functional.py 48.1 KB
Newer Older
1
import math
2
3
import numbers
import warnings
4
from enum import Enum
vfdev's avatar
vfdev committed
5
from typing import Any, Optional
6
7

import numpy as np
vfdev's avatar
vfdev committed
8
from PIL import Image
9
10
11

import torch
from torch import Tensor
vfdev's avatar
vfdev committed
12
from torch.jit.annotations import List, Tuple
13

14
15
16
17
18
try:
    import accimage
except ImportError:
    accimage = None

19
20
21
from . import functional_pil as F_pil
from . import functional_tensor as F_t

22

23
class InterpolationMode(Enum):
24
25
26
27
28
29
30
31
32
33
34
35
    """Interpolation modes
    """
    NEAREST = "nearest"
    BILINEAR = "bilinear"
    BICUBIC = "bicubic"
    # For PIL compatibility
    BOX = "box"
    HAMMING = "hamming"
    LANCZOS = "lanczos"


# TODO: Once torchscript supports Enums with staticmethod
36
37
# this can be put into InterpolationMode as staticmethod
def _interpolation_modes_from_int(i: int) -> InterpolationMode:
38
    inverse_modes_mapping = {
39
40
41
42
43
44
        0: InterpolationMode.NEAREST,
        2: InterpolationMode.BILINEAR,
        3: InterpolationMode.BICUBIC,
        4: InterpolationMode.BOX,
        5: InterpolationMode.HAMMING,
        1: InterpolationMode.LANCZOS,
45
46
47
48
49
    }
    return inverse_modes_mapping[i]


pil_modes_mapping = {
50
51
52
53
54
55
    InterpolationMode.NEAREST: 0,
    InterpolationMode.BILINEAR: 2,
    InterpolationMode.BICUBIC: 3,
    InterpolationMode.BOX: 4,
    InterpolationMode.HAMMING: 5,
    InterpolationMode.LANCZOS: 1,
56
57
}

vfdev's avatar
vfdev committed
58
_is_pil_image = F_pil._is_pil_image
vfdev's avatar
vfdev committed
59
_parse_fill = F_pil._parse_fill
vfdev's avatar
vfdev committed
60
61
62
63
64
65
66


def _get_image_size(img: Tensor) -> List[int]:
    """Returns image sizea as (w, h)
    """
    if isinstance(img, torch.Tensor):
        return F_t._get_image_size(img)
67

vfdev's avatar
vfdev committed
68
    return F_pil._get_image_size(img)
69

vfdev's avatar
vfdev committed
70

71
72
73
74
75
76
77
def _get_image_num_channels(img: Tensor) -> int:
    if isinstance(img, torch.Tensor):
        return F_t._get_image_num_channels(img)

    return F_pil._get_image_num_channels(img)


vfdev's avatar
vfdev committed
78
79
@torch.jit.unused
def _is_numpy(img: Any) -> bool:
80
81
82
    return isinstance(img, np.ndarray)


vfdev's avatar
vfdev committed
83
84
@torch.jit.unused
def _is_numpy_image(img: Any) -> bool:
85
    return img.ndim in {2, 3}
86
87
88
89
90
91
92
93
94
95
96
97
98


def to_tensor(pic):
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.

    See ``ToTensor`` for more details.

    Args:
        pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
vfdev's avatar
vfdev committed
99
    if not(F_pil._is_pil_image(pic) or _is_numpy(pic)):
100
101
        raise TypeError('pic should be PIL Image or ndarray. Got {}'.format(type(pic)))

102
103
104
    if _is_numpy(pic) and not _is_numpy_image(pic):
        raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndim))

105
106
    if isinstance(pic, np.ndarray):
        # handle numpy array
surgan12's avatar
surgan12 committed
107
108
109
        if pic.ndim == 2:
            pic = pic[:, :, None]

110
        img = torch.from_numpy(pic.transpose((2, 0, 1))).contiguous()
111
        # backward compatibility
112
113
114
115
        if isinstance(img, torch.ByteTensor):
            return img.float().div(255)
        else:
            return img
116
117
118
119
120
121
122
123
124
125
126

    if accimage is not None and isinstance(pic, accimage.Image):
        nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.float32)
        pic.copyto(nppic)
        return torch.from_numpy(nppic)

    # handle PIL Image
    if pic.mode == 'I':
        img = torch.from_numpy(np.array(pic, np.int32, copy=False))
    elif pic.mode == 'I;16':
        img = torch.from_numpy(np.array(pic, np.int16, copy=False))
127
128
    elif pic.mode == 'F':
        img = torch.from_numpy(np.array(pic, np.float32, copy=False))
129
130
    elif pic.mode == '1':
        img = 255 * torch.from_numpy(np.array(pic, np.uint8, copy=False))
131
132
    else:
        img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
133
134

    img = img.view(pic.size[1], pic.size[0], len(pic.getbands()))
135
    # put it from HWC to CHW format
136
    img = img.permute((2, 0, 1)).contiguous()
137
138
139
140
141
142
    if isinstance(img, torch.ByteTensor):
        return img.float().div(255)
    else:
        return img


