functional.py 66 KB
Newer Older
1
import math
2
3
import numbers
import warnings
4
from enum import Enum
5
from typing import Any, List, Optional, Tuple, Union
6
7
8

import numpy as np
import torch
9
from PIL import Image
10
11
from torch import Tensor

12
13
14
15
16
try:
    import accimage
except ImportError:
    accimage = None

17
from ..utils import _log_api_usage_once
18
from . import functional_pil as F_pil, functional_tensor as F_t
19

20

21
class InterpolationMode(Enum):
22
    """Interpolation modes
23
24
    Available interpolation methods are ``nearest``, ``nearest-exact``, ``bilinear``, ``bicubic``, ``box``, ``hamming``,
    and ``lanczos``.
25
    """
26

27
    NEAREST = "nearest"
28
    NEAREST_EXACT = "nearest-exact"
29
30
31
32
33
34
35
36
37
    BILINEAR = "bilinear"
    BICUBIC = "bicubic"
    # For PIL compatibility
    BOX = "box"
    HAMMING = "hamming"
    LANCZOS = "lanczos"


# TODO: Once torchscript supports Enums with staticmethod
38
39
# this can be put into InterpolationMode as staticmethod
def _interpolation_modes_from_int(i: int) -> InterpolationMode:
40
    inverse_modes_mapping = {
41
42
43
44
45
46
        0: InterpolationMode.NEAREST,
        2: InterpolationMode.BILINEAR,
        3: InterpolationMode.BICUBIC,
        4: InterpolationMode.BOX,
        5: InterpolationMode.HAMMING,
        1: InterpolationMode.LANCZOS,
47
48
49
50
51
    }
    return inverse_modes_mapping[i]


pil_modes_mapping = {
52
53
54
    InterpolationMode.NEAREST: 0,
    InterpolationMode.BILINEAR: 2,
    InterpolationMode.BICUBIC: 3,
55
    InterpolationMode.NEAREST_EXACT: 0,
56
57
58
    InterpolationMode.BOX: 4,
    InterpolationMode.HAMMING: 5,
    InterpolationMode.LANCZOS: 1,
59
60
}

vfdev's avatar
vfdev committed
61
62
63
_is_pil_image = F_pil._is_pil_image


64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
def get_dimensions(img: Tensor) -> List[int]:
    """Returns the dimensions of an image as [channels, height, width].

    Args:
        img (PIL Image or Tensor): The image to be checked.

    Returns:
        List[int]: The image dimensions.
    """
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(get_dimensions)
    if isinstance(img, torch.Tensor):
        return F_t.get_dimensions(img)

    return F_pil.get_dimensions(img)


81
82
83
84
85
86
87
88
def get_image_size(img: Tensor) -> List[int]:
    """Returns the size of an image as [width, height].

    Args:
        img (PIL Image or Tensor): The image to be checked.

    Returns:
        List[int]: The image size.
vfdev's avatar
vfdev committed
89
    """
90
91
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(get_image_size)
vfdev's avatar
vfdev committed
92
    if isinstance(img, torch.Tensor):
93
        return F_t.get_image_size(img)
94

95
    return F_pil.get_image_size(img)
96

vfdev's avatar
vfdev committed
97

98
99
100
101
102
103
104
105
def get_image_num_channels(img: Tensor) -> int:
    """Returns the number of channels of an image.

    Args:
        img (PIL Image or Tensor): The image to be checked.

    Returns:
        int: The number of channels.
106
    """
107
108
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(get_image_num_channels)
109
    if isinstance(img, torch.Tensor):
110
        return F_t.get_image_num_channels(img)
111

112
    return F_pil.get_image_num_channels(img)
113
114


vfdev's avatar
vfdev committed
115
116
@torch.jit.unused
def _is_numpy(img: Any) -> bool:
117
118
119
    return isinstance(img, np.ndarray)


vfdev's avatar
vfdev committed
120
121
@torch.jit.unused
def _is_numpy_image(img: Any) -> bool:
122
    return img.ndim in {2, 3}
123
124


125
def to_tensor(pic) -> Tensor:
126
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.
127
    This function does not support torchscript.
128

129
    See :class:`~torchvision.transforms.ToTensor` for more details.
130
131
132
133
134
135
136

    Args:
        pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
137
138
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(to_tensor)
139
    if not (F_pil._is_pil_image(pic) or _is_numpy(pic)):
140
        raise TypeError(f"pic should be PIL Image or ndarray. Got {type(pic)}")
141

142
    if _is_numpy(pic) and not _is_numpy_image(pic):
143
        raise ValueError(f"pic should be 2/3 dimensional. Got {pic.ndim} dimensions.")
144

145
146
    default_float_dtype = torch.get_default_dtype()

147
148
    if isinstance(pic, np.ndarray):
        # handle numpy array
surgan12's avatar
surgan12 committed
149
150
151
        if pic.ndim == 2:
            pic = pic[:, :, None]

152
        img = torch.from_numpy(pic.transpose((2, 0, 1))).contiguous()
153
        # backward compatibility
154
        if isinstance(img, torch.ByteTensor):
155
            return img.to(dtype=default_float_dtype).div(255)
156
157
        else:
            return img
158
159

    if accimage is not None and isinstance(pic, accimage.Image):
160
        nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.float32)
161
        pic.copyto(nppic)
162
        return torch.from_numpy(nppic).to(dtype=default_float_dtype)
163
164

    # handle PIL Image
165
166
    mode_to_nptype = {"I": np.int32, "I;16": np.int16, "F": np.float32}
    img = torch.from_numpy(np.array(pic, mode_to_nptype.get(pic.mode, np.uint8), copy=True))
167

168
    if pic.mode == "1":
169
        img = 255 * img
170
    img = img.view(pic.size[1], pic.size[0], len(pic.getbands()))
171
    # put it from HWC to CHW format
172
    img = img.permute((2, 0, 1)).contiguous()
173
    if isinstance(img, torch.ByteTensor):
174
        return img.to(dtype=default_float_dtype).div(255)
175
176
177
178
    else:
        return img


179
def pil_to_tensor(pic: Any) -> Tensor:
180
    """Convert a ``PIL Image`` to a tensor of the same type.
181
    This function does not support torchscript.
182

vfdev's avatar
vfdev committed
183
    See :class:`~torchvision.transforms.PILToTensor` for more details.
184

185
186
187
188
    .. note::

        A deep copy of the underlying array is performed.

189
190
191
192
193
194
    Args:
        pic (PIL Image): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
195
196
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(pil_to_tensor)
197
    if not F_pil._is_pil_image(pic):
198
        raise TypeError(f"pic should be PIL Image. Got {type(pic)}")
199
200

    if accimage is not None and isinstance(pic, accimage.Image):
201
202
        # accimage format is always uint8 internally, so always return uint8 here
        nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.uint8)
203
204
205
206
        pic.copyto(nppic)
        return torch.as_tensor(nppic)

    # handle PIL Image
207
    img = torch.as_tensor(np.array(pic, copy=True))
208
209
210
211
212
213
    img = img.view(pic.size[1], pic.size[0], len(pic.getbands()))
    # put it from HWC to CHW format
    img = img.permute((2, 0, 1))
    return img


214
215
def convert_image_dtype(image: torch.Tensor, dtype: torch.dtype = torch.float) -> torch.Tensor:
    """Convert a tensor image to the given ``dtype`` and scale the values accordingly
216
    This function does not support PIL Image.
217
218
219
220
221
222

    Args:
        image (torch.Tensor): Image to be converted
        dtype (torch.dtype): Desired data type of the output

    Returns:
vfdev's avatar
vfdev committed
223
        Tensor: Converted image
224
225
226
227
228
229
230
231
232
233
234
235

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """
236
237
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(convert_image_dtype)
238
    if not isinstance(image, torch.Tensor):
239
        raise TypeError("Input img should be Tensor Image")
240
241

    return F_t.convert_image_dtype(image, dtype)
242
243


244
def to_pil_image(pic, mode=None):
245
    """Convert a tensor or an ndarray to PIL Image. This function does not support torchscript.
246

247
    See :class:`~torchvision.transforms.ToPILImage` for more details.
248
249
250
251
252

    Args:
        pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).

253
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
254
255
256
257

    Returns:
        PIL Image: Image converted to PIL Image.
    """
258
259
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(to_pil_image)
260

261
    if not (isinstance(pic, torch.Tensor) or isinstance(pic, np.ndarray)):
262
        raise TypeError(f"pic should be Tensor or ndarray. Got {type(pic)}.")
263

Varun Agrawal's avatar
Varun Agrawal committed
264
265
    elif isinstance(pic, torch.Tensor):
        if pic.ndimension() not in {2, 3}:
266
            raise ValueError(f"pic should be 2/3 dimensional. Got {pic.ndimension()} dimensions.")
Varun Agrawal's avatar
Varun Agrawal committed
267
268
269

        elif pic.ndimension() == 2:
            # if 2D image, add channel dimension (CHW)
Surgan Jandial's avatar
Surgan Jandial committed
270
            pic = pic.unsqueeze(0)
Varun Agrawal's avatar
Varun Agrawal committed
271

272
273
        # check number of channels
        if pic.shape[-3] > 4:
274
            raise ValueError(f"pic should not have > 4 channels. Got {pic.shape[-3]} channels.")
275

Varun Agrawal's avatar
Varun Agrawal committed
276
277
    elif isinstance(pic, np.ndarray):
        if pic.ndim not in {2, 3}:
278
            raise ValueError(f"pic should be 2/3 dimensional. Got {pic.ndim} dimensions.")
Varun Agrawal's avatar
Varun Agrawal committed
279
280
281
282
283

        elif pic.ndim == 2:
            # if 2D image, add channel dimension (HWC)
            pic = np.expand_dims(pic, 2)

284
285
        # check number of channels
        if pic.shape[-1] > 4:
286
            raise ValueError(f"pic should not have > 4 channels. Got {pic.shape[-1]} channels.")
287

288
    npimg = pic
Varun Agrawal's avatar
Varun Agrawal committed
289
    if isinstance(pic, torch.Tensor):
290
        if pic.is_floating_point() and mode != "F":
291
292
            pic = pic.mul(255).byte()
        npimg = np.transpose(pic.cpu().numpy(), (1, 2, 0))
293
294

    if not isinstance(npimg, np.ndarray):
295
        raise TypeError("Input pic must be a torch.Tensor or NumPy ndarray, not {type(npimg)}")
296
297
298
299
300

    if npimg.shape[2] == 1:
        expected_mode = None
        npimg = npimg[:, :, 0]
        if npimg.dtype == np.uint8:
301
            expected_mode = "L"
vfdev's avatar
vfdev committed
302
        elif npimg.dtype == np.int16:
303
            expected_mode = "I;16"
vfdev's avatar
vfdev committed
304
        elif npimg.dtype == np.int32:
305
            expected_mode = "I"
306
        elif npimg.dtype == np.float32:
307
            expected_mode = "F"
308
        if mode is not None and mode != expected_mode:
309
            raise ValueError(f"Incorrect mode ({mode}) supplied for input type {np.dtype}. Should be {expected_mode}")
310
311
        mode = expected_mode

surgan12's avatar
surgan12 committed
312
    elif npimg.shape[2] == 2:
313
        permitted_2_channel_modes = ["LA"]
surgan12's avatar
surgan12 committed
314
        if mode is not None and mode not in permitted_2_channel_modes:
315
            raise ValueError(f"Only modes {permitted_2_channel_modes} are supported for 2D inputs")
surgan12's avatar
surgan12 committed
316
317

        if mode is None and npimg.dtype == np.uint8:
318
            mode = "LA"
surgan12's avatar
surgan12 committed
319

320
    elif npimg.shape[2] == 4:
321
        permitted_4_channel_modes = ["RGBA", "CMYK", "RGBX"]
322
        if mode is not None and mode not in permitted_4_channel_modes:
323
            raise ValueError(f"Only modes {permitted_4_channel_modes} are supported for 4D inputs")
324
325

        if mode is None and npimg.dtype == np.uint8:
326
            mode = "RGBA"
327
    else:
328
        permitted_3_channel_modes = ["RGB", "YCbCr", "HSV"]
329
        if mode is not None and mode not in permitted_3_channel_modes:
330
            raise ValueError(f"Only modes {permitted_3_channel_modes} are supported for 3D inputs")
331
        if mode is None and npimg.dtype == np.uint8:
332
            mode = "RGB"
333
334

    if mode is None:
335
        raise TypeError(f"Input type {npimg.dtype} is not supported")
336
337
338
339

    return Image.fromarray(npimg, mode=mode)


340
def normalize(tensor: Tensor, mean: List[float], std: List[float], inplace: bool = False) -> Tensor:
341
    """Normalize a float tensor image with mean and standard deviation.
342
    This transform does not support PIL Image.
343

344
    .. note::
surgan12's avatar
surgan12 committed
345
        This transform acts out of place by default, i.e., it does not mutates the input tensor.
346

347
    See :class:`~torchvision.transforms.Normalize` for more details.
348
349

    Args:
350
        tensor (Tensor): Float tensor image of size (C, H, W) or (B, C, H, W) to be normalized.
351
        mean (sequence): Sequence of means for each channel.
352
        std (sequence): Sequence of standard deviations for each channel.
353
        inplace(bool,optional): Bool to make this operation inplace.
354
355
356
357

    Returns:
        Tensor: Normalized Tensor image.
    """
358
359
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(normalize)
360
    if not isinstance(tensor, torch.Tensor):
361
        raise TypeError(f"img should be Tensor Image. Got {type(tensor)}")
362

363
    return F_t.normalize(tensor, mean=mean, std=std, inplace=inplace)
364
365


vfdev's avatar
vfdev committed
366
367
368
def _compute_resized_output_size(
    image_size: Tuple[int, int], size: List[int], max_size: Optional[int] = None
) -> List[int]:
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
    if len(size) == 1:  # specified size only for the smallest edge
        h, w = image_size
        short, long = (w, h) if w <= h else (h, w)
        requested_new_short = size if isinstance(size, int) else size[0]

        new_short, new_long = requested_new_short, int(requested_new_short * long / short)

        if max_size is not None:
            if max_size <= requested_new_short:
                raise ValueError(
                    f"max_size = {max_size} must be strictly greater than the requested "
                    f"size for the smaller edge size = {size}"
                )
            if new_long > max_size:
                new_short, new_long = int(max_size * new_short / new_long), max_size

        new_w, new_h = (new_short, new_long) if w <= h else (new_long, new_short)
    else:  # specified both h and w
        new_w, new_h = size[1], size[0]
    return [new_h, new_w]


391
392
393
394
395
396
397
def resize(
    img: Tensor,
    size: List[int],
    interpolation: InterpolationMode = InterpolationMode.BILINEAR,
    max_size: Optional[int] = None,
    antialias: Optional[bool] = None,
) -> Tensor:
vfdev's avatar
vfdev committed
398
    r"""Resize the input image to the given size.
399
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
400
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
401

402
403
404
405
    .. warning::
        The output image might be different depending on its type: when downsampling, the interpolation of PIL images
        and tensors is slightly different, because PIL applies antialiasing. This may lead to significant differences
        in the performance of a network. Therefore, it is preferable to train and serve a model with the same input
406
407
        types. See also below the ``antialias`` parameter, which can help making the output of PIL images and tensors
        closer.
408

409
    Args:
vfdev's avatar
vfdev committed
410
        img (PIL Image or Tensor): Image to be resized.
411
412
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), the output size will be matched to this. If size is an int,
Vitaliy Chiley's avatar
Vitaliy Chiley committed
413
            the smaller edge of the image will be matched to this number maintaining
414
            the aspect ratio. i.e, if height > width, then image will be rescaled to
vfdev's avatar
vfdev committed
415
            :math:`\left(\text{size} \times \frac{\text{height}}{\text{width}}, \text{size}\right)`.
416
417
418

            .. note::
                In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
419
420
421
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`.
            Default is ``InterpolationMode.BILINEAR``. If input is Tensor, only ``InterpolationMode.NEAREST``,
422
423
            ``InterpolationMode.NEAREST_EXACT``, ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are
            supported.
424
425
            For backward compatibility integer values (e.g. ``PIL.Image[.Resampling].NEAREST``) are still accepted,
            but deprecated since 0.13 and will be removed in 0.15. Please use InterpolationMode enum.
426
427
428
429
        max_size (int, optional): The maximum allowed for the longer edge of
            the resized image: if the longer edge of the image is greater
            than ``max_size`` after being resized according to ``size``, then
            the image is resized again so that the longer edge is equal to
430
            ``max_size``. As a result, ``size`` might be overruled, i.e the
431
432
433
            smaller edge may be shorter than ``size``. This is only supported
            if ``size`` is an int (or a sequence of length 1 in torchscript
            mode).
434
        antialias (bool, optional): antialias flag. If ``img`` is PIL Image, the flag is ignored and anti-alias
435
            is always used. If ``img`` is Tensor, the flag is False by default and can be set to True for
436
437
            ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` modes.
            This can help making the output for PIL images and tensors closer.
438
439

    Returns:
vfdev's avatar
vfdev committed
440
        PIL Image or Tensor: Resized image.
441
    """
442
443
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(resize)
444
445
446
    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
447
448
            "Argument 'interpolation' of type int is deprecated since 0.13 and will be removed in 0.15. "
            "Please use InterpolationMode enum."
449
450
451
        )
        interpolation = _interpolation_modes_from_int(interpolation)

452
453
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
454

455
456
457
458
459
460
461
462
463
464
465
466
467
468
    if isinstance(size, (list, tuple)):
        if len(size) not in [1, 2]:
            raise ValueError(
                f"Size must be an int or a 1 or 2 element tuple/list, not a {len(size)} element tuple/list"
            )
        if max_size is not None and len(size) != 1:
            raise ValueError(
                "max_size should only be passed if size specifies the length of the smaller edge, "
                "i.e. size should be an int or a sequence of length 1 in torchscript mode."
            )

    _, image_height, image_width = get_dimensions(img)
    if isinstance(size, int):
        size = [size]
vfdev's avatar
vfdev committed
469
    output_size = _compute_resized_output_size((image_height, image_width), size, max_size)
470
471
472
473

    if (image_height, image_width) == output_size:
        return img

vfdev's avatar
vfdev committed
474
    if not isinstance(img, torch.Tensor):
475
        if antialias is not None and not antialias:
476
            warnings.warn("Anti-alias option is always applied for PIL Image input. Argument antialias is ignored.")
477
        pil_interpolation = pil_modes_mapping[interpolation]
478
        return F_pil.resize(img, size=output_size, interpolation=pil_interpolation)
vfdev's avatar
vfdev committed
479

480
    return F_t.resize(img, size=output_size, interpolation=interpolation.value, antialias=antialias)
481
482


483
def pad(img: Tensor, padding: List[int], fill: Union[int, float] = 0, padding_mode: str = "constant") -> Tensor:
484
    r"""Pad the given image on all sides with the given "pad" value.
485
    If the image is torch Tensor, it is expected
486
487
488
    to have [..., H, W] shape, where ... means at most 2 leading dimensions for mode reflect and symmetric,
    at most 3 leading dimensions for mode edge,
    and an arbitrary number of leading dimensions for mode constant
489
490

    Args:
491
        img (PIL Image or Tensor): Image to be padded.
492
493
494
        padding (int or sequence): Padding on each border. If a single int is provided this
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
495
            this is the padding for the left, top, right and bottom borders respectively.
496
497
498
499

            .. note::
                In torchscript mode padding as single int is not supported, use a sequence of
                length 1: ``[padding, ]``.
500
        fill (number or tuple): Pixel fill value for constant fill. Default is 0.
501
502
503
            If a tuple of length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant.
            Only number is supported for torch Tensor.
504
            Only int or tuple value is supported for PIL Image.
505
506
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
            Default is constant.
507
508
509

            - constant: pads with a constant value, this value is specified with fill

510
511
            - edge: pads with the last value at the edge of the image.
              If input a 5D torch Tensor, the last 3 dimensions will be padded instead of the last 2
512

513
514
515
            - reflect: pads with reflection of image without repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
              will result in [3, 2, 1, 2, 3, 4, 3, 2]
516

517
518
519
            - symmetric: pads with reflection of image repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
              will result in [2, 1, 1, 2, 3, 4, 4, 3]
520
521

    Returns:
522
        PIL Image or Tensor: Padded image.
523
    """
524
525
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(pad)
526
527
    if not isinstance(img, torch.Tensor):
        return F_pil.pad(img, padding=padding, fill=fill, padding_mode=padding_mode)
528

529
    return F_t.pad(img, padding=padding, fill=fill, padding_mode=padding_mode)
530
531


vfdev's avatar
vfdev committed
532
533
def crop(img: Tensor, top: int, left: int, height: int, width: int) -> Tensor:
    """Crop the given image at specified location and output size.
534
    If the image is torch Tensor, it is expected
535
536
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
    If image size is smaller than output size along any edge, image is padded with 0 and then cropped.
537

538
    Args:
vfdev's avatar
vfdev committed
539
        img (PIL Image or Tensor): Image to be cropped. (0,0) denotes the top left corner of the image.
540
541
542
543
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
544

545
    Returns:
vfdev's avatar
vfdev committed
546
        PIL Image or Tensor: Cropped image.
547
548
    """

549
550
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(crop)
vfdev's avatar
vfdev committed
551
552
    if not isinstance(img, torch.Tensor):
        return F_pil.crop(img, top, left, height, width)
553

vfdev's avatar
vfdev committed
554
    return F_t.crop(img, top, left, height, width)
555

vfdev's avatar
vfdev committed
556
557
558

def center_crop(img: Tensor, output_size: List[int]) -> Tensor:
    """Crops the given image at the center.
559
    If the image is torch Tensor, it is expected
560
561
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
    If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.
562

563
    Args:
vfdev's avatar
vfdev committed
564
        img (PIL Image or Tensor): Image to be cropped.
565
        output_size (sequence or int): (height, width) of the crop box. If int or sequence with single int,
vfdev's avatar
vfdev committed
566
567
            it is used for both directions.

568
    Returns:
vfdev's avatar
vfdev committed
569
        PIL Image or Tensor: Cropped image.
570
    """
571
572
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(center_crop)
573
574
    if isinstance(output_size, numbers.Number):
        output_size = (int(output_size), int(output_size))
vfdev's avatar
vfdev committed
575
576
577
    elif isinstance(output_size, (tuple, list)) and len(output_size) == 1:
        output_size = (output_size[0], output_size[0])

578
    _, image_height, image_width = get_dimensions(img)
579
    crop_height, crop_width = output_size
vfdev's avatar
vfdev committed
580

581
582
583
584
585
586
587
588
    if crop_width > image_width or crop_height > image_height:
        padding_ltrb = [
            (crop_width - image_width) // 2 if crop_width > image_width else 0,
            (crop_height - image_height) // 2 if crop_height > image_height else 0,
            (crop_width - image_width + 1) // 2 if crop_width > image_width else 0,
            (crop_height - image_height + 1) // 2 if crop_height > image_height else 0,
        ]
        img = pad(img, padding_ltrb, fill=0)  # PIL uses fill value 0
589
        _, image_height, image_width = get_dimensions(img)
590
591
592
        if crop_width == image_width and crop_height == image_height:
            return img

593
594
    crop_top = int(round((image_height - crop_height) / 2.0))
    crop_left = int(round((image_width - crop_width) / 2.0))
595
    return crop(img, crop_top, crop_left, crop_height, crop_width)
596
597


598
def resized_crop(
599
600
601
602
603
604
605
    img: Tensor,
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
    interpolation: InterpolationMode = InterpolationMode.BILINEAR,
606
    antialias: Optional[bool] = None,
607
608
) -> Tensor:
    """Crop the given image and resize it to desired size.
609
    If the image is torch Tensor, it is expected
610
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
611

612
    Notably used in :class:`~torchvision.transforms.RandomResizedCrop`.
613
614

    Args:
615
        img (PIL Image or Tensor): Image to be cropped. (0,0) denotes the top left corner of the image.
616
617
618
619
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
620
        size (sequence or int): Desired output size. Same semantics as ``resize``.
621
622
623
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`.
            Default is ``InterpolationMode.BILINEAR``. If input is Tensor, only ``InterpolationMode.NEAREST``,
624
625
            ``InterpolationMode.NEAREST_EXACT``, ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are
            supported.
626
627
            For backward compatibility integer values (e.g. ``PIL.Image[.Resampling].NEAREST``) are still accepted,
            but deprecated since 0.13 and will be removed in 0.15. Please use InterpolationMode enum.
628
629
630
631
        antialias (bool, optional): antialias flag. If ``img`` is PIL Image, the flag is ignored and anti-alias
            is always used. If ``img`` is Tensor, the flag is False by default and can be set to True for
            ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` modes.
            This can help making the output for PIL images and tensors closer.
632
    Returns:
633
        PIL Image or Tensor: Cropped image.
634
    """
635
636
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(resized_crop)
637
    img = crop(img, top, left, height, width)
638
    img = resize(img, size, interpolation, antialias=antialias)
639
640
641
    return img


642
def hflip(img: Tensor) -> Tensor:
643
    """Horizontally flip the given image.
644
645

    Args:
vfdev's avatar
vfdev committed
646
        img (PIL Image or Tensor): Image to be flipped. If img
647
            is a Tensor, it is expected to be in [..., H, W] format,
648
            where ... means it can have an arbitrary number of leading
649
            dimensions.
650
651

    Returns:
vfdev's avatar
vfdev committed
652
        PIL Image or Tensor:  Horizontally flipped image.
653
    """
654
655
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(hflip)
656
657
    if not isinstance(img, torch.Tensor):
        return F_pil.hflip(img)
658

659
    return F_t.hflip(img)
660
661


662
def _get_perspective_coeffs(startpoints: List[List[int]], endpoints: List[List[int]]) -> List[float]:
663
664
    """Helper function to get the coefficients (a, b, c, d, e, f, g, h) for the perspective transforms.

Vitaliy Chiley's avatar
Vitaliy Chiley committed
665
    In Perspective Transform each pixel (x, y) in the original image gets transformed as,
666
667
668
     (x, y) -> ( (ax + by + c) / (gx + hy + 1), (dx + ey + f) / (gx + hy + 1) )

    Args:
669
670
671
672
673
        startpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the original image.
        endpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the transformed image.

674
675
676
    Returns:
        octuple (a, b, c, d, e, f, g, h) for transforming each pixel.
    """
677
678
679
680
681
    a_matrix = torch.zeros(2 * len(startpoints), 8, dtype=torch.float)

    for i, (p1, p2) in enumerate(zip(endpoints, startpoints)):
        a_matrix[2 * i, :] = torch.tensor([p1[0], p1[1], 1, 0, 0, 0, -p2[0] * p1[0], -p2[0] * p1[1]])
        a_matrix[2 * i + 1, :] = torch.tensor([0, 0, 0, p1[0], p1[1], 1, -p2[1] * p1[0], -p2[1] * p1[1]])
682

683
    b_matrix = torch.tensor(startpoints, dtype=torch.float).view(8)
684
    res = torch.linalg.lstsq(a_matrix, b_matrix, driver="gels").solution
685

686
    output: List[float] = res.tolist()
687
    return output
688
689


690
def perspective(
691
692
693
694
695
    img: Tensor,
    startpoints: List[List[int]],
    endpoints: List[List[int]],
    interpolation: InterpolationMode = InterpolationMode.BILINEAR,
    fill: Optional[List[float]] = None,
696
697
) -> Tensor:
    """Perform perspective transform of the given image.
698
    If the image is torch Tensor, it is expected
699
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
700
701

    Args:
702
703
704
705
706
        img (PIL Image or Tensor): Image to be transformed.
        startpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the original image.
        endpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the transformed image.
707
708
709
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
710
711
            For backward compatibility integer values (e.g. ``PIL.Image[.Resampling].NEAREST``) are still accepted,
            but deprecated since 0.13 and will be removed in 0.15. Please use InterpolationMode enum.
712
713
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
714
715
716
717

            .. note::
                In torchscript mode single int/float value is not supported, please use a sequence
                of length 1: ``[value, ]``.
718

719
    Returns:
720
        PIL Image or Tensor: transformed Image.
721
    """
722
723
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(perspective)
724

725
    coeffs = _get_perspective_coeffs(startpoints, endpoints)
726

727
728
729
    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
730
731
            "Argument 'interpolation' of type int is deprecated since 0.13 and will be removed in 0.15. "
            "Please use InterpolationMode enum."
732
733
734
        )
        interpolation = _interpolation_modes_from_int(interpolation)

735
736
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
737

738
    if not isinstance(img, torch.Tensor):
739
740
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.perspective(img, coeffs, interpolation=pil_interpolation, fill=fill)
741

742
    return F_t.perspective(img, coeffs, interpolation=interpolation.value, fill=fill)
743
744


745
def vflip(img: Tensor) -> Tensor:
746
    """Vertically flip the given image.
747
748

    Args:
vfdev's avatar
vfdev committed
749
        img (PIL Image or Tensor): Image to be flipped. If img
750
            is a Tensor, it is expected to be in [..., H, W] format,
751
            where ... means it can have an arbitrary number of leading
752
            dimensions.
753
754

    Returns:
755
        PIL Image or Tensor:  Vertically flipped image.
756
    """
757
758
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(vflip)
759
760
    if not isinstance(img, torch.Tensor):
        return F_pil.vflip(img)
761

762
    return F_t.vflip(img)
763
764


vfdev's avatar
vfdev committed
765
766
def five_crop(img: Tensor, size: List[int]) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]:
    """Crop the given image into four corners and the central crop.
767
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
768
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
769
770
771
772
773
774

    .. Note::
        This transform returns a tuple of images and there may be a
        mismatch in the number of inputs and targets your ``Dataset`` returns.

    Args:
vfdev's avatar
vfdev committed
775
776
777
        img (PIL Image or Tensor): Image to be cropped.
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
778
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
779

780
    Returns:
781
       tuple: tuple (tl, tr, bl, br, center)
782
       Corresponding top left, top right, bottom left, bottom right and center crop.
783
    """
784
785
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(five_crop)
786
787
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
vfdev's avatar
vfdev committed
788
789
    elif isinstance(size, (tuple, list)) and len(size) == 1:
        size = (size[0], size[0])
790

vfdev's avatar
vfdev committed
791
792
793
    if len(size) != 2:
        raise ValueError("Please provide only two dimensions (h, w) for size.")

794
    _, image_height, image_width = get_dimensions(img)
795
796
797
798
799
    crop_height, crop_width = size
    if crop_width > image_width or crop_height > image_height:
        msg = "Requested crop size {} is bigger than input size {}"
        raise ValueError(msg.format(size, (image_height, image_width)))

vfdev's avatar
vfdev committed
800
801
802
803
804
805
806
807
    tl = crop(img, 0, 0, crop_height, crop_width)
    tr = crop(img, 0, image_width - crop_width, crop_height, crop_width)
    bl = crop(img, image_height - crop_height, 0, crop_height, crop_width)
    br = crop(img, image_height - crop_height, image_width - crop_width, crop_height, crop_width)

    center = center_crop(img, [crop_height, crop_width])

    return tl, tr, bl, br, center
808
809


vfdev's avatar
vfdev committed
810
811
812
def ten_crop(img: Tensor, size: List[int], vertical_flip: bool = False) -> List[Tensor]:
    """Generate ten cropped images from the given image.
    Crop the given image into four corners and the central crop plus the
813
    flipped version of these (horizontal flipping is used by default).
814
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
815
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
816
817
818
819
820

    .. Note::
        This transform returns a tuple of images and there may be a
        mismatch in the number of inputs and targets your ``Dataset`` returns.

821
    Args:
vfdev's avatar
vfdev committed
822
        img (PIL Image or Tensor): Image to be cropped.
823
        size (sequence or int): Desired output size of the crop. If size is an
824
            int instead of sequence like (h, w), a square crop (size, size) is
825
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
826
        vertical_flip (bool): Use vertical flipping instead of horizontal
827
828

    Returns:
829
        tuple: tuple (tl, tr, bl, br, center, tl_flip, tr_flip, bl_flip, br_flip, center_flip)
830
831
        Corresponding top left, top right, bottom left, bottom right and
        center crop and same for the flipped image.
832
    """
833
834
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(ten_crop)
835
836
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
vfdev's avatar
vfdev committed
837
838
839
840
841
    elif isinstance(size, (tuple, list)) and len(size) == 1:
        size = (size[0], size[0])

    if len(size) != 2:
        raise ValueError("Please provide only two dimensions (h, w) for size.")
842
843
844
845
846
847
848
849
850
851
852
853

    first_five = five_crop(img, size)

    if vertical_flip:
        img = vflip(img)
    else:
        img = hflip(img)

    second_five = five_crop(img, size)
    return first_five + second_five


854
def adjust_brightness(img: Tensor, brightness_factor: float) -> Tensor:
855
    """Adjust brightness of an image.
856
857

    Args:
vfdev's avatar
vfdev committed
858
        img (PIL Image or Tensor): Image to be adjusted.
859
860
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
861
862
863
864
865
        brightness_factor (float):  How much to adjust the brightness. Can be
            any non negative number. 0 gives a black image, 1 gives the
            original image while 2 increases the brightness by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
866
        PIL Image or Tensor: Brightness adjusted image.
867
    """
868
869
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(adjust_brightness)
870
871
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_brightness(img, brightness_factor)
872

873
    return F_t.adjust_brightness(img, brightness_factor)
874
875


876
def adjust_contrast(img: Tensor, contrast_factor: float) -> Tensor:
877
    """Adjust contrast of an image.
878
879

    Args:
vfdev's avatar
vfdev committed
880
        img (PIL Image or Tensor): Image to be adjusted.
881
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
882
            where ... means it can have an arbitrary number of leading dimensions.
883
884
885
886
887
        contrast_factor (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives a solid gray image, 1 gives the
            original image while 2 increases the contrast by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
888
        PIL Image or Tensor: Contrast adjusted image.
889
    """
890
891
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(adjust_contrast)
892
893
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_contrast(img, contrast_factor)
894

895
    return F_t.adjust_contrast(img, contrast_factor)
896
897


898
def adjust_saturation(img: Tensor, saturation_factor: float) -> Tensor:
899
900
901
    """Adjust color saturation of an image.

    Args:
vfdev's avatar
vfdev committed
902
        img (PIL Image or Tensor): Image to be adjusted.
903
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
904
            where ... means it can have an arbitrary number of leading dimensions.
905
906
907
908
909
        saturation_factor (float):  How much to adjust the saturation. 0 will
            give a black and white image, 1 will give the original image while
            2 will enhance the saturation by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
910
        PIL Image or Tensor: Saturation adjusted image.
911
    """
912
913
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(adjust_saturation)
914
915
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_saturation(img, saturation_factor)
916

917
    return F_t.adjust_saturation(img, saturation_factor)
918
919


920
def adjust_hue(img: Tensor, hue_factor: float) -> Tensor:
921
922
923
924
925
926
927
928
929
    """Adjust hue of an image.

    The image hue is adjusted by converting the image to HSV and
    cyclically shifting the intensities in the hue channel (H).
    The image is then converted back to original image mode.

    `hue_factor` is the amount of shift in H channel and must be in the
    interval `[-0.5, 0.5]`.

930
931
932
    See `Hue`_ for more details.

    .. _Hue: https://en.wikipedia.org/wiki/Hue
933
934

    Args:
935
        img (PIL Image or Tensor): Image to be adjusted.
936
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
937
            where ... means it can have an arbitrary number of leading dimensions.
938
            If img is PIL Image mode "1", "I", "F" and modes with transparency (alpha channel) are not supported.
939
940
941
            Note: the pixel values of the input image has to be non-negative for conversion to HSV space;
            thus it does not work if you normalize your image to an interval with negative values,
            or use an interpolation that generates negative values before using this function.
942
943
944
945
946
947
948
        hue_factor (float):  How much to shift the hue channel. Should be in
            [-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
            HSV space in positive and negative direction respectively.
            0 means no shift. Therefore, both -0.5 and 0.5 will give an image
            with complementary colors while 0 gives the original image.

    Returns:
949
        PIL Image or Tensor: Hue adjusted image.
950
    """
951
952
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(adjust_hue)
953
954
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_hue(img, hue_factor)
955

956
    return F_t.adjust_hue(img, hue_factor)
957
958


959
def adjust_gamma(img: Tensor, gamma: float, gain: float = 1) -> Tensor:
960
    r"""Perform gamma correction on an image.
961
962
963
964

    Also known as Power Law Transform. Intensities in RGB mode are adjusted
    based on the following equation:

965
966
967
968
    .. math::
        I_{\text{out}} = 255 \times \text{gain} \times \left(\frac{I_{\text{in}}}{255}\right)^{\gamma}

    See `Gamma Correction`_ for more details.
969

970
    .. _Gamma Correction: https://en.wikipedia.org/wiki/Gamma_correction
971
972

    Args:
973
        img (PIL Image or Tensor): PIL Image to be adjusted.
974
975
976
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, modes with transparency (alpha channel) are not supported.
977
978
979
        gamma (float): Non negative real number, same as :math:`\gamma` in the equation.
            gamma larger than 1 make the shadows darker,
            while gamma smaller than 1 make dark regions lighter.
980
        gain (float): The constant multiplier.
981
982
    Returns:
        PIL Image or Tensor: Gamma correction adjusted image.
983
    """
984
985
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(adjust_gamma)
986
987
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_gamma(img, gamma, gain)
988

989
    return F_t.adjust_gamma(img, gamma, gain)
990
991


vfdev's avatar
vfdev committed
992
def _get_inverse_affine_matrix(
993
    center: List[float], angle: float, translate: List[float], scale: float, shear: List[float], inverted: bool = True
vfdev's avatar
vfdev committed
994
) -> List[float]:
995
996
    # Helper method to compute inverse matrix for affine transformation

997
998
999
    # Pillow requires inverse affine transformation matrix:
    # Affine matrix is : M = T * C * RotateScaleShear * C^-1
    #
1000
1001
    # where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1]
    #       C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1]
1002
1003
1004
    #       RotateScaleShear is rotation with scale and shear matrix
    #
    #       RotateScaleShear(a, s, (sx, sy)) =
1005
    #       = R(a) * S(s) * SHy(sy) * SHx(sx)
1006
1007
    #       = [ s*cos(a - sy)/cos(sy), s*(-cos(a - sy)*tan(sx)/cos(sy) - sin(a)), 0 ]
    #         [ s*sin(a + sy)/cos(sy), s*(-sin(a - sy)*tan(sx)/cos(sy) + cos(a)), 0 ]
1008
1009
1010
1011
1012
    #         [ 0                    , 0                                      , 1 ]
    # where R is a rotation matrix, S is a scaling matrix, and SHx and SHy are the shears:
    # SHx(s) = [1, -tan(s)] and SHy(s) = [1      , 0]
    #          [0, 1      ]              [-tan(s), 1]
    #
1013
    # Thus, the inverse is M^-1 = C * RotateScaleShear^-1 * C^-1 * T^-1
1014

1015
    rot = math.radians(angle)
1016
1017
    sx = math.radians(shear[0])
    sy = math.radians(shear[1])
1018
1019
1020
1021
1022

    cx, cy = center
    tx, ty = translate

    # RSS without scaling
vfdev's avatar
vfdev committed
1023
1024
1025
1026
    a = math.cos(rot - sy) / math.cos(sy)
    b = -math.cos(rot - sy) * math.tan(sx) / math.cos(sy) - math.sin(rot)
    c = math.sin(rot - sy) / math.cos(sy)
    d = -math.sin(rot - sy) * math.tan(sx) / math.cos(sy) + math.cos(rot)
1027

1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
    if inverted:
        # Inverted rotation matrix with scale and shear
        # det([[a, b], [c, d]]) == 1, since det(rotation) = 1 and det(shear) = 1
        matrix = [d, -b, 0.0, -c, a, 0.0]
        matrix = [x / scale for x in matrix]
        # Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
        matrix[2] += matrix[0] * (-cx - tx) + matrix[1] * (-cy - ty)
        matrix[5] += matrix[3] * (-cx - tx) + matrix[4] * (-cy - ty)
        # Apply center translation: C * RSS^-1 * C^-1 * T^-1
        matrix[2] += cx
        matrix[5] += cy
    else:
        matrix = [a, b, 0.0, c, d, 0.0]
        matrix = [x * scale for x in matrix]
        # Apply inverse of center translation: RSS * C^-1
        matrix[2] += matrix[0] * (-cx) + matrix[1] * (-cy)
        matrix[5] += matrix[3] * (-cx) + matrix[4] * (-cy)
        # Apply translation and center : T * C * RSS * C^-1
        matrix[2] += cx + tx
        matrix[5] += cy + ty
1048

vfdev's avatar
vfdev committed
1049
    return matrix
1050

vfdev's avatar
vfdev committed
1051

vfdev's avatar
vfdev committed
1052
def rotate(
1053
1054
1055
1056
1057
1058
    img: Tensor,
    angle: float,
    interpolation: InterpolationMode = InterpolationMode.NEAREST,
    expand: bool = False,
    center: Optional[List[int]] = None,
    fill: Optional[List[float]] = None,
vfdev's avatar
vfdev committed
1059
1060
) -> Tensor:
    """Rotate the image by angle.
1061
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
1062
1063
1064
1065
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.

    Args:
        img (PIL Image or Tensor): image to be rotated.
1066
        angle (number): rotation angle value in degrees, counter-clockwise.
1067
1068
1069
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
1070
1071
            For backward compatibility integer values (e.g. ``PIL.Image[.Resampling].NEAREST``) are still accepted,
            but deprecated since 0.13 and will be removed in 0.15. Please use InterpolationMode enum.
vfdev's avatar
vfdev committed
1072
1073
1074
1075
        expand (bool, optional): Optional expansion flag.
            If true, expands the output image to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
1076
        center (sequence, optional): Optional center of rotation. Origin is the upper left corner.
vfdev's avatar
vfdev committed
1077
            Default is the center of the image.
1078
1079
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
1080
1081
1082
1083

            .. note::
                In torchscript mode single int/float value is not supported, please use a sequence
                of length 1: ``[value, ]``.
vfdev's avatar
vfdev committed
1084
1085
1086
1087
1088
1089
    Returns:
        PIL Image or Tensor: Rotated image.

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

    """
1090
1091
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(rotate)
1092
1093
1094
1095

    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
1096
1097
            "Argument 'interpolation' of type int is deprecated since 0.13 and will be removed in 0.15. "
            "Please use InterpolationMode enum."
1098
1099
1100
        )
        interpolation = _interpolation_modes_from_int(interpolation)

vfdev's avatar
vfdev committed
1101
1102
1103
1104
1105
1106
    if not isinstance(angle, (int, float)):
        raise TypeError("Argument angle should be int or float")

    if center is not None and not isinstance(center, (list, tuple)):
        raise TypeError("Argument center should be a sequence")

1107
1108
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
1109

vfdev's avatar
vfdev committed
1110
    if not isinstance(img, torch.Tensor):
1111
1112
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.rotate(img, angle=angle, interpolation=pil_interpolation, expand=expand, center=center, fill=fill)
vfdev's avatar
vfdev committed
1113
1114
1115

    center_f = [0.0, 0.0]
    if center is not None:
1116
        _, height, width = get_dimensions(img)
1117
        # Center values should be in pixel coordinates but translated such that (0, 0) corresponds to image center.
1118
        center_f = [1.0 * (c - s * 0.5) for c, s in zip(center, [width, height])]
1119

vfdev's avatar
vfdev committed
1120
1121
1122
    # due to current incoherence of rotation angle direction between affine and rotate implementations
    # we need to set -angle.
    matrix = _get_inverse_affine_matrix(center_f, -angle, [0.0, 0.0], 1.0, [0.0, 0.0])
1123
    return F_t.rotate(img, matrix=matrix, interpolation=interpolation.value, expand=expand, fill=fill)
vfdev's avatar
vfdev committed
1124
1125


vfdev's avatar
vfdev committed
1126
def affine(
1127
1128
1129
1130
1131
1132
1133
    img: Tensor,
    angle: float,
    translate: List[int],
    scale: float,
    shear: List[float],
    interpolation: InterpolationMode = InterpolationMode.NEAREST,
    fill: Optional[List[float]] = None,
1134
    center: Optional[List[int]] = None,
vfdev's avatar
vfdev committed
1135
1136
) -> Tensor:
    """Apply affine transformation on the image keeping image center invariant.
1137
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
1138
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1139
1140

    Args:
vfdev's avatar
vfdev committed
1141
        img (PIL Image or Tensor): image to transform.
1142
1143
        angle (number): rotation angle in degrees between -180 and 180, clockwise direction.
        translate (sequence of integers): horizontal and vertical translations (post-rotation translation)
1144
        scale (float): overall scale
1145
1146
        shear (float or sequence): shear angle value in degrees between -180 to 180, clockwise direction.
            If a sequence is specified, the first value corresponds to a shear parallel to the x axis, while
vfdev's avatar
vfdev committed
1147
            the second value corresponds to a shear parallel to the y axis.
1148
1149
1150
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
1151
1152
            For backward compatibility integer values (e.g. ``PIL.Image[.Resampling].NEAREST``) are still accepted,
            but deprecated since 0.13 and will be removed in 0.15. Please use InterpolationMode enum.
1153
1154
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
1155
1156
1157
1158

            .. note::
                In torchscript mode single int/float value is not supported, please use a sequence
                of length 1: ``[value, ]``.
1159
1160
        center (sequence, optional): Optional center of rotation. Origin is the upper left corner.
            Default is the center of the image.
vfdev's avatar
vfdev committed
1161
1162
1163

    Returns:
        PIL Image or Tensor: Transformed image.
1164
    """
1165
1166
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(affine)
1167
1168
1169
1170

    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
1171
1172
            "Argument 'interpolation' of type int is deprecated since 0.13 and will be removed in 0.15. "
            "Please use InterpolationMode enum."
1173
1174
1175
        )
        interpolation = _interpolation_modes_from_int(interpolation)

vfdev's avatar
vfdev committed
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
    if not isinstance(angle, (int, float)):
        raise TypeError("Argument angle should be int or float")

    if not isinstance(translate, (list, tuple)):
        raise TypeError("Argument translate should be a sequence")

    if len(translate) != 2:
        raise ValueError("Argument translate should be a sequence of length 2")

    if scale <= 0.0:
        raise ValueError("Argument scale should be positive")

    if not isinstance(shear, (numbers.Number, (list, tuple))):
        raise TypeError("Shear should be either a single value or a sequence of two values")

1191
1192
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
1193

vfdev's avatar
vfdev committed
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
    if isinstance(angle, int):
        angle = float(angle)

    if isinstance(translate, tuple):
        translate = list(translate)

    if isinstance(shear, numbers.Number):
        shear = [shear, 0.0]

    if isinstance(shear, tuple):
        shear = list(shear)

    if len(shear) == 1:
        shear = [shear[0], shear[0]]

    if len(shear) != 2:
1210
        raise ValueError(f"Shear should be a sequence containing two values. Got {shear}")
vfdev's avatar
vfdev committed
1211

1212
1213
1214
    if center is not None and not isinstance(center, (list, tuple)):
        raise TypeError("Argument center should be a sequence")

1215
    _, height, width = get_dimensions(img)
vfdev's avatar
vfdev committed
1216
    if not isinstance(img, torch.Tensor):
1217
        # center = (width * 0.5 + 0.5, height * 0.5 + 0.5)
vfdev's avatar
vfdev committed
1218
1219
        # it is visually better to estimate the center without 0.5 offset
        # otherwise image rotated by 90 degrees is shifted vs output image of torch.rot90 or F_t.affine
1220
        if center is None:
1221
            center = [width * 0.5, height * 0.5]
vfdev's avatar
vfdev committed
1222
        matrix = _get_inverse_affine_matrix(center, angle, translate, scale, shear)
1223
1224
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.affine(img, matrix=matrix, interpolation=pil_interpolation, fill=fill)
1225

1226
1227
    center_f = [0.0, 0.0]
    if center is not None:
1228
        _, height, width = get_dimensions(img)
1229
        # Center values should be in pixel coordinates but translated such that (0, 0) corresponds to image center.
1230
        center_f = [1.0 * (c - s * 0.5) for c, s in zip(center, [width, height])]
1231

1232
    translate_f = [1.0 * t for t in translate]
1233
    matrix = _get_inverse_affine_matrix(center_f, angle, translate_f, scale, shear)
1234
    return F_t.affine(img, matrix=matrix, interpolation=interpolation.value, fill=fill)
1235
1236


1237
@torch.jit.unused
1238
def to_grayscale(img, num_output_channels=1):
1239
    """Convert PIL image of any mode (RGB, HSV, LAB, etc) to grayscale version of image.
1240
    This transform does not support torch Tensor.
1241
1242

    Args:
1243
        img (PIL Image): PIL Image to be converted to grayscale.
1244
        num_output_channels (int): number of channels of the output image. Value can be 1 or 3. Default is 1.
1245
1246

    Returns:
1247
1248
        PIL Image: Grayscale version of the image.

1249
1250
        - if num_output_channels = 1 : returned image is single channel
        - if num_output_channels = 3 : returned image is 3 channel with r = g = b
1251
    """
1252
1253
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(to_grayscale)
1254
1255
    if isinstance(img, Image.Image):
        return F_pil.to_grayscale(img, num_output_channels)
1256

1257
1258
1259
1260
1261
    raise TypeError("Input should be PIL Image")


def rgb_to_grayscale(img: Tensor, num_output_channels: int = 1) -> Tensor:
    """Convert RGB image to grayscale version of image.
1262
1263
    If the image is torch Tensor, it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275

    Note:
        Please, note that this method supports only RGB images as input. For inputs in other color spaces,
        please, consider using meth:`~torchvision.transforms.functional.to_grayscale` with PIL Image.

    Args:
        img (PIL Image or Tensor): RGB Image to be converted to grayscale.
        num_output_channels (int): number of channels of the output image. Value can be 1 or 3. Default, 1.

    Returns:
        PIL Image or Tensor: Grayscale version of the image.

1276
1277
        - if num_output_channels = 1 : returned image is single channel
        - if num_output_channels = 3 : returned image is 3 channel with r = g = b
1278
    """
1279
1280
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(rgb_to_grayscale)
1281
1282
1283
1284
    if not isinstance(img, torch.Tensor):
        return F_pil.to_grayscale(img, num_output_channels)

    return F_t.rgb_to_grayscale(img, num_output_channels)
1285
1286


1287
def erase(img: Tensor, i: int, j: int, h: int, w: int, v: Tensor, inplace: bool = False) -> Tensor:
1288
    """Erase the input Tensor Image with given value.
1289
    This transform does not support PIL Image.
1290
1291
1292
1293
1294
1295
1296
1297

    Args:
        img (Tensor Image): Tensor image of size (C, H, W) to be erased
        i (int): i in (i,j) i.e coordinates of the upper left corner.
        j (int): j in (i,j) i.e coordinates of the upper left corner.
        h (int): Height of the erased region.
        w (int): Width of the erased region.
        v: Erasing value.
Zhun Zhong's avatar
Zhun Zhong committed
1298
        inplace(bool, optional): For in-place operations. By default is set False.
1299
1300
1301
1302

    Returns:
        Tensor Image: Erased image.
    """
1303
1304
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(erase)
1305
    if not isinstance(img, torch.Tensor):
1306
        raise TypeError(f"img should be Tensor Image. Got {type(img)}")
1307

1308
    return F_t.erase(img, i, j, h, w, v, inplace=inplace)
1309
1310
1311


def gaussian_blur(img: Tensor, kernel_size: List[int], sigma: Optional[List[float]] = None) -> Tensor:
1312
1313
1314
    """Performs Gaussian blurring on the image by given kernel.
    If the image is torch Tensor, it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1315
1316
1317
1318
1319

    Args:
        img (PIL Image or Tensor): Image to be blurred
        kernel_size (sequence of ints or int): Gaussian kernel size. Can be a sequence of integers
            like ``(kx, ky)`` or a single integer for square kernels.
1320
1321
1322
1323

            .. note::
                In torchscript mode kernel_size as single int is not supported, use a sequence of
                length 1: ``[ksize, ]``.
1324
1325
1326
1327
        sigma (sequence of floats or float, optional): Gaussian kernel standard deviation. Can be a
            sequence of floats like ``(sigma_x, sigma_y)`` or a single float to define the
            same sigma in both X/Y directions. If None, then it is computed using
            ``kernel_size`` as ``sigma = 0.3 * ((kernel_size - 1) * 0.5 - 1) + 0.8``.
1328
1329
1330
1331
1332
            Default, None.

            .. note::
                In torchscript mode sigma as single float is
                not supported, use a sequence of length 1: ``[sigma, ]``.
1333
1334
1335
1336

    Returns:
        PIL Image or Tensor: Gaussian Blurred version of the image.
    """
1337
1338
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(gaussian_blur)
1339
    if not isinstance(kernel_size, (int, list, tuple)):
1340
        raise TypeError(f"kernel_size should be int or a sequence of integers. Got {type(kernel_size)}")
1341
1342
1343
    if isinstance(kernel_size, int):
        kernel_size = [kernel_size, kernel_size]
    if len(kernel_size) != 2:
1344
        raise ValueError(f"If kernel_size is a sequence its length should be 2. Got {len(kernel_size)}")
1345
1346
    for ksize in kernel_size:
        if ksize % 2 == 0 or ksize < 0:
1347
            raise ValueError(f"kernel_size should have odd and positive integers. Got {kernel_size}")
1348
1349
1350
1351
1352

    if sigma is None:
        sigma = [ksize * 0.15 + 0.35 for ksize in kernel_size]

    if sigma is not None and not isinstance(sigma, (int, float, list, tuple)):
1353
        raise TypeError(f"sigma should be either float or sequence of floats. Got {type(sigma)}")
1354
1355
1356
1357
1358
    if isinstance(sigma, (int, float)):
        sigma = [float(sigma), float(sigma)]
    if isinstance(sigma, (list, tuple)) and len(sigma) == 1:
        sigma = [sigma[0], sigma[0]]
    if len(sigma) != 2:
1359
        raise ValueError(f"If sigma is a sequence, its length should be 2. Got {len(sigma)}")
1360
    for s in sigma:
1361
        if s <= 0.0:
1362
            raise ValueError(f"sigma should have positive values. Got {sigma}")
1363
1364
1365
1366

    t_img = img
    if not isinstance(img, torch.Tensor):
        if not F_pil._is_pil_image(img):
1367
            raise TypeError(f"img should be PIL Image or Tensor. Got {type(img)}")
1368

1369
        t_img = pil_to_tensor(img)
1370
1371
1372
1373

    output = F_t.gaussian_blur(t_img, kernel_size, sigma)

    if not isinstance(img, torch.Tensor):
1374
        output = to_pil_image(output, mode=img.mode)
1375
    return output
1376
1377
1378


def invert(img: Tensor) -> Tensor:
1379
    """Invert the colors of an RGB/grayscale image.
1380
1381
1382

    Args:
        img (PIL Image or Tensor): Image to have its colors inverted.
1383
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1384
1385
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1386
1387
1388
1389

    Returns:
        PIL Image or Tensor: Color inverted image.
    """
1390
1391
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(invert)
1392
1393
1394
1395
1396
1397
1398
    if not isinstance(img, torch.Tensor):
        return F_pil.invert(img)

    return F_t.invert(img)


def posterize(img: Tensor, bits: int) -> Tensor:
1399
    """Posterize an image by reducing the number of bits for each color channel.
1400
1401
1402

    Args:
        img (PIL Image or Tensor): Image to have its colors posterized.
1403
            If img is torch Tensor, it should be of type torch.uint8 and
1404
1405
1406
            it is expected to be in [..., 1 or 3, H, W] format, where ... means
            it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1407
1408
1409
1410
        bits (int): The number of bits to keep for each channel (0-8).
    Returns:
        PIL Image or Tensor: Posterized image.
    """
1411
1412
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(posterize)
1413
    if not (0 <= bits <= 8):
1414
        raise ValueError(f"The number if bits should be between 0 and 8. Got {bits}")
1415
1416
1417
1418
1419
1420
1421
1422

    if not isinstance(img, torch.Tensor):
        return F_pil.posterize(img, bits)

    return F_t.posterize(img, bits)


def solarize(img: Tensor, threshold: float) -> Tensor:
1423
    """Solarize an RGB/grayscale image by inverting all pixel values above a threshold.
1424
1425
1426

    Args:
        img (PIL Image or Tensor): Image to have its colors inverted.
1427
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1428
1429
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1430
1431
1432
1433
        threshold (float): All pixels equal or above this value are inverted.
    Returns:
        PIL Image or Tensor: Solarized image.
    """
1434
1435
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(solarize)
1436
1437
1438
1439
1440
1441
1442
    if not isinstance(img, torch.Tensor):
        return F_pil.solarize(img, threshold)

    return F_t.solarize(img, threshold)


def adjust_sharpness(img: Tensor, sharpness_factor: float) -> Tensor:
1443
    """Adjust the sharpness of an image.
1444
1445
1446

    Args:
        img (PIL Image or Tensor): Image to be adjusted.
1447
1448
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
1449
1450
1451
1452
1453
1454
1455
        sharpness_factor (float):  How much to adjust the sharpness. Can be
            any non negative number. 0 gives a blurred image, 1 gives the
            original image while 2 increases the sharpness by a factor of 2.

    Returns:
        PIL Image or Tensor: Sharpness adjusted image.
    """
1456
1457
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(adjust_sharpness)
1458
1459
1460
1461
1462
1463
1464
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_sharpness(img, sharpness_factor)

    return F_t.adjust_sharpness(img, sharpness_factor)


def autocontrast(img: Tensor) -> Tensor:
1465
    """Maximize contrast of an image by remapping its
1466
1467
1468
1469
1470
    pixels per channel so that the lowest becomes black and the lightest
    becomes white.

    Args:
        img (PIL Image or Tensor): Image on which autocontrast is applied.
1471
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1472
1473
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1474
1475
1476
1477

    Returns:
        PIL Image or Tensor: An image that was autocontrasted.
    """
1478
1479
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(autocontrast)
1480
1481
1482
1483
1484
1485
1486
    if not isinstance(img, torch.Tensor):
        return F_pil.autocontrast(img)

    return F_t.autocontrast(img)


def equalize(img: Tensor) -> Tensor:
1487
    """Equalize the histogram of an image by applying
1488
1489
1490
1491
1492
    a non-linear mapping to the input in order to create a uniform
    distribution of grayscale values in the output.

    Args:
        img (PIL Image or Tensor): Image on which equalize is applied.
1493
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1494
            where ... means it can have an arbitrary number of leading dimensions.
1495
            The tensor dtype must be ``torch.uint8`` and values are expected to be in ``[0, 255]``.
1496
            If img is PIL Image, it is expected to be in mode "P", "L" or "RGB".
1497
1498
1499
1500

    Returns:
        PIL Image or Tensor: An image that was equalized.
    """
1501
1502
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(equalize)
1503
1504
1505
1506
    if not isinstance(img, torch.Tensor):
        return F_pil.equalize(img)

    return F_t.equalize(img)
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530


def elastic_transform(
    img: Tensor,
    displacement: Tensor,
    interpolation: InterpolationMode = InterpolationMode.BILINEAR,
    fill: Optional[List[float]] = None,
) -> Tensor:
    """Transform a tensor image with elastic transformations.
    Given alpha and sigma, it will generate displacement
    vectors for all pixels based on random offsets. Alpha controls the strength
    and sigma controls the smoothness of the displacements.
    The displacements are added to an identity grid and the resulting grid is
    used to grid_sample from the image.

    Applications:
        Randomly transforms the morphology of objects in images and produces a
        see-through-water-like effect.

    Args:
        img (PIL Image or Tensor): Image on which elastic_transform is applied.
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "P", "L" or "RGB".
1531
        displacement (Tensor): The displacement field. Expected shape is [1, H, W, 2].
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`.
            Default is ``InterpolationMode.BILINEAR``.
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
        fill (number or str or tuple): Pixel fill value for constant fill. Default is 0.
            If a tuple of length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant.
            Only number is supported for torch Tensor.
            Only int or str or tuple value is supported for PIL Image.
    """
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(elastic_transform)
    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
            "Argument interpolation should be of type InterpolationMode instead of int. "
            "Please, use InterpolationMode enum."
        )
        interpolation = _interpolation_modes_from_int(interpolation)

    if not isinstance(displacement, torch.Tensor):
1553
        raise TypeError("Argument displacement should be a Tensor")
1554
1555
1556
1557
1558
1559
1560

    t_img = img
    if not isinstance(img, torch.Tensor):
        if not F_pil._is_pil_image(img):
            raise TypeError(f"img should be PIL Image or Tensor. Got {type(img)}")
        t_img = pil_to_tensor(img)

1561
1562
1563
1564
1565
1566
1567
1568
1569
    shape = t_img.shape
    shape = (1,) + shape[-2:] + (2,)
    if shape != displacement.shape:
        raise ValueError(f"Argument displacement shape should be {shape}, but given {displacement.shape}")

    # TODO: if image shape is [N1, N2, ..., C, H, W] and
    # displacement is [1, H, W, 2] we need to reshape input image
    # such grid_sampler takes internal code for 4D input

1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
    output = F_t.elastic_transform(
        t_img,
        displacement,
        interpolation=interpolation.value,
        fill=fill,
    )

    if not isinstance(img, torch.Tensor):
        output = to_pil_image(output, mode=img.mode)
    return output