channels(img)
112

113
    return F_pil.get_image_num_channels(img)
114
115


vfdev's avatar
vfdev committed
116
117
@torch.jit.unused
def _is_numpy(img: Any) -> bool:
118
119
120
    return isinstance(img, np.ndarray)


vfdev's avatar
vfdev committed
121
122
@torch.jit.unused
def _is_numpy_image(img: Any) -> bool:
123
    return img.ndim in {2, 3}
124
125


126
def to_tensor(pic) -> Tensor:
127
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.
128
    This function does not support torchscript.
129

130
    See :class:`~torchvision.transforms.ToTensor` for more details.
131
132
133
134
135
136
137

    Args:
        pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
138
139
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(to_tensor)
140
    if not (F_pil._is_pil_image(pic) or _is_numpy(pic)):
141
        raise TypeError(f"pic should be PIL Image or ndarray. Got {type(pic)}")
142

143
    if _is_numpy(pic) and not _is_numpy_image(pic):
144
        raise ValueError(f"pic should be 2/3 dimensional. Got {pic.ndim} dimensions.")
145

146
147
    default_float_dtype = torch.get_default_dtype()

148
149
    if isinstance(pic, np.ndarray):
        # handle numpy array
surgan12's avatar
surgan12 committed
150
151
152
        if pic.ndim == 2:
            pic = pic[:, :, None]

153
        img = torch.from_numpy(pic.transpose((2, 0, 1))).contiguous()
154
        # backward compatibility
155
        if isinstance(img, torch.ByteTensor):
156
            return img.to(dtype=default_float_dtype).div(255)
157
158
        else:
            return img
159
160

    if accimage is not None and isinstance(pic, accimage.Image):
161
        nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.float32)
162
        pic.copyto(nppic)
163
        return torch.from_numpy(nppic).to(dtype=default_float_dtype)
164
165

    # handle PIL Image
166
    mode_to_nptype = {"I": np.int32, "I;16" if sys.byteorder == "little" else "I;16B": np.int16, "F": np.float32}
167
    img = torch.from_numpy(np.array(pic, mode_to_nptype.get(pic.mode, np.uint8), copy=True))
168

169
    if pic.mode == "1":
170
        img = 255 * img
171
    img = img.view(pic.size[1], pic.size[0], F_pil.get_image_num_channels(pic))
172
    # put it from HWC to CHW format
173
    img = img.permute((2, 0, 1)).contiguous()
174
    if isinstance(img, torch.ByteTensor):
175
        return img.to(dtype=default_float_dtype).div(255)
176
177
178
179
    else:
        return img


180
def pil_to_tensor(pic: Any) -> Tensor:
181
    """Convert a ``PIL Image`` to a tensor of the same type.
182
    This function does not support torchscript.
183

vfdev's avatar
vfdev committed
184
    See :class:`~torchvision.transforms.PILToTensor` for more details.
185

186
187
188
189
    .. note::

        A deep copy of the underlying array is performed.

190
191
192
193
194
195
    Args:
        pic (PIL Image): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
196
197
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(pil_to_tensor)
198
    if not F_pil._is_pil_image(pic):
199
        raise TypeError(f"pic should be PIL Image. Got {type(pic)}")
200
201

    if accimage is not None and isinstance(pic, accimage.Image):
202
203
        # accimage format is always uint8 internally, so always return uint8 here
        nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.uint8)
204
205
206
207
        pic.copyto(nppic)
        return torch.as_tensor(nppic)

    # handle PIL Image
208
    img = torch.as_tensor(np.array(pic, copy=True))
209
    img = img.view(pic.size[1], pic.size[0], F_pil.get_image_num_channels(pic))
210
211
212
213
214
    # put it from HWC to CHW format
    img = img.permute((2, 0, 1))
    return img


215
216
def convert_image_dtype(image: torch.Tensor, dtype: torch.dtype = torch.float) -> torch.Tensor:
    """Convert a tensor image to the given ``dtype`` and scale the values accordingly
217
    This function does not support PIL Image.
218
219
220
221
222
223

    Args:
        image (torch.Tensor): Image to be converted
        dtype (torch.dtype): Desired data type of the output

    Returns:
vfdev's avatar
vfdev committed
224
        Tensor: Converted image
225
226
227
228
229
230
231
232
233
234
235
236

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """
237
238
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(convert_image_dtype)
239
    if not isinstance(image, torch.Tensor):
240
        raise TypeError("Input img should be Tensor Image")
241
242

    return F_t.convert_image_dtype(image, dtype)
243
244


245
def to_pil_image(pic, mode=None):
246
    """Convert a tensor or an ndarray to PIL Image. This function does not support torchscript.
247

248
    See :class:`~torchvision.transforms.ToPILImage` for more details.
249
250
251
252
253

    Args:
        pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).

254
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
255
256
257
258

    Returns:
        PIL Image: Image converted to PIL Image.
    """
259
260
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(to_pil_image)
261

262
263
264
265
266
    if isinstance(pic, torch.Tensor):
        if pic.ndim == 3:
            pic = pic.permute((1, 2, 0))
        pic = pic.numpy(force=True)
    elif not isinstance(pic, np.ndarray):
267
        raise TypeError(f"pic should be Tensor or ndarray. Got {type(pic)}.")
268

269
270
271
272
273
    if pic.ndim == 2:
        # if 2D image, add channel dimension (HWC)
        pic = np.expand_dims(pic, 2)
    if pic.ndim != 3:
        raise ValueError(f"pic should be 2/3 dimensional. Got {pic.ndim} dimensions.")
Varun Agrawal's avatar
Varun Agrawal committed
274

275
276
    if pic.shape[-1] > 4:
        raise ValueError(f"pic should not have > 4 channels. Got {pic.shape[-1]} channels.")
277

278
279
    npimg = pic

280
281
    if np.issubdtype(npimg.dtype, np.floating) and mode != "F":
        npimg = (npimg * 255).astype(np.uint8)
282
283
284
285
286

    if npimg.shape[2] == 1:
        expected_mode = None
        npimg = npimg[:, :, 0]
        if npimg.dtype == np.uint8:
287
            expected_mode = "L"
vfdev's avatar
vfdev committed
288
        elif npimg.dtype == np.int16:
289
            expected_mode = "I;16" if sys.byteorder == "little" else "I;16B"
vfdev's avatar
vfdev committed
290
        elif npimg.dtype == np.int32:
291
            expected_mode = "I"
292
        elif npimg.dtype == np.float32:
293
            expected_mode = "F"
294
        if mode is not None and mode != expected_mode:
295
            raise ValueError(f"Incorrect mode ({mode}) supplied for input type {np.dtype}. Should be {expected_mode}")
296
297
        mode = expected_mode

surgan12's avatar
surgan12 committed
298
    elif npimg.shape[2] == 2:
299
        permitted_2_channel_modes = ["LA"]
surgan12's avatar
surgan12 committed
300
        if mode is not None and mode not in permitted_2_channel_modes:
301
            raise ValueError(f"Only modes {permitted_2_channel_modes} are supported for 2D inputs")
surgan12's avatar
surgan12 committed
302
303

        if mode is None and npimg.dtype == np.uint8:
304
            mode = "LA"
surgan12's avatar
surgan12 committed
305

306
    elif npimg.shape[2] == 4:
307
        permitted_4_channel_modes = ["RGBA", "CMYK", "RGBX"]
308
        if mode is not None and mode not in permitted_4_channel_modes:
309
            raise ValueError(f"Only modes {permitted_4_channel_modes} are supported for 4D inputs")
310
311

        if mode is None and npimg.dtype == np.uint8:
312
            mode = "RGBA"
313
    else:
314
        permitted_3_channel_modes = ["RGB", "YCbCr", "HSV"]
315
        if mode is not None and mode not in permitted_3_channel_modes:
316
            raise ValueError(f"Only modes {permitted_3_channel_modes} are supported for 3D inputs")
317
        if mode is None and npimg.dtype == np.uint8:
318
            mode = "RGB"
319
320

    if mode is None:
321
        raise TypeError(f"Input type {npimg.dtype} is not supported")
322
323
324
325

    return Image.fromarray(npimg, mode=mode)


326
def normalize(tensor: Tensor, mean: List[float], std: List[float], inplace: bool = False) -> Tensor:
327
    """Normalize a float tensor image with mean and standard deviation.
328
    This transform does not support PIL Image.
329

330
    .. note::
surgan12's avatar
surgan12 committed
331
        This transform acts out of place by default, i.e., it does not mutates the input tensor.
332

333
    See :class:`~torchvision.transforms.Normalize` for more details.
334
335

    Args:
336
        tensor (Tensor): Float tensor image of size (C, H, W) or (B, C, H, W) to be normalized.
337
        mean (sequence): Sequence of means for each channel.
338
        std (sequence): Sequence of standard deviations for each channel.
339
        inplace(bool,optional): Bool to make this operation inplace.
340
341
342
343

    Returns:
        Tensor: Normalized Tensor image.
    """
344
345
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(normalize)
346
    if not isinstance(tensor, torch.Tensor):
347
        raise TypeError(f"img should be Tensor Image. Got {type(tensor)}")
348

349
    return F_t.normalize(tensor, mean=mean, std=std, inplace=inplace)
350
351


vfdev's avatar
vfdev committed
352
353
354
def _compute_resized_output_size(
    image_size: Tuple[int, int], size: List[int], max_size: Optional[int] = None
) -> List[int]:
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
    if len(size) == 1:  # specified size only for the smallest edge
        h, w = image_size
        short, long = (w, h) if w <= h else (h, w)
        requested_new_short = size if isinstance(size, int) else size[0]

        new_short, new_long = requested_new_short, int(requested_new_short * long / short)

        if max_size is not None:
            if max_size <= requested_new_short:
                raise ValueError(
                    f"max_size = {max_size} must be strictly greater than the requested "
                    f"size for the smaller edge size = {size}"
                )
            if new_long > max_size:
                new_short, new_long = int(max_size * new_short / new_long), max_size

        new_w, new_h = (new_short, new_long) if w <= h else (new_long, new_short)
    else:  # specified both h and w
        new_w, new_h = size[1], size[0]
    return [new_h, new_w]


377
378
379
380
381
def resize(
    img: Tensor,
    size: List[int],
    interpolation: InterpolationMode = InterpolationMode.BILINEAR,
    max_size: Optional[int] = None,
382
    antialias: Optional[bool] = True,
383
) -> Tensor:
vfdev's avatar
vfdev committed
384
    r"""Resize the input image to the given size.
385
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
386
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
387
388

    Args:
vfdev's avatar
vfdev committed
389
        img (PIL Image or Tensor): Image to be resized.
390
391
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), the output size will be matched to this. If size is an int,
Vitaliy Chiley's avatar
Vitaliy Chiley committed
392
            the smaller edge of the image will be matched to this number maintaining
393
            the aspect ratio. i.e, if height > width, then image will be rescaled to
vfdev's avatar
vfdev committed
394
            :math:`\left(\text{size} \times \frac{\text{height}}{\text{width}}, \text{size}\right)`.
395
396
397

            .. note::
                In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
398
399
400
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`.
            Default is ``InterpolationMode.BILINEAR``. If input is Tensor, only ``InterpolationMode.NEAREST``,
401
402
            ``InterpolationMode.NEAREST_EXACT``, ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are
            supported.
403
            The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
404
        max_size (int, optional): The maximum allowed for the longer edge of
405
            the resized image. If the longer edge of the image is greater
Nicolas Hug's avatar
Nicolas Hug committed
406
            than ``max_size`` after being resized according to ``size``,
407
408
            ``size`` will be overruled so that the longer edge is equal to
            ``max_size``.
Nicolas Hug's avatar
Nicolas Hug committed
409
            As a result, the smaller edge may be shorter than ``size``. This
410
411
            is only supported if ``size`` is an int (or a sequence of length
            1 in torchscript mode).
412
413
414
415
416
417
418
        antialias (bool, optional): Whether to apply antialiasing.
            It only affects **tensors** with bilinear or bicubic modes and it is
            ignored otherwise: on PIL images, antialiasing is always applied on
            bilinear or bicubic modes; on other modes (for PIL images and
            tensors), antialiasing makes no sense and this parameter is ignored.
            Possible values are:

419
            - ``True`` (default): will apply antialiasing for bilinear or bicubic modes.
420
421
422
423
424
425
426
427
              Other mode aren't affected. This is probably what you want to use.
            - ``False``: will not apply antialiasing for tensors on any mode. PIL
              images are still antialiased on bilinear or bicubic modes, because
              PIL doesn't support no antialias.
            - ``None``: equivalent to ``False`` for tensors and ``True`` for
              PIL images. This value exists for legacy reasons and you probably
              don't want to use it unless you really know what you are doing.

428
429
            The default value changed from ``None`` to ``True`` in
            v0.17, for the PIL and Tensor backends to be consistent.
430
431

    Returns:
vfdev's avatar
vfdev committed
432
        PIL Image or Tensor: Resized image.
433
    """
434
435
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(resize)
436

437
438
439
440
441
442
    if isinstance(interpolation, int):
        interpolation = _interpolation_modes_from_int(interpolation)
    elif not isinstance(interpolation, InterpolationMode):
        raise TypeError(
            "Argument interpolation should be a InterpolationMode or a corresponding Pillow integer constant"
        )
443

444
445
446
447
448
449
450
451
452
453
454
455
456
457
    if isinstance(size, (list, tuple)):
        if len(size) not in [1, 2]:
            raise ValueError(
                f"Size must be an int or a 1 or 2 element tuple/list, not a {len(size)} element tuple/list"
            )
        if max_size is not None and len(size) != 1:
            raise ValueError(
                "max_size should only be passed if size specifies the length of the smaller edge, "
                "i.e. size should be an int or a sequence of length 1 in torchscript mode."
            )

    _, image_height, image_width = get_dimensions(img)
    if isinstance(size, int):
        size = [size]
vfdev's avatar
vfdev committed
458
    output_size = _compute_resized_output_size((image_height, image_width), size, max_size)
459

460
    if [image_height, image_width] == output_size:
461
462
        return img

vfdev's avatar
vfdev committed
463
    if not isinstance(img, torch.Tensor):
464
        if antialias is False:
465
            warnings.warn("Anti-alias option is always applied for PIL Image input. Argument antialias is ignored.")
466
        pil_interpolation = pil_modes_mapping[interpolation]
467
        return F_pil.resize(img, size=output_size, interpolation=pil_interpolation)
vfdev's avatar
vfdev committed
468

469
    return F_t.resize(img, size=output_size, interpolation=interpolation.value, antialias=antialias)
470
471


472
def pad(img: Tensor, padding: List[int], fill: Union[int, float] = 0, padding_mode: str = "constant") -> Tensor:
473
    r"""Pad the given image on all sides with the given "pad" value.
474
    If the image is torch Tensor, it is expected
475
476
477
    to have [..., H, W] shape, where ... means at most 2 leading dimensions for mode reflect and symmetric,
    at most 3 leading dimensions for mode edge,
    and an arbitrary number of leading dimensions for mode constant
478
479

    Args:
480
        img (PIL Image or Tensor): Image to be padded.
481
482
483
        padding (int or sequence): Padding on each border. If a single int is provided this
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
484
            this is the padding for the left, top, right and bottom borders respectively.
485
486
487
488

            .. note::
                In torchscript mode padding as single int is not supported, use a sequence of
                length 1: ``[padding, ]``.
489
        fill (number or tuple): Pixel fill value for constant fill. Default is 0.
490
491
492
            If a tuple of length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant.
            Only number is supported for torch Tensor.
493
            Only int or tuple value is supported for PIL Image.
494
495
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
            Default is constant.
496
497
498

            - constant: pads with a constant value, this value is specified with fill

499
500
            - edge: pads with the last value at the edge of the image.
              If input a 5D torch Tensor, the last 3 dimensions will be padded instead of the last 2
501

502
503
504
            - reflect: pads with reflection of image without repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
              will result in [3, 2, 1, 2, 3, 4, 3, 2]
505

506
507
508
            - symmetric: pads with reflection of image repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
              will result in [2, 1, 1, 2, 3, 4, 4, 3]
509
510

    Returns:
511
        PIL Image or Tensor: Padded image.
512
    """
513
514
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(pad)
515
516
    if not isinstance(img, torch.Tensor):
        return F_pil.pad(img, padding=padding, fill=fill, padding_mode=padding_mode)
517

518
    return F_t.pad(img, padding=padding, fill=fill, padding_mode=padding_mode)
519
520


vfdev's avatar
vfdev committed
521
522
def crop(img: Tensor, top: int, left: int, height: int, width: int) -> Tensor:
    """Crop the given image at specified location and output size.
523
    If the image is torch Tensor, it is expected
524
525
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
    If image size is smaller than output size along any edge, image is padded with 0 and then cropped.
526

527
    Args:
vfdev's avatar
vfdev committed
528
        img (PIL Image or Tensor): Image to be cropped. (0,0) denotes the top left corner of the image.
529
530
531
532
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
533

534
    Returns:
vfdev's avatar
vfdev committed
535
        PIL Image or Tensor: Cropped image.
536
537
    """

538
539
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(crop)
vfdev's avatar
vfdev committed
540
541
    if not isinstance(img, torch.Tensor):
        return F_pil.crop(img, top, left, height, width)
542

vfdev's avatar
vfdev committed
543
    return F_t.crop(img, top, left, height, width)
544

vfdev's avatar
vfdev committed
545
546
547

def center_crop(img: Tensor, output_size: List[int]) -> Tensor:
    """Crops the given image at the center.
548
    If the image is torch Tensor, it is expected
549
550
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
    If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.
551

552
    Args:
vfdev's avatar
vfdev committed
553
        img (PIL Image or Tensor): Image to be cropped.
554
        output_size (sequence or int): (height, width) of the crop box. If int or sequence with single int,
vfdev's avatar
vfdev committed
555
556
            it is used for both directions.

557
    Returns:
vfdev's avatar
vfdev committed
558
        PIL Image or Tensor: Cropped image.
559
    """
560
561
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(center_crop)
562
563
    if isinstance(output_size, numbers.Number):
        output_size = (int(output_size), int(output_size))
vfdev's avatar
vfdev committed
564
565
566
    elif isinstance(output_size, (tuple, list)) and len(output_size) == 1:
        output_size = (output_size[0], output_size[0])

567
    _, image_height, image_width = get_dimensions(img)
568
    crop_height, crop_width = output_size
vfdev's avatar
vfdev committed
569

570
571
572
573
574
575
576
577
    if crop_width > image_width or crop_height > image_height:
        padding_ltrb = [
            (crop_width - image_width) // 2 if crop_width > image_width else 0,
            (crop_height - image_height) // 2 if crop_height > image_height else 0,
            (crop_width - image_width + 1) // 2 if crop_width > image_width else 0,
            (crop_height - image_height + 1) // 2 if crop_height > image_height else 0,
        ]
        img = pad(img, padding_ltrb, fill=0)  # PIL uses fill value 0
578
        _, image_height, image_width = get_dimensions(img)
579
580
581
        if crop_width == image_width and crop_height == image_height:
            return img

582
583
    crop_top = int(round((image_height - crop_height) / 2.0))
    crop_left = int(round((image_width - crop_width) / 2.0))
584
    return crop(img, crop_top, crop_left, crop_height, crop_width)
585
586


587
def resized_crop(
588
589
590
591
592
593
594
    img: Tensor,
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
    interpolation: InterpolationMode = InterpolationMode.BILINEAR,
595
    antialias: Optional[bool] = True,
596
597
) -> Tensor:
    """Crop the given image and resize it to desired size.
598
    If the image is torch Tensor, it is expected
599
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
600

601
    Notably used in :class:`~torchvision.transforms.RandomResizedCrop`.
602
603

    Args:
604
        img (PIL Image or Tensor): Image to be cropped. (0,0) denotes the top left corner of the image.
605
606
607
608
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
609
        size (sequence or int): Desired output size. Same semantics as ``resize``.
610
611
612
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`.
            Default is ``InterpolationMode.BILINEAR``. If input is Tensor, only ``InterpolationMode.NEAREST``,
613
614
            ``InterpolationMode.NEAREST_EXACT``, ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are
            supported.
615
            The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
616
617
618
619
620
621
622
        antialias (bool, optional): Whether to apply antialiasing.
            It only affects **tensors** with bilinear or bicubic modes and it is
            ignored otherwise: on PIL images, antialiasing is always applied on
            bilinear or bicubic modes; on other modes (for PIL images and
            tensors), antialiasing makes no sense and this parameter is ignored.
            Possible values are:

623
            - ``True`` (default): will apply antialiasing for bilinear or bicubic modes.
624
625
626
627
628
629
630
631
              Other mode aren't affected. This is probably what you want to use.
            - ``False``: will not apply antialiasing for tensors on any mode. PIL
              images are still antialiased on bilinear or bicubic modes, because
              PIL doesn't support no antialias.
            - ``None``: equivalent to ``False`` for tensors and ``True`` for
              PIL images. This value exists for legacy reasons and you probably
              don't want to use it unless you really know what you are doing.

632
633
            The default value changed from ``None`` to ``True`` in
            v0.17, for the PIL and Tensor backends to be consistent.
634
    Returns:
635
        PIL Image or Tensor: Cropped image.
636
    """
637
638
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(resized_crop)
639
    img = crop(img, top, left, height, width)
640
    img = resize(img, size, interpolation, antialias=antialias)
641
642
643
    return img


644
def hflip(img: Tensor) -> Tensor:
645
    """Horizontally flip the given image.
646
647

    Args:
vfdev's avatar
vfdev committed
648
        img (PIL Image or Tensor): Image to be flipped. If img
649
            is a Tensor, it is expected to be in [..., H, W] format,
650
            where ... means it can have an arbitrary number of leading
651
            dimensions.
652
653

    Returns:
vfdev's avatar
vfdev committed
654
        PIL Image or Tensor:  Horizontally flipped image.
655
    """
656
657
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(hflip)
658
659
    if not isinstance(img, torch.Tensor):
        return F_pil.hflip(img)
660

661
    return F_t.hflip(img)
662
663


664
def _get_perspective_coeffs(startpoints: List[List[int]], endpoints: List[List[int]]) -> List[float]:
665
666
    """Helper function to get the coefficients (a, b, c, d, e, f, g, h) for the perspective transforms.

Vitaliy Chiley's avatar
Vitaliy Chiley committed
667
    In Perspective Transform each pixel (x, y) in the original image gets transformed as,
668
669
670
     (x, y) -> ( (ax + by + c) / (gx + hy + 1), (dx + ey + f) / (gx + hy + 1) )

    Args:
671
672
673
674
675
        startpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the original image.
        endpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the transformed image.

676
677
678
    Returns:
        octuple (a, b, c, d, e, f, g, h) for transforming each pixel.
    """
679
680
681
682
683
    a_matrix = torch.zeros(2 * len(startpoints), 8, dtype=torch.float)

    for i, (p1, p2) in enumerate(zip(endpoints, startpoints)):
        a_matrix[2 * i, :] = torch.tensor([p1[0], p1[1], 1, 0, 0, 0, -p2[0] * p1[0], -p2[0] * p1[1]])
        a_matrix[2 * i + 1, :] = torch.tensor([0, 0, 0, p1[0], p1[1], 1, -p2[1] * p1[0], -p2[1] * p1[1]])
684

685
    b_matrix = torch.tensor(startpoints, dtype=torch.float).view(8)
686
    res = torch.linalg.lstsq(a_matrix, b_matrix, driver="gels").solution
687

688
    output: List[float] = res.tolist()
689
    return output
690
691


692
def perspective(
693
694
695
696
697
    img: Tensor,
    startpoints: List[List[int]],
    endpoints: List[List[int]],
    interpolation: InterpolationMode = InterpolationMode.BILINEAR,
    fill: Optional[List[float]] = None,
698
699
) -> Tensor:
    """Perform perspective transform of the given image.
700
    If the image is torch Tensor, it is expected
701
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
702
703

    Args:
704
705
706
707
708
        img (PIL Image or Tensor): Image to be transformed.
        startpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the original image.
        endpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the transformed image.
709
710
711
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
712
            The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
713
714
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
715
716
717
718

            .. note::
                In torchscript mode single int/float value is not supported, please use a sequence
                of length 1: ``[value, ]``.
719

720
    Returns:
721
        PIL Image or Tensor: transformed Image.
722
    """
723
724
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(perspective)
725

726
    coeffs = _get_perspective_coeffs(startpoints, endpoints)
727

728
729
730
731
732
733
    if isinstance(interpolation, int):
        interpolation = _interpolation_modes_from_int(interpolation)
    elif not isinstance(interpolation, InterpolationMode):
        raise TypeError(
            "Argument interpolation should be a InterpolationMode or a corresponding Pillow integer constant"
        )
734

735
    if not isinstance(img, torch.Tensor):
736
737
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.perspective(img, coeffs, interpolation=pil_interpolation, fill=fill)
738

739
    return F_t.perspective(img, coeffs, interpolation=interpolation.value, fill=fill)
740
741


742
def vflip(img: Tensor) -> Tensor:
743
    """Vertically flip the given image.
744
745

    Args:
vfdev's avatar
vfdev committed
746
        img (PIL Image or Tensor): Image to be flipped. If img
747
            is a Tensor, it is expected to be in [..., H, W] format,
748
            where ... means it can have an arbitrary number of leading
749
            dimensions.
750
751

    Returns:
752
        PIL Image or Tensor:  Vertically flipped image.
753
    """
754
755
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(vflip)
756
757
    if not isinstance(img, torch.Tensor):
        return F_pil.vflip(img)
758

759
    return F_t.vflip(img)
760
761


vfdev's avatar
vfdev committed
762
763
def five_crop(img: Tensor, size: List[int]) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]:
    """Crop the given image into four corners and the central crop.
764
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
765
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
766
767
768
769
770
771

    .. Note::
        This transform returns a tuple of images and there may be a
        mismatch in the number of inputs and targets your ``Dataset`` returns.

    Args:
vfdev's avatar
vfdev committed
772
773
774
        img (PIL Image or Tensor): Image to be cropped.
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
775
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
776

777
    Returns:
778
       tuple: tuple (tl, tr, bl, br, center)
779
       Corresponding top left, top right, bottom left, bottom right and center crop.
780
    """
781
782
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(five_crop)
783
784
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
vfdev's avatar
vfdev committed
785
786
    elif isinstance(size, (tuple, list)) and len(size) == 1:
        size = (size[0], size[0])
787

vfdev's avatar
vfdev committed
788
789
790
    if len(size) != 2:
        raise ValueError("Please provide only two dimensions (h, w) for size.")

791
    _, image_height, image_width = get_dimensions(img)
792
793
794
795
796
    crop_height, crop_width = size
    if crop_width > image_width or crop_height > image_height:
        msg = "Requested crop size {} is bigger than input size {}"
        raise ValueError(msg.format(size, (image_height, image_width)))

vfdev's avatar
vfdev committed
797
798
799
800
801
802
803
804
    tl = crop(img, 0, 0, crop_height, crop_width)
    tr = crop(img, 0, image_width - crop_width, crop_height, crop_width)
    bl = crop(img, image_height - crop_height, 0, crop_height, crop_width)
    br = crop(img, image_height - crop_height, image_width - crop_width, crop_height, crop_width)

    center = center_crop(img, [crop_height, crop_width])

    return tl, tr, bl, br, center
805
806


Philip Meier's avatar
Philip Meier committed
807
808
809
def ten_crop(
    img: Tensor, size: List[int], vertical_flip: bool = False
) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor]:
vfdev's avatar
vfdev committed
810
811
    """Generate ten cropped images from the given image.
    Crop the given image into four corners and the central crop plus the
812
    flipped version of these (horizontal flipping is used by default).
813
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
814
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
815
816
817
818
819

    .. Note::
        This transform returns a tuple of images and there may be a
        mismatch in the number of inputs and targets your ``Dataset`` returns.

820
    Args:
vfdev's avatar
vfdev committed
821
        img (PIL Image or Tensor): Image to be cropped.
822
        size (sequence or int): Desired output size of the crop. If size is an
823
            int instead of sequence like (h, w), a square crop (size, size) is
824
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
825
        vertical_flip (bool): Use vertical flipping instead of horizontal
826
827

    Returns:
828
        tuple: tuple (tl, tr, bl, br, center, tl_flip, tr_flip, bl_flip, br_flip, center_flip)
829
830
        Corresponding top left, top right, bottom left, bottom right and
        center crop and same for the flipped image.
831
    """
832
833
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(ten_crop)
834
835
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
vfdev's avatar
vfdev committed
836
837
838
839
840
    elif isinstance(size, (tuple, list)) and len(size) == 1:
        size = (size[0], size[0])

    if len(size) != 2:
        raise ValueError("Please provide only two dimensions (h, w) for size.")
841
842
843
844
845
846
847
848
849
850
851
852

    first_five = five_crop(img, size)

    if vertical_flip:
        img = vflip(img)
    else:
        img = hflip(img)

    second_five = five_crop(img, size)
    return first_five + second_five


853
def adjust_brightness(img: Tensor, brightness_factor: float) -> Tensor:
854
    """Adjust brightness of an image.
855
856

    Args:
vfdev's avatar
vfdev committed
857
        img (PIL Image or Tensor): Image to be adjusted.
858
859
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
860
        brightness_factor (float):  How much to adjust the brightness. Can be
861
            any non-negative number. 0 gives a black image, 1 gives the
862
863
864
            original image while 2 increases the brightness by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
865
        PIL Image or Tensor: Brightness adjusted image.
866
    """
867
868
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(adjust_brightness)
869
870
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_brightness(img, brightness_factor)
871

872
    return F_t.adjust_brightness(img, brightness_factor)
873
874


875
def adjust_contrast(img: Tensor, contrast_factor: float) -> Tensor:
876
    """Adjust contrast of an image.
877
878

    Args:
vfdev's avatar
vfdev committed
879
        img (PIL Image or Tensor): Image to be adjusted.
880
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
881
            where ... means it can have an arbitrary number of leading dimensions.
882
        contrast_factor (float): How much to adjust the contrast. Can be any
883
            non-negative number. 0 gives a solid gray image, 1 gives the
884
885
886
            original image while 2 increases the contrast by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
887
        PIL Image or Tensor: Contrast adjusted image.
888
    """
889
890
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(adjust_contrast)
891
892
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_contrast(img, contrast_factor)
893

894
    return F_t.adjust_contrast(img, contrast_factor)
895
896


897
def adjust_saturation(img: Tensor, saturation_factor: float) -> Tensor:
898
899
900
    """Adjust color saturation of an image.

    Args:
vfdev's avatar
vfdev committed
901
        img (PIL Image or Tensor): Image to be adjusted.
902
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
903
            where ... means it can have an arbitrary number of leading dimensions.
904
905
906
907
908
        saturation_factor (float):  How much to adjust the saturation. 0 will
            give a black and white image, 1 will give the original image while
            2 will enhance the saturation by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
909
        PIL Image or Tensor: Saturation adjusted image.
910
    """
911
912
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(adjust_saturation)
913
914
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_saturation(img, saturation_factor)
915

916
    return F_t.adjust_saturation(img, saturation_factor)
917
918


919
def adjust_hue(img: Tensor, hue_factor: float) -> Tensor:
920
921
922
923
924
925
926
927
928
    """Adjust hue of an image.

    The image hue is adjusted by converting the image to HSV and
    cyclically shifting the intensities in the hue channel (H).
    The image is then converted back to original image mode.

    `hue_factor` is the amount of shift in H channel and must be in the
    interval `[-0.5, 0.5]`.

929
930
931
    See `Hue`_ for more details.

    .. _Hue: https://en.wikipedia.org/wiki/Hue
932
933

    Args:
934
        img (PIL Image or Tensor): Image to be adjusted.
935
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
936
            where ... means it can have an arbitrary number of leading dimensions.
937
            If img is PIL Image mode "1", "I", "F" and modes with transparency (alpha channel) are not supported.
938
939
940
            Note: the pixel values of the input image has to be non-negative for conversion to HSV space;
            thus it does not work if you normalize your image to an interval with negative values,
            or use an interpolation that generates negative values before using this function.
941
942
943
944
945
946
947
        hue_factor (float):  How much to shift the hue channel. Should be in
            [-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
            HSV space in positive and negative direction respectively.
            0 means no shift. Therefore, both -0.5 and 0.5 will give an image
            with complementary colors while 0 gives the original image.

    Returns:
948
        PIL Image or Tensor: Hue adjusted image.
949
    """
950
951
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(adjust_hue)
952
953
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_hue(img, hue_factor)
954

955
    return F_t.adjust_hue(img, hue_factor)
956
957


958
def adjust_gamma(img: Tensor, gamma: float, gain: float = 1) -> Tensor:
959
    r"""Perform gamma correction on an image.
960
961
962
963

    Also known as Power Law Transform. Intensities in RGB mode are adjusted
    based on the following equation:

964
965
966
967
    .. math::
        I_{\text{out}} = 255 \times \text{gain} \times \left(\frac{I_{\text{in}}}{255}\right)^{\gamma}

    See `Gamma Correction`_ for more details.
968

969
    .. _Gamma Correction: https://en.wikipedia.org/wiki/Gamma_correction
970
971

    Args:
972
        img (PIL Image or Tensor): PIL Image to be adjusted.
973
974
975
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, modes with transparency (alpha channel) are not supported.
976
977
978
        gamma (float): Non negative real number, same as :math:`\gamma` in the equation.
            gamma larger than 1 make the shadows darker,
            while gamma smaller than 1 make dark regions lighter.
979
        gain (float): The constant multiplier.
980
981
    Returns:
        PIL Image or Tensor: Gamma correction adjusted image.
982
    """
983
984
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(adjust_gamma)
985
986
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_gamma(img, gamma, gain)
987

988
    return F_t.adjust_gamma(img, gamma, gain)
989
990


vfdev's avatar
vfdev committed
991
def _get_inverse_affine_matrix(
992
    center: List[float], angle: float, translate: List[float], scale: float, shear: List[float], inverted: bool = True
vfdev's avatar
vfdev committed
993
) -> List[float]:
994
995
    # Helper method to compute inverse matrix for affine transformation

996
997
998
    # Pillow requires inverse affine transformation matrix:
    # Affine matrix is : M = T * C * RotateScaleShear * C^-1
    #
999
1000
    # where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1]
    #       C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1]
1001
1002
1003
    #       RotateScaleShear is rotation with scale and shear matrix
    #
    #       RotateScaleShear(a, s, (sx, sy)) =
1004
    #       = R(a) * S(s) * SHy(sy) * SHx(sx)
1005
    #       = [ s*cos(a - sy)/cos(sy), s*(-cos(a - sy)*tan(sx)/cos(sy) - sin(a)), 0 ]
1006
    #         [ s*sin(a - sy)/cos(sy), s*(-sin(a - sy)*tan(sx)/cos(sy) + cos(a)), 0 ]
1007
1008
1009
1010
1011
    #         [ 0                    , 0                                      , 1 ]
    # where R is a rotation matrix, S is a scaling matrix, and SHx and SHy are the shears:
    # SHx(s) = [1, -tan(s)] and SHy(s) = [1      , 0]
    #          [0, 1      ]              [-tan(s), 1]
    #
1012
    # Thus, the inverse is M^-1 = C * RotateScaleShear^-1 * C^-1 * T^-1
1013

1014
    rot = math.radians(angle)
1015
1016
    sx = math.radians(shear[0])
    sy = math.radians(shear[1])
1017
1018
1019
1020
1021

    cx, cy = center
    tx, ty = translate

    # RSS without scaling
vfdev's avatar
vfdev committed
1022
1023
1024
1025
    a = math.cos(rot - sy) / math.cos(sy)
    b = -math.cos(rot - sy) * math.tan(sx) / math.cos(sy) - math.sin(rot)
    c = math.sin(rot - sy) / math.cos(sy)
    d = -math.sin(rot - sy) * math.tan(sx) / math.cos(sy) + math.cos(rot)
1026

1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
    if inverted:
        # Inverted rotation matrix with scale and shear
        # det([[a, b], [c, d]]) == 1, since det(rotation) = 1 and det(shear) = 1
        matrix = [d, -b, 0.0, -c, a, 0.0]
        matrix = [x / scale for x in matrix]
        # Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
        matrix[2] += matrix[0] * (-cx - tx) + matrix[1] * (-cy - ty)
        matrix[5] += matrix[3] * (-cx - tx) + matrix[4] * (-cy - ty)
        # Apply center translation: C * RSS^-1 * C^-1 * T^-1
        matrix[2] += cx
        matrix[5] += cy
    else:
        matrix = [a, b, 0.0, c, d, 0.0]
        matrix = [x * scale for x in matrix]
        # Apply inverse of center translation: RSS * C^-1
        matrix[2] += matrix[0] * (-cx) + matrix[1] * (-cy)
        matrix[5] += matrix[3] * (-cx) + matrix[4] * (-cy)
        # Apply translation and center : T * C * RSS * C^-1
        matrix[2] += cx + tx
        matrix[5] += cy + ty
1047

vfdev's avatar
vfdev committed
1048
    return matrix
1049

vfdev's avatar
vfdev committed
1050

vfdev's avatar
vfdev committed
1051
def rotate(
1052
1053
1054
1055
1056
1057
    img: Tensor,
    angle: float,
    interpolation: InterpolationMode = InterpolationMode.NEAREST,
    expand: bool = False,
    center: Optional[List[int]] = None,
    fill: Optional[List[float]] = None,
vfdev's avatar
vfdev committed
1058
1059
) -> Tensor:
    """Rotate the image by angle.
1060
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
1061
1062
1063
1064
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.

    Args:
        img (PIL Image or Tensor): image to be rotated.
1065
        angle (number): rotation angle value in degrees, counter-clockwise.
1066
1067
1068
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
1069
            The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
vfdev's avatar
vfdev committed
1070
1071
1072
1073
        expand (bool, optional): Optional expansion flag.
            If true, expands the output image to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
1074
        center (sequence, optional): Optional center of rotation. Origin is the upper left corner.
vfdev's avatar
vfdev committed
1075
            Default is the center of the image.
1076
1077
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
1078
1079
1080
1081

            .. note::
                In torchscript mode single int/float value is not supported, please use a sequence
                of length 1: ``[value, ]``.
vfdev's avatar
vfdev committed
1082
1083
1084
1085
1086
1087
    Returns:
        PIL Image or Tensor: Rotated image.

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

    """
1088
1089
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(rotate)
1090

1091
1092
1093
1094
1095
1096
1097
    if isinstance(interpolation, int):
        interpolation = _interpolation_modes_from_int(interpolation)
    elif not isinstance(interpolation, InterpolationMode):
        raise TypeError(
            "Argument interpolation should be a InterpolationMode or a corresponding Pillow integer constant"
        )

vfdev's avatar
vfdev committed
1098
1099
1100
1101
1102
1103
1104
    if not isinstance(angle, (int, float)):
        raise TypeError("Argument angle should be int or float")

    if center is not None and not isinstance(center, (list, tuple)):
        raise TypeError("Argument center should be a sequence")

    if not isinstance(img, torch.Tensor):
1105
1106
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.rotate(img, angle=angle, interpolation=pil_interpolation, expand=expand, center=center, fill=fill)
vfdev's avatar
vfdev committed
1107
1108
1109

    center_f = [0.0, 0.0]
    if center is not None:
1110
        _, height, width = get_dimensions(img)
1111
        # Center values should be in pixel coordinates but translated such that (0, 0) corresponds to image center.
1112
        center_f = [1.0 * (c - s * 0.5) for c, s in zip(center, [width, height])]
1113

vfdev's avatar
vfdev committed
1114
1115
1116
    # due to current incoherence of rotation angle direction between affine and rotate implementations
    # we need to set -angle.
    matrix = _get_inverse_affine_matrix(center_f, -angle, [0.0, 0.0], 1.0, [0.0, 0.0])
1117
    return F_t.rotate(img, matrix=matrix, interpolation=interpolation.value, expand=expand, fill=fill)
vfdev's avatar
vfdev committed
1118
1119


vfdev's avatar
vfdev committed
1120
def affine(
1121
1122
1123
1124
1125
1126
1127
    img: Tensor,
    angle: float,
    translate: List[int],
    scale: float,
    shear: List[float],
    interpolation: InterpolationMode = InterpolationMode.NEAREST,
    fill: Optional[List[float]] = None,
1128
    center: Optional[List[int]] = None,
vfdev's avatar
vfdev committed
1129
1130
) -> Tensor:
    """Apply affine transformation on the image keeping image center invariant.
1131
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
1132
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1133
1134

    Args:
vfdev's avatar
vfdev committed
1135
        img (PIL Image or Tensor): image to transform.
1136
1137
        angle (number): rotation angle in degrees between -180 and 180, clockwise direction.
        translate (sequence of integers): horizontal and vertical translations (post-rotation translation)
1138
        scale (float): overall scale
1139
        shear (float or sequence): shear angle value in degrees between -180 to 180, clockwise direction.
1140
1141
            If a sequence is specified, the first value corresponds to a shear parallel to the x-axis, while
            the second value corresponds to a shear parallel to the y-axis.
1142
1143
1144
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
1145
            The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
1146
1147
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
1148
1149
1150
1151

            .. note::
                In torchscript mode single int/float value is not supported, please use a sequence
                of length 1: ``[value, ]``.
1152
1153
        center (sequence, optional): Optional center of rotation. Origin is the upper left corner.
            Default is the center of the image.
vfdev's avatar
vfdev committed
1154
1155
1156

    Returns:
        PIL Image or Tensor: Transformed image.
1157
    """
1158
1159
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(affine)
1160

1161
1162
1163
1164
1165
1166
1167
    if isinstance(interpolation, int):
        interpolation = _interpolation_modes_from_int(interpolation)
    elif not isinstance(interpolation, InterpolationMode):
        raise TypeError(
            "Argument interpolation should be a InterpolationMode or a corresponding Pillow integer constant"
        )

vfdev's avatar
vfdev committed
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
    if not isinstance(angle, (int, float)):
        raise TypeError("Argument angle should be int or float")

    if not isinstance(translate, (list, tuple)):
        raise TypeError("Argument translate should be a sequence")

    if len(translate) != 2:
        raise ValueError("Argument translate should be a sequence of length 2")

    if scale <= 0.0:
        raise ValueError("Argument scale should be positive")

    if not isinstance(shear, (numbers.Number, (list, tuple))):
        raise TypeError("Shear should be either a single value or a sequence of two values")

    if isinstance(angle, int):
        angle = float(angle)

    if isinstance(translate, tuple):
        translate = list(translate)

    if isinstance(shear, numbers.Number):
        shear = [shear, 0.0]

    if isinstance(shear, tuple):
        shear = list(shear)

    if len(shear) == 1:
        shear = [shear[0], shear[0]]

    if len(shear) != 2:
1199
        raise ValueError(f"Shear should be a sequence containing two values. Got {shear}")
vfdev's avatar
vfdev committed
1200

1201
1202
1203
    if center is not None and not isinstance(center, (list, tuple)):
        raise TypeError("Argument center should be a sequence")

1204
    _, height, width = get_dimensions(img)
vfdev's avatar
vfdev committed
1205
    if not isinstance(img, torch.Tensor):
1206
        # center = (width * 0.5 + 0.5, height * 0.5 + 0.5)
vfdev's avatar
vfdev committed
1207
1208
        # it is visually better to estimate the center without 0.5 offset
        # otherwise image rotated by 90 degrees is shifted vs output image of torch.rot90 or F_t.affine
1209
        if center is None:
1210
            center = [width * 0.5, height * 0.5]
vfdev's avatar
vfdev committed
1211
        matrix = _get_inverse_affine_matrix(center, angle, translate, scale, shear)
1212
1213
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.affine(img, matrix=matrix, interpolation=pil_interpolation, fill=fill)
1214

1215
1216
    center_f = [0.0, 0.0]
    if center is not None:
1217
        _, height, width = get_dimensions(img)
1218
        # Center values should be in pixel coordinates but translated such that (0, 0) corresponds to image center.
1219
        center_f = [1.0 * (c - s * 0.5) for c, s in zip(center, [width, height])]
1220

1221
    translate_f = [1.0 * t for t in translate]
1222
    matrix = _get_inverse_affine_matrix(center_f, angle, translate_f, scale, shear)
1223
    return F_t.affine(img, matrix=matrix, interpolation=interpolation.value, fill=fill)
1224
1225


1226
1227
# Looks like to_grayscale() is a stand-alone functional that is never called
# from the transform classes. Perhaps it's still here for BC? I can't be
1228
# bothered to dig.
1229
@torch.jit.unused
1230
def to_grayscale(img, num_output_channels=1):
1231
    """Convert PIL image of any mode (RGB, HSV, LAB, etc) to grayscale version of image.
1232
    This transform does not support torch Tensor.
1233
1234

    Args:
1235
        img (PIL Image): PIL Image to be converted to grayscale.
1236
        num_output_channels (int): number of channels of the output image. Value can be 1 or 3. Default is 1.
1237
1238

    Returns:
1239
1240
        PIL Image: Grayscale version of the image.

1241
1242
        - if num_output_channels = 1 : returned image is single channel
        - if num_output_channels = 3 : returned image is 3 channel with r = g = b
1243
    """
1244
1245
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(to_grayscale)
1246
1247
    if isinstance(img, Image.Image):
        return F_pil.to_grayscale(img, num_output_channels)
1248

1249
1250
1251
1252
1253
    raise TypeError("Input should be PIL Image")


def rgb_to_grayscale(img: Tensor, num_output_channels: int = 1) -> Tensor:
    """Convert RGB image to grayscale version of image.
1254
1255
    If the image is torch Tensor, it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions
1256
1257
1258

    Note:
        Please, note that this method supports only RGB images as input. For inputs in other color spaces,
1259
        please, consider using :meth:`~torchvision.transforms.functional.to_grayscale` with PIL Image.
1260
1261
1262
1263
1264
1265
1266
1267

    Args:
        img (PIL Image or Tensor): RGB Image to be converted to grayscale.
        num_output_channels (int): number of channels of the output image. Value can be 1 or 3. Default, 1.

    Returns:
        PIL Image or Tensor: Grayscale version of the image.

1268
1269
        - if num_output_channels = 1 : returned image is single channel
        - if num_output_channels = 3 : returned image is 3 channel with r = g = b
1270
    """
1271
1272
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(rgb_to_grayscale)
1273
1274
1275
1276
    if not isinstance(img, torch.Tensor):
        return F_pil.to_grayscale(img, num_output_channels)

    return F_t.rgb_to_grayscale(img, num_output_channels)
1277
1278


1279
def erase(img: Tensor, i: int, j: int, h: int, w: int, v: Tensor, inplace: bool = False) -> Tensor:
1280
    """Erase the input Tensor Image with given value.
1281
    This transform does not support PIL Image.
1282
1283
1284
1285
1286
1287
1288
1289

    Args:
        img (Tensor Image): Tensor image of size (C, H, W) to be erased
        i (int): i in (i,j) i.e coordinates of the upper left corner.
        j (int): j in (i,j) i.e coordinates of the upper left corner.
        h (int): Height of the erased region.
        w (int): Width of the erased region.
        v: Erasing value.
1290
        inplace(bool, optional): For in-place operations. By default, is set False.
1291
1292
1293
1294

    Returns:
        Tensor Image: Erased image.
    """
1295
1296
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(erase)
1297
    if not isinstance(img, torch.Tensor):
1298
        raise TypeError(f"img should be Tensor Image. Got {type(img)}")
1299

1300
    return F_t.erase(img, i, j, h, w, v, inplace=inplace)
1301
1302
1303


def gaussian_blur(img: Tensor, kernel_size: List[int], sigma: Optional[List[float]] = None) -> Tensor:
1304
1305
    """Performs Gaussian blurring on the image by given kernel.
    If the image is torch Tensor, it is expected
Haochen Yu's avatar
Haochen Yu committed
1306
    to have [..., H, W] shape, where ... means at most one leading dimension.
1307
1308
1309
1310
1311

    Args:
        img (PIL Image or Tensor): Image to be blurred
        kernel_size (sequence of ints or int): Gaussian kernel size. Can be a sequence of integers
            like ``(kx, ky)`` or a single integer for square kernels.
1312
1313
1314
1315

            .. note::
                In torchscript mode kernel_size as single int is not supported, use a sequence of
                length 1: ``[ksize, ]``.
1316
1317
1318
1319
        sigma (sequence of floats or float, optional): Gaussian kernel standard deviation. Can be a
            sequence of floats like ``(sigma_x, sigma_y)`` or a single float to define the
            same sigma in both X/Y directions. If None, then it is computed using
            ``kernel_size`` as ``sigma = 0.3 * ((kernel_size - 1) * 0.5 - 1) + 0.8``.
1320
1321
1322
1323
1324
            Default, None.

            .. note::
                In torchscript mode sigma as single float is
                not supported, use a sequence of length 1: ``[sigma, ]``.
1325
1326
1327
1328

    Returns:
        PIL Image or Tensor: Gaussian Blurred version of the image.
    """
1329
1330
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(gaussian_blur)
1331
    if not isinstance(kernel_size, (int, list, tuple)):
1332
        raise TypeError(f"kernel_size should be int or a sequence of integers. Got {type(kernel_size)}")
1333
1334
1335
    if isinstance(kernel_size, int):
        kernel_size = [kernel_size, kernel_size]
    if len(kernel_size) != 2:
1336
        raise ValueError(f"If kernel_size is a sequence its length should be 2. Got {len(kernel_size)}")
1337
1338
    for ksize in kernel_size:
        if ksize % 2 == 0 or ksize < 0:
1339
            raise ValueError(f"kernel_size should have odd and positive integers. Got {kernel_size}")
1340
1341
1342
1343
1344

    if sigma is None:
        sigma = [ksize * 0.15 + 0.35 for ksize in kernel_size]

    if sigma is not None and not isinstance(sigma, (int, float, list, tuple)):
1345
        raise TypeError(f"sigma should be either float or sequence of floats. Got {type(sigma)}")
1346
1347
1348
1349
1350
    if isinstance(sigma, (int, float)):
        sigma = [float(sigma), float(sigma)]
    if isinstance(sigma, (list, tuple)) and len(sigma) == 1:
        sigma = [sigma[0], sigma[0]]
    if len(sigma) != 2:
1351
        raise ValueError(f"If sigma is a sequence, its length should be 2. Got {len(sigma)}")
1352
    for s in sigma:
1353
        if s <= 0.0:
1354
            raise ValueError(f"sigma should have positive values. Got {sigma}")
1355
1356
1357
1358

    t_img = img
    if not isinstance(img, torch.Tensor):
        if not F_pil._is_pil_image(img):
1359
            raise TypeError(f"img should be PIL Image or Tensor. Got {type(img)}")
1360

1361
        t_img = pil_to_tensor(img)
1362
1363
1364
1365

    output = F_t.gaussian_blur(t_img, kernel_size, sigma)

    if not isinstance(img, torch.Tensor):
1366
        output = to_pil_image(output, mode=img.mode)
1367
    return output
1368
1369
1370


def invert(img: Tensor) -> Tensor:
1371
    """Invert the colors of an RGB/grayscale image.
1372
1373
1374

    Args:
        img (PIL Image or Tensor): Image to have its colors inverted.
1375
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1376
1377
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1378
1379
1380
1381

    Returns:
        PIL Image or Tensor: Color inverted image.
    """
1382
1383
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(invert)
1384
1385
1386
1387
1388
1389
1390
    if not isinstance(img, torch.Tensor):
        return F_pil.invert(img)

    return F_t.invert(img)


def posterize(img: Tensor, bits: int) -> Tensor:
1391
    """Posterize an image by reducing the number of bits for each color channel.
1392
1393
1394

    Args:
        img (PIL Image or Tensor): Image to have its colors posterized.
1395
            If img is torch Tensor, it should be of type torch.uint8, and
1396
1397
1398
            it is expected to be in [..., 1 or 3, H, W] format, where ... means
            it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1399
1400
1401
1402
        bits (int): The number of bits to keep for each channel (0-8).
    Returns:
        PIL Image or Tensor: Posterized image.
    """
1403
1404
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(posterize)
1405
    if not (0 <= bits <= 8):
1406
        raise ValueError(f"The number if bits should be between 0 and 8. Got {bits}")
1407
1408
1409
1410
1411
1412
1413
1414

    if not isinstance(img, torch.Tensor):
        return F_pil.posterize(img, bits)

    return F_t.posterize(img, bits)


def solarize(img: Tensor, threshold: float) -> Tensor:
1415
    """Solarize an RGB/grayscale image by inverting all pixel values above a threshold.
1416
1417
1418

    Args:
        img (PIL Image or Tensor): Image to have its colors inverted.
1419
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1420
1421
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1422
1423
1424
1425
        threshold (float): All pixels equal or above this value are inverted.
    Returns:
        PIL Image or Tensor: Solarized image.
    """
1426
1427
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(solarize)
1428
1429
1430
1431
1432
1433
1434
    if not isinstance(img, torch.Tensor):
        return F_pil.solarize(img, threshold)

    return F_t.solarize(img, threshold)


def adjust_sharpness(img: Tensor, sharpness_factor: float) -> Tensor:
1435
    """Adjust the sharpness of an image.
1436
1437
1438

    Args:
        img (PIL Image or Tensor): Image to be adjusted.
1439
1440
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
1441
        sharpness_factor (float):  How much to adjust the sharpness. Can be
1442
            any non-negative number. 0 gives a blurred image, 1 gives the
1443
1444
1445
1446
1447
            original image while 2 increases the sharpness by a factor of 2.

    Returns:
        PIL Image or Tensor: Sharpness adjusted image.
    """
1448
1449
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(adjust_sharpness)
1450
1451
1452
1453
1454
1455
1456
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_sharpness(img, sharpness_factor)

    return F_t.adjust_sharpness(img, sharpness_factor)


def autocontrast(img: Tensor) -> Tensor:
1457
    """Maximize contrast of an image by remapping its
1458
1459
1460
1461
1462
    pixels per channel so that the lowest becomes black and the lightest
    becomes white.

    Args:
        img (PIL Image or Tensor): Image on which autocontrast is applied.
1463
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1464
1465
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1466
1467
1468
1469

    Returns:
        PIL Image or Tensor: An image that was autocontrasted.
    """
1470
1471
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(autocontrast)
1472
1473
1474
1475
1476
1477
1478
    if not isinstance(img, torch.Tensor):
        return F_pil.autocontrast(img)

    return F_t.autocontrast(img)


def equalize(img: Tensor) -> Tensor:
1479
    """Equalize the histogram of an image by applying
1480
1481
1482
1483
1484
    a non-linear mapping to the input in order to create a uniform
    distribution of grayscale values in the output.

    Args:
        img (PIL Image or Tensor): Image on which equalize is applied.
1485
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1486
            where ... means it can have an arbitrary number of leading dimensions.
1487
            The tensor dtype must be ``torch.uint8`` and values are expected to be in ``[0, 255]``.
1488
            If img is PIL Image, it is expected to be in mode "P", "L" or "RGB".
1489
1490
1491
1492

    Returns:
        PIL Image or Tensor: An image that was equalized.
    """
1493
1494
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(equalize)
1495
1496
1497
1498
    if not isinstance(img, torch.Tensor):
        return F_pil.equalize(img)

    return F_t.equalize(img)
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522


def elastic_transform(
    img: Tensor,
    displacement: Tensor,
    interpolation: InterpolationMode = InterpolationMode.BILINEAR,
    fill: Optional[List[float]] = None,
) -> Tensor:
    """Transform a tensor image with elastic transformations.
    Given alpha and sigma, it will generate displacement
    vectors for all pixels based on random offsets. Alpha controls the strength
    and sigma controls the smoothness of the displacements.
    The displacements are added to an identity grid and the resulting grid is
    used to grid_sample from the image.

    Applications:
        Randomly transforms the morphology of objects in images and produces a
        see-through-water-like effect.

    Args:
        img (PIL Image or Tensor): Image on which elastic_transform is applied.
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "P", "L" or "RGB".
1523
        displacement (Tensor): The displacement field. Expected shape is [1, H, W, 2].
1524
1525
1526
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`.
            Default is ``InterpolationMode.BILINEAR``.
1527
            The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
        fill (number or str or tuple): Pixel fill value for constant fill. Default is 0.
            If a tuple of length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant.
    """
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(elastic_transform)
    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
            "Argument interpolation should be of type InterpolationMode instead of int. "
            "Please, use InterpolationMode enum."
        )
        interpolation = _interpolation_modes_from_int(interpolation)

    if not isinstance(displacement, torch.Tensor):
1543
        raise TypeError("Argument displacement should be a Tensor")
1544
1545
1546
1547
1548
1549
1550

    t_img = img
    if not isinstance(img, torch.Tensor):
        if not F_pil._is_pil_image(img):
            raise TypeError(f"img should be PIL Image or Tensor. Got {type(img)}")
        t_img = pil_to_tensor(img)

1551
1552
1553
1554
1555
1556
1557
1558
1559
    shape = t_img.shape
    shape = (1,) + shape[-2:] + (2,)
    if shape != displacement.shape:
        raise ValueError(f"Argument displacement shape should be {shape}, but given {displacement.shape}")

    # TODO: if image shape is [N1, N2, ..., C, H, W] and
    # displacement is [1, H, W, 2] we need to reshape input image
    # such grid_sampler takes internal code for 4D input

1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
    output = F_t.elastic_transform(
        t_img,
        displacement,
        interpolation=interpolation.value,
        fill=fill,
    )

    if not isinstance(img, torch.Tensor):
        output = to_pil_image(output, mode=img.mode)
    return output