143
144
145
def pil_to_tensor(pic):
    """Convert a ``PIL Image`` to a tensor of the same type.

vfdev's avatar
vfdev committed
146
    See :class:`~torchvision.transforms.PILToTensor` for more details.
147
148
149
150
151
152
153

    Args:
        pic (PIL Image): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
154
    if not F_pil._is_pil_image(pic):
155
156
157
        raise TypeError('pic should be PIL Image. Got {}'.format(type(pic)))

    if accimage is not None and isinstance(pic, accimage.Image):
158
159
        # accimage format is always uint8 internally, so always return uint8 here
        nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.uint8)
160
161
162
163
164
165
166
167
168
169
170
        pic.copyto(nppic)
        return torch.as_tensor(nppic)

    # handle PIL Image
    img = torch.as_tensor(np.asarray(pic))
    img = img.view(pic.size[1], pic.size[0], len(pic.getbands()))
    # put it from HWC to CHW format
    img = img.permute((2, 0, 1))
    return img


171
172
173
174
175
176
177
178
def convert_image_dtype(image: torch.Tensor, dtype: torch.dtype = torch.float) -> torch.Tensor:
    """Convert a tensor image to the given ``dtype`` and scale the values accordingly

    Args:
        image (torch.Tensor): Image to be converted
        dtype (torch.dtype): Desired data type of the output

    Returns:
vfdev's avatar
vfdev committed
179
        Tensor: Converted image
180
181
182
183
184
185
186
187
188
189
190
191

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """
192
193
194
195
    if not isinstance(image, torch.Tensor):
        raise TypeError('Input img should be Tensor Image')

    return F_t.convert_image_dtype(image, dtype)
196
197


198
199
200
def to_pil_image(pic, mode=None):
    """Convert a tensor or an ndarray to PIL Image.

201
    See :class:`~torchvision.transforms.ToPILImage` for more details.
202
203
204
205
206

    Args:
        pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).

207
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
208
209
210
211

    Returns:
        PIL Image: Image converted to PIL Image.
    """
Varun Agrawal's avatar
Varun Agrawal committed
212
    if not(isinstance(pic, torch.Tensor) or isinstance(pic, np.ndarray)):
213
214
        raise TypeError('pic should be Tensor or ndarray. Got {}.'.format(type(pic)))

Varun Agrawal's avatar
Varun Agrawal committed
215
216
217
218
219
220
    elif isinstance(pic, torch.Tensor):
        if pic.ndimension() not in {2, 3}:
            raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndimension()))

        elif pic.ndimension() == 2:
            # if 2D image, add channel dimension (CHW)
Surgan Jandial's avatar
Surgan Jandial committed
221
            pic = pic.unsqueeze(0)
Varun Agrawal's avatar
Varun Agrawal committed
222

223
224
225
226
        # check number of channels
        if pic.shape[-3] > 4:
            raise ValueError('pic should not have > 4 channels. Got {} channels.'.format(pic.shape[-3]))

Varun Agrawal's avatar
Varun Agrawal committed
227
228
229
230
231
232
233
234
    elif isinstance(pic, np.ndarray):
        if pic.ndim not in {2, 3}:
            raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndim))

        elif pic.ndim == 2:
            # if 2D image, add channel dimension (HWC)
            pic = np.expand_dims(pic, 2)

235
236
237
238
        # check number of channels
        if pic.shape[-1] > 4:
            raise ValueError('pic should not have > 4 channels. Got {} channels.'.format(pic.shape[-1]))

239
    npimg = pic
Varun Agrawal's avatar
Varun Agrawal committed
240
    if isinstance(pic, torch.Tensor):
241
242
243
        if pic.is_floating_point() and mode != 'F':
            pic = pic.mul(255).byte()
        npimg = np.transpose(pic.cpu().numpy(), (1, 2, 0))
244
245
246
247
248
249
250
251
252
253

    if not isinstance(npimg, np.ndarray):
        raise TypeError('Input pic must be a torch.Tensor or NumPy ndarray, ' +
                        'not {}'.format(type(npimg)))

    if npimg.shape[2] == 1:
        expected_mode = None
        npimg = npimg[:, :, 0]
        if npimg.dtype == np.uint8:
            expected_mode = 'L'
vfdev's avatar
vfdev committed
254
        elif npimg.dtype == np.int16:
255
            expected_mode = 'I;16'
vfdev's avatar
vfdev committed
256
        elif npimg.dtype == np.int32:
257
258
259
260
261
262
263
264
            expected_mode = 'I'
        elif npimg.dtype == np.float32:
            expected_mode = 'F'
        if mode is not None and mode != expected_mode:
            raise ValueError("Incorrect mode ({}) supplied for input type {}. Should be {}"
                             .format(mode, np.dtype, expected_mode))
        mode = expected_mode

surgan12's avatar
surgan12 committed
265
266
267
268
269
270
271
272
    elif npimg.shape[2] == 2:
        permitted_2_channel_modes = ['LA']
        if mode is not None and mode not in permitted_2_channel_modes:
            raise ValueError("Only modes {} are supported for 2D inputs".format(permitted_2_channel_modes))

        if mode is None and npimg.dtype == np.uint8:
            mode = 'LA'

273
    elif npimg.shape[2] == 4:
surgan12's avatar
surgan12 committed
274
        permitted_4_channel_modes = ['RGBA', 'CMYK', 'RGBX']
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
        if mode is not None and mode not in permitted_4_channel_modes:
            raise ValueError("Only modes {} are supported for 4D inputs".format(permitted_4_channel_modes))

        if mode is None and npimg.dtype == np.uint8:
            mode = 'RGBA'
    else:
        permitted_3_channel_modes = ['RGB', 'YCbCr', 'HSV']
        if mode is not None and mode not in permitted_3_channel_modes:
            raise ValueError("Only modes {} are supported for 3D inputs".format(permitted_3_channel_modes))
        if mode is None and npimg.dtype == np.uint8:
            mode = 'RGB'

    if mode is None:
        raise TypeError('Input type {} is not supported'.format(npimg.dtype))

    return Image.fromarray(npimg, mode=mode)


293
def normalize(tensor: Tensor, mean: List[float], std: List[float], inplace: bool = False) -> Tensor:
294
295
    """Normalize a tensor image with mean and standard deviation.

296
    .. note::
surgan12's avatar
surgan12 committed
297
        This transform acts out of place by default, i.e., it does not mutates the input tensor.
298

299
    See :class:`~torchvision.transforms.Normalize` for more details.
300
301

    Args:
302
        tensor (Tensor): Tensor image of size (C, H, W) or (B, C, H, W) to be normalized.
303
        mean (sequence): Sequence of means for each channel.
304
        std (sequence): Sequence of standard deviations for each channel.
305
        inplace(bool,optional): Bool to make this operation inplace.
306
307
308
309

    Returns:
        Tensor: Normalized Tensor image.
    """
310
311
    if not isinstance(tensor, torch.Tensor):
        raise TypeError('Input tensor should be a torch tensor. Got {}.'.format(type(tensor)))
312

313
314
    if tensor.ndim < 3:
        raise ValueError('Expected tensor to be a tensor image of size (..., C, H, W). Got tensor.size() = '
315
                         '{}.'.format(tensor.size()))
316

surgan12's avatar
surgan12 committed
317
318
319
    if not inplace:
        tensor = tensor.clone()

320
321
322
    dtype = tensor.dtype
    mean = torch.as_tensor(mean, dtype=dtype, device=tensor.device)
    std = torch.as_tensor(std, dtype=dtype, device=tensor.device)
323
324
    if (std == 0).any():
        raise ValueError('std evaluated to zero after conversion to {}, leading to division by zero.'.format(dtype))
325
    if mean.ndim == 1:
326
        mean = mean.view(-1, 1, 1)
327
    if std.ndim == 1:
328
        std = std.view(-1, 1, 1)
329
    tensor.sub_(mean).div_(std)
330
    return tensor
331
332


333
def resize(img: Tensor, size: List[int], interpolation: InterpolationMode = InterpolationMode.BILINEAR) -> Tensor:
vfdev's avatar
vfdev committed
334
335
336
    r"""Resize the input image to the given size.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
337
338

    Args:
vfdev's avatar
vfdev committed
339
        img (PIL Image or Tensor): Image to be resized.
340
341
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), the output size will be matched to this. If size is an int,
Vitaliy Chiley's avatar
Vitaliy Chiley committed
342
            the smaller edge of the image will be matched to this number maintaining
343
            the aspect ratio. i.e, if height > width, then image will be rescaled to
vfdev's avatar
vfdev committed
344
            :math:`\left(\text{size} \times \frac{\text{height}}{\text{width}}, \text{size}\right)`.
345
            In torchscript mode size as single int is not supported, use a tuple or
vfdev's avatar
vfdev committed
346
            list of length 1: ``[size, ]``.
347
348
349
350
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`.
            Default is ``InterpolationMode.BILINEAR``. If input is Tensor, only ``InterpolationMode.NEAREST``,
            ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported.
351
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
352
353

    Returns:
vfdev's avatar
vfdev committed
354
        PIL Image or Tensor: Resized image.
355
    """
356
357
358
    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
359
360
            "Argument interpolation should be of type InterpolationMode instead of int. "
            "Please, use InterpolationMode enum."
361
362
363
        )
        interpolation = _interpolation_modes_from_int(interpolation)

364
365
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
366

vfdev's avatar
vfdev committed
367
    if not isinstance(img, torch.Tensor):
368
369
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.resize(img, size=size, interpolation=pil_interpolation)
vfdev's avatar
vfdev committed
370

371
    return F_t.resize(img, size=size, interpolation=interpolation.value)
372
373
374
375
376
377
378
379


def scale(*args, **kwargs):
    warnings.warn("The use of the transforms.Scale transform is deprecated, " +
                  "please use transforms.Resize instead.")
    return resize(*args, **kwargs)


380
381
382
383
def pad(img: Tensor, padding: List[int], fill: int = 0, padding_mode: str = "constant") -> Tensor:
    r"""Pad the given image on all sides with the given "pad" value.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
384
385

    Args:
386
387
        img (PIL Image or Tensor): Image to be padded.
        padding (int or tuple or list): Padding on each border. If a single int is provided this
388
389
            is used to pad all borders. If tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple of length 4 is provided
390
391
392
393
            this is the padding for the left, top, right and bottom borders respectively.
            In torchscript mode padding as single int is not supported, use a tuple or
            list of length 1: ``[padding, ]``.
        fill (int or str or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
394
            length 3, it is used to fill R, G, B channels respectively.
395
            This value is only used when the padding_mode is constant. Only int value is supported for Tensors.
396
        padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
vfdev's avatar
vfdev committed
397
            Mode symmetric is not yet supported for Tensor inputs.
398
399
400
401
402
403
404
405
406
407
408
409
410
411

            - constant: pads with a constant value, this value is specified with fill

            - edge: pads with the last value on the edge of the image

            - reflect: pads with reflection of image (without repeating the last value on the edge)

                       padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                       will result in [3, 2, 1, 2, 3, 4, 3, 2]

            - symmetric: pads with reflection of image (repeating the last value on the edge)

                         padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                         will result in [2, 1, 1, 2, 3, 4, 4, 3]
412
413

    Returns:
414
        PIL Image or Tensor: Padded image.
415
    """
416
417
    if not isinstance(img, torch.Tensor):
        return F_pil.pad(img, padding=padding, fill=fill, padding_mode=padding_mode)
418

419
    return F_t.pad(img, padding=padding, fill=fill, padding_mode=padding_mode)
420
421


vfdev's avatar
vfdev committed
422
423
424
425
426
def crop(img: Tensor, top: int, left: int, height: int, width: int) -> Tensor:
    """Crop the given image at specified location and output size.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
427

428
    Args:
vfdev's avatar
vfdev committed
429
        img (PIL Image or Tensor): Image to be cropped. (0,0) denotes the top left corner of the image.
430
431
432
433
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
434

435
    Returns:
vfdev's avatar
vfdev committed
436
        PIL Image or Tensor: Cropped image.
437
438
    """

vfdev's avatar
vfdev committed
439
440
    if not isinstance(img, torch.Tensor):
        return F_pil.crop(img, top, left, height, width)
441

vfdev's avatar
vfdev committed
442
    return F_t.crop(img, top, left, height, width)
443

vfdev's avatar
vfdev committed
444
445
446
447
448

def center_crop(img: Tensor, output_size: List[int]) -> Tensor:
    """Crops the given image at the center.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
449

450
    Args:
vfdev's avatar
vfdev committed
451
452
453
454
        img (PIL Image or Tensor): Image to be cropped.
        output_size (sequence or int): (height, width) of the crop box. If int or sequence with single int
            it is used for both directions.

455
    Returns:
vfdev's avatar
vfdev committed
456
        PIL Image or Tensor: Cropped image.
457
    """
458
459
    if isinstance(output_size, numbers.Number):
        output_size = (int(output_size), int(output_size))
vfdev's avatar
vfdev committed
460
461
462
463
    elif isinstance(output_size, (tuple, list)) and len(output_size) == 1:
        output_size = (output_size[0], output_size[0])

    image_width, image_height = _get_image_size(img)
464
    crop_height, crop_width = output_size
vfdev's avatar
vfdev committed
465

466
467
    crop_top = int(round((image_height - crop_height) / 2.))
    crop_left = int(round((image_width - crop_width) / 2.))
468
    return crop(img, crop_top, crop_left, crop_height, crop_width)
469
470


471
def resized_crop(
472
        img: Tensor, top: int, left: int, height: int, width: int, size: List[int],
473
        interpolation: InterpolationMode = InterpolationMode.BILINEAR
474
475
476
477
) -> Tensor:
    """Crop the given image and resize it to desired size.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
478

479
    Notably used in :class:`~torchvision.transforms.RandomResizedCrop`.
480
481

    Args:
482
        img (PIL Image or Tensor): Image to be cropped. (0,0) denotes the top left corner of the image.
483
484
485
486
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
487
        size (sequence or int): Desired output size. Same semantics as ``resize``.
488
489
490
491
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`.
            Default is ``InterpolationMode.BILINEAR``. If input is Tensor, only ``InterpolationMode.NEAREST``,
            ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported.
492
493
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.

494
    Returns:
495
        PIL Image or Tensor: Cropped image.
496
    """
497
    img = crop(img, top, left, height, width)
498
499
500
501
    img = resize(img, size, interpolation)
    return img


502
def hflip(img: Tensor) -> Tensor:
vfdev's avatar
vfdev committed
503
    """Horizontally flip the given PIL Image or Tensor.
504
505

    Args:
vfdev's avatar
vfdev committed
506
        img (PIL Image or Tensor): Image to be flipped. If img
507
508
509
            is a Tensor, it is expected to be in [..., H, W] format,
            where ... means it can have an arbitrary number of trailing
            dimensions.
510
511

    Returns:
vfdev's avatar
vfdev committed
512
        PIL Image or Tensor:  Horizontally flipped image.
513
    """
514
515
    if not isinstance(img, torch.Tensor):
        return F_pil.hflip(img)
516

517
    return F_t.hflip(img)
518
519


520
521
522
def _get_perspective_coeffs(
        startpoints: List[List[int]], endpoints: List[List[int]]
) -> List[float]:
523
524
    """Helper function to get the coefficients (a, b, c, d, e, f, g, h) for the perspective transforms.

Vitaliy Chiley's avatar
Vitaliy Chiley committed
525
    In Perspective Transform each pixel (x, y) in the original image gets transformed as,
526
527
528
     (x, y) -> ( (ax + by + c) / (gx + hy + 1), (dx + ey + f) / (gx + hy + 1) )

    Args:
529
530
531
532
533
        startpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the original image.
        endpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the transformed image.

534
535
536
    Returns:
        octuple (a, b, c, d, e, f, g, h) for transforming each pixel.
    """
537
538
539
540
541
    a_matrix = torch.zeros(2 * len(startpoints), 8, dtype=torch.float)

    for i, (p1, p2) in enumerate(zip(endpoints, startpoints)):
        a_matrix[2 * i, :] = torch.tensor([p1[0], p1[1], 1, 0, 0, 0, -p2[0] * p1[0], -p2[0] * p1[1]])
        a_matrix[2 * i + 1, :] = torch.tensor([0, 0, 0, p1[0], p1[1], 1, -p2[1] * p1[0], -p2[1] * p1[1]])
542

543
544
    b_matrix = torch.tensor(startpoints, dtype=torch.float).view(8)
    res = torch.lstsq(b_matrix, a_matrix)[0]
545

546
547
    output: List[float] = res.squeeze(1).tolist()
    return output
548
549


550
551
552
553
def perspective(
        img: Tensor,
        startpoints: List[List[int]],
        endpoints: List[List[int]],
554
        interpolation: InterpolationMode = InterpolationMode.BILINEAR,
555
        fill: Optional[List[float]] = None
556
557
558
559
) -> Tensor:
    """Perform perspective transform of the given image.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
560
561

    Args:
562
563
564
565
566
        img (PIL Image or Tensor): Image to be transformed.
        startpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the original image.
        endpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the transformed image.
567
568
569
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
570
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
571
        fill (sequence or int or float, optional): Pixel fill value for the area outside the transformed
572
            image. If int or float, the value is used for all bands respectively.
573
574
575
576
            This option is supported for PIL image and Tensor inputs.
            In torchscript mode single int/float value is not supported, please use a tuple
            or list of length 1: ``[value, ]``.
            If input is PIL Image, the options is only available for ``Pillow>=5.0.0``.
577

578
    Returns:
579
        PIL Image or Tensor: transformed Image.
580
    """
581

582
    coeffs = _get_perspective_coeffs(startpoints, endpoints)
583

584
585
586
    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
587
588
            "Argument interpolation should be of type InterpolationMode instead of int. "
            "Please, use InterpolationMode enum."
589
590
591
        )
        interpolation = _interpolation_modes_from_int(interpolation)

592
593
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
594

595
    if not isinstance(img, torch.Tensor):
596
597
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.perspective(img, coeffs, interpolation=pil_interpolation, fill=fill)
598

599
    return F_t.perspective(img, coeffs, interpolation=interpolation.value, fill=fill)
600
601


602
603
def vflip(img: Tensor) -> Tensor:
    """Vertically flip the given PIL Image or torch Tensor.
604
605

    Args:
vfdev's avatar
vfdev committed
606
        img (PIL Image or Tensor): Image to be flipped. If img
607
608
609
            is a Tensor, it is expected to be in [..., H, W] format,
            where ... means it can have an arbitrary number of trailing
            dimensions.
610
611
612
613

    Returns:
        PIL Image:  Vertically flipped image.
    """
614
615
    if not isinstance(img, torch.Tensor):
        return F_pil.vflip(img)
616

617
    return F_t.vflip(img)
618
619


vfdev's avatar
vfdev committed
620
621
622
623
def five_crop(img: Tensor, size: List[int]) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]:
    """Crop the given image into four corners and the central crop.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
624
625
626
627
628
629

    .. Note::
        This transform returns a tuple of images and there may be a
        mismatch in the number of inputs and targets your ``Dataset`` returns.

    Args:
vfdev's avatar
vfdev committed
630
631
632
633
        img (PIL Image or Tensor): Image to be cropped.
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
634

635
    Returns:
636
637
       tuple: tuple (tl, tr, bl, br, center)
                Corresponding top left, top right, bottom left, bottom right and center crop.
638
639
640
    """
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
vfdev's avatar
vfdev committed
641
642
    elif isinstance(size, (tuple, list)) and len(size) == 1:
        size = (size[0], size[0])
643

vfdev's avatar
vfdev committed
644
645
646
647
    if len(size) != 2:
        raise ValueError("Please provide only two dimensions (h, w) for size.")

    image_width, image_height = _get_image_size(img)
648
649
650
651
652
    crop_height, crop_width = size
    if crop_width > image_width or crop_height > image_height:
        msg = "Requested crop size {} is bigger than input size {}"
        raise ValueError(msg.format(size, (image_height, image_width)))

vfdev's avatar
vfdev committed
653
654
655
656
657
658
659
660
    tl = crop(img, 0, 0, crop_height, crop_width)
    tr = crop(img, 0, image_width - crop_width, crop_height, crop_width)
    bl = crop(img, image_height - crop_height, 0, crop_height, crop_width)
    br = crop(img, image_height - crop_height, image_width - crop_width, crop_height, crop_width)

    center = center_crop(img, [crop_height, crop_width])

    return tl, tr, bl, br, center
661
662


vfdev's avatar
vfdev committed
663
664
665
def ten_crop(img: Tensor, size: List[int], vertical_flip: bool = False) -> List[Tensor]:
    """Generate ten cropped images from the given image.
    Crop the given image into four corners and the central crop plus the
666
    flipped version of these (horizontal flipping is used by default).
vfdev's avatar
vfdev committed
667
668
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
669
670
671
672
673

    .. Note::
        This transform returns a tuple of images and there may be a
        mismatch in the number of inputs and targets your ``Dataset`` returns.

674
    Args:
vfdev's avatar
vfdev committed
675
        img (PIL Image or Tensor): Image to be cropped.
676
        size (sequence or int): Desired output size of the crop. If size is an
677
            int instead of sequence like (h, w), a square crop (size, size) is
vfdev's avatar
vfdev committed
678
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
679
        vertical_flip (bool): Use vertical flipping instead of horizontal
680
681

    Returns:
682
683
684
        tuple: tuple (tl, tr, bl, br, center, tl_flip, tr_flip, bl_flip, br_flip, center_flip)
            Corresponding top left, top right, bottom left, bottom right and
            center crop and same for the flipped image.
685
686
687
    """
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
vfdev's avatar
vfdev committed
688
689
690
691
692
    elif isinstance(size, (tuple, list)) and len(size) == 1:
        size = (size[0], size[0])

    if len(size) != 2:
        raise ValueError("Please provide only two dimensions (h, w) for size.")
693
694
695
696
697
698
699
700
701
702
703
704

    first_five = five_crop(img, size)

    if vertical_flip:
        img = vflip(img)
    else:
        img = hflip(img)

    second_five = five_crop(img, size)
    return first_five + second_five


705
def adjust_brightness(img: Tensor, brightness_factor: float) -> Tensor:
706
707
708
    """Adjust brightness of an Image.

    Args:
vfdev's avatar
vfdev committed
709
        img (PIL Image or Tensor): Image to be adjusted.
710
711
712
713
714
        brightness_factor (float):  How much to adjust the brightness. Can be
            any non negative number. 0 gives a black image, 1 gives the
            original image while 2 increases the brightness by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
715
        PIL Image or Tensor: Brightness adjusted image.
716
    """
717
718
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_brightness(img, brightness_factor)
719

720
    return F_t.adjust_brightness(img, brightness_factor)
721
722


723
def adjust_contrast(img: Tensor, contrast_factor: float) -> Tensor:
724
725
726
    """Adjust contrast of an Image.

    Args:
vfdev's avatar
vfdev committed
727
        img (PIL Image or Tensor): Image to be adjusted.
728
729
730
731
732
        contrast_factor (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives a solid gray image, 1 gives the
            original image while 2 increases the contrast by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
733
        PIL Image or Tensor: Contrast adjusted image.
734
    """
735
736
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_contrast(img, contrast_factor)
737

738
    return F_t.adjust_contrast(img, contrast_factor)
739
740


741
def adjust_saturation(img: Tensor, saturation_factor: float) -> Tensor:
742
743
744
    """Adjust color saturation of an image.

    Args:
vfdev's avatar
vfdev committed
745
        img (PIL Image or Tensor): Image to be adjusted.
746
747
748
749
750
        saturation_factor (float):  How much to adjust the saturation. 0 will
            give a black and white image, 1 will give the original image while
            2 will enhance the saturation by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
751
        PIL Image or Tensor: Saturation adjusted image.
752
    """
753
754
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_saturation(img, saturation_factor)
755

756
    return F_t.adjust_saturation(img, saturation_factor)
757
758


759
def adjust_hue(img: Tensor, hue_factor: float) -> Tensor:
760
761
762
763
764
765
766
767
768
    """Adjust hue of an image.

    The image hue is adjusted by converting the image to HSV and
    cyclically shifting the intensities in the hue channel (H).
    The image is then converted back to original image mode.

    `hue_factor` is the amount of shift in H channel and must be in the
    interval `[-0.5, 0.5]`.

769
770
771
    See `Hue`_ for more details.

    .. _Hue: https://en.wikipedia.org/wiki/Hue
772
773

    Args:
774
        img (PIL Image or Tensor): Image to be adjusted.
775
776
777
778
779
780
781
        hue_factor (float):  How much to shift the hue channel. Should be in
            [-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
            HSV space in positive and negative direction respectively.
            0 means no shift. Therefore, both -0.5 and 0.5 will give an image
            with complementary colors while 0 gives the original image.

    Returns:
782
        PIL Image or Tensor: Hue adjusted image.
783
    """
784
785
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_hue(img, hue_factor)
786

787
    return F_t.adjust_hue(img, hue_factor)
788
789


790
def adjust_gamma(img: Tensor, gamma: float, gain: float = 1) -> Tensor:
791
    r"""Perform gamma correction on an image.
792
793
794
795

    Also known as Power Law Transform. Intensities in RGB mode are adjusted
    based on the following equation:

796
797
798
799
    .. math::
        I_{\text{out}} = 255 \times \text{gain} \times \left(\frac{I_{\text{in}}}{255}\right)^{\gamma}

    See `Gamma Correction`_ for more details.
800

801
    .. _Gamma Correction: https://en.wikipedia.org/wiki/Gamma_correction
802
803

    Args:
804
        img (PIL Image or Tensor): PIL Image to be adjusted.
805
806
807
        gamma (float): Non negative real number, same as :math:`\gamma` in the equation.
            gamma larger than 1 make the shadows darker,
            while gamma smaller than 1 make dark regions lighter.
808
        gain (float): The constant multiplier.
809
810
    Returns:
        PIL Image or Tensor: Gamma correction adjusted image.
811
    """
812
813
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_gamma(img, gamma, gain)
814

815
    return F_t.adjust_gamma(img, gamma, gain)
816
817


vfdev's avatar
vfdev committed
818
def _get_inverse_affine_matrix(
vfdev's avatar
vfdev committed
819
        center: List[float], angle: float, translate: List[float], scale: float, shear: List[float]
vfdev's avatar
vfdev committed
820
) -> List[float]:
821
822
823
824
825
826
827
    # Helper method to compute inverse matrix for affine transformation

    # As it is explained in PIL.Image.rotate
    # We need compute INVERSE of affine transformation matrix: M = T * C * RSS * C^-1
    # where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1]
    #       C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1]
    #       RSS is rotation with scale and shear matrix
828
829
830
831
832
833
834
835
836
837
    #       RSS(a, s, (sx, sy)) =
    #       = R(a) * S(s) * SHy(sy) * SHx(sx)
    #       = [ s*cos(a - sy)/cos(sy), s*(-cos(a - sy)*tan(x)/cos(y) - sin(a)), 0 ]
    #         [ s*sin(a + sy)/cos(sy), s*(-sin(a - sy)*tan(x)/cos(y) + cos(a)), 0 ]
    #         [ 0                    , 0                                      , 1 ]
    #
    # where R is a rotation matrix, S is a scaling matrix, and SHx and SHy are the shears:
    # SHx(s) = [1, -tan(s)] and SHy(s) = [1      , 0]
    #          [0, 1      ]              [-tan(s), 1]
    #
838
839
    # Thus, the inverse is M^-1 = C * RSS^-1 * C^-1 * T^-1

840
841
842
843
844
845
846
    rot = math.radians(angle)
    sx, sy = [math.radians(s) for s in shear]

    cx, cy = center
    tx, ty = translate

    # RSS without scaling
vfdev's avatar
vfdev committed
847
848
849
850
    a = math.cos(rot - sy) / math.cos(sy)
    b = -math.cos(rot - sy) * math.tan(sx) / math.cos(sy) - math.sin(rot)
    c = math.sin(rot - sy) / math.cos(sy)
    d = -math.sin(rot - sy) * math.tan(sx) / math.cos(sy) + math.cos(rot)
851
852

    # Inverted rotation matrix with scale and shear
853
    # det([[a, b], [c, d]]) == 1, since det(rotation) = 1 and det(shear) = 1
vfdev's avatar
vfdev committed
854
855
    matrix = [d, -b, 0.0, -c, a, 0.0]
    matrix = [x / scale for x in matrix]
856
857

    # Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
vfdev's avatar
vfdev committed
858
859
    matrix[2] += matrix[0] * (-cx - tx) + matrix[1] * (-cy - ty)
    matrix[5] += matrix[3] * (-cx - tx) + matrix[4] * (-cy - ty)
860
861

    # Apply center translation: C * RSS^-1 * C^-1 * T^-1
vfdev's avatar
vfdev committed
862
863
    matrix[2] += cx
    matrix[5] += cy
864

vfdev's avatar
vfdev committed
865
    return matrix
866

vfdev's avatar
vfdev committed
867

vfdev's avatar
vfdev committed
868
def rotate(
869
        img: Tensor, angle: float, interpolation: InterpolationMode = InterpolationMode.NEAREST,
870
        expand: bool = False, center: Optional[List[int]] = None,
871
        fill: Optional[List[float]] = None, resample: Optional[int] = None
vfdev's avatar
vfdev committed
872
873
874
875
876
877
878
879
) -> Tensor:
    """Rotate the image by angle.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.

    Args:
        img (PIL Image or Tensor): image to be rotated.
        angle (float or int): rotation angle value in degrees, counter-clockwise.
880
881
882
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
883
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
vfdev's avatar
vfdev committed
884
885
886
887
888
889
        expand (bool, optional): Optional expansion flag.
            If true, expands the output image to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
        center (list or tuple, optional): Optional center of rotation. Origin is the upper left corner.
            Default is the center of the image.
890
        fill (sequence or int or float, optional): Pixel fill value for the area outside the transformed
vfdev's avatar
vfdev committed
891
            image. If int or float, the value is used for all bands respectively.
892
893
894
895
            This option is supported for PIL image and Tensor inputs.
            In torchscript mode single int/float value is not supported, please use a tuple
            or list of length 1: ``[value, ]``.
            If input is PIL Image, the options is only available for ``Pillow>=5.2.0``.
vfdev's avatar
vfdev committed
896
897
898
899
900
901
902

    Returns:
        PIL Image or Tensor: Rotated image.

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

    """
903
904
905
906
907
908
909
910
911
    if resample is not None:
        warnings.warn(
            "Argument resample is deprecated and will be removed since v0.10.0. Please, use interpolation instead"
        )
        interpolation = _interpolation_modes_from_int(resample)

    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
912
913
            "Argument interpolation should be of type InterpolationMode instead of int. "
            "Please, use InterpolationMode enum."
914
915
916
        )
        interpolation = _interpolation_modes_from_int(interpolation)

vfdev's avatar
vfdev committed
917
918
919
920
921
922
    if not isinstance(angle, (int, float)):
        raise TypeError("Argument angle should be int or float")

    if center is not None and not isinstance(center, (list, tuple)):
        raise TypeError("Argument center should be a sequence")

923
924
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
925

vfdev's avatar
vfdev committed
926
    if not isinstance(img, torch.Tensor):
927
928
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.rotate(img, angle=angle, interpolation=pil_interpolation, expand=expand, center=center, fill=fill)
vfdev's avatar
vfdev committed
929
930
931
932

    center_f = [0.0, 0.0]
    if center is not None:
        img_size = _get_image_size(img)
933
934
935
        # Center values should be in pixel coordinates but translated such that (0, 0) corresponds to image center.
        center_f = [1.0 * (c - s * 0.5) for c, s in zip(center, img_size)]

vfdev's avatar
vfdev committed
936
937
938
    # due to current incoherence of rotation angle direction between affine and rotate implementations
    # we need to set -angle.
    matrix = _get_inverse_affine_matrix(center_f, -angle, [0.0, 0.0], 1.0, [0.0, 0.0])
939
    return F_t.rotate(img, matrix=matrix, interpolation=interpolation.value, expand=expand, fill=fill)
vfdev's avatar
vfdev committed
940
941


vfdev's avatar
vfdev committed
942
943
def affine(
        img: Tensor, angle: float, translate: List[int], scale: float, shear: List[float],
944
945
        interpolation: InterpolationMode = InterpolationMode.NEAREST, fill: Optional[List[float]] = None,
        resample: Optional[int] = None, fillcolor: Optional[List[float]] = None
vfdev's avatar
vfdev committed
946
947
948
949
) -> Tensor:
    """Apply affine transformation on the image keeping image center invariant.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
950
951

    Args:
vfdev's avatar
vfdev committed
952
        img (PIL Image or Tensor): image to transform.
953
        angle (float or int): rotation angle in degrees between -180 and 180, clockwise direction.
954
955
        translate (list or tuple of integers): horizontal and vertical translations (post-rotation translation)
        scale (float): overall scale
ptrblck's avatar
ptrblck committed
956
        shear (float or tuple or list): shear angle value in degrees between -180 to 180, clockwise direction.
vfdev's avatar
vfdev committed
957
958
            If a tuple of list is specified, the first value corresponds to a shear parallel to the x axis, while
            the second value corresponds to a shear parallel to the y axis.
959
960
961
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
962
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
963
964
965
966
967
968
969
        fill (sequence or int or float, optional): Pixel fill value for the area outside the transformed
            image. If int or float, the value is used for all bands respectively.
            This option is supported for PIL image and Tensor inputs.
            In torchscript mode single int/float value is not supported, please use a tuple
            or list of length 1: ``[value, ]``.
            If input is PIL Image, the options is only available for ``Pillow>=5.0.0``.
        fillcolor (sequence, int, float): deprecated argument and will be removed since v0.10.0.
970
971
972
            Please use `arg`:fill: instead.
        resample (int, optional): deprecated argument and will be removed since v0.10.0.
            Please use `arg`:interpolation: instead.
vfdev's avatar
vfdev committed
973
974
975

    Returns:
        PIL Image or Tensor: Transformed image.
976
    """
977
978
979
980
981
982
983
984
985
    if resample is not None:
        warnings.warn(
            "Argument resample is deprecated and will be removed since v0.10.0. Please, use interpolation instead"
        )
        interpolation = _interpolation_modes_from_int(resample)

    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
986
987
            "Argument interpolation should be of type InterpolationMode instead of int. "
            "Please, use InterpolationMode enum."
988
989
990
991
992
993
994
995
996
        )
        interpolation = _interpolation_modes_from_int(interpolation)

    if fillcolor is not None:
        warnings.warn(
            "Argument fillcolor is deprecated and will be removed since v0.10.0. Please, use fill instead"
        )
        fill = fillcolor

vfdev's avatar
vfdev committed
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
    if not isinstance(angle, (int, float)):
        raise TypeError("Argument angle should be int or float")

    if not isinstance(translate, (list, tuple)):
        raise TypeError("Argument translate should be a sequence")

    if len(translate) != 2:
        raise ValueError("Argument translate should be a sequence of length 2")

    if scale <= 0.0:
        raise ValueError("Argument scale should be positive")

    if not isinstance(shear, (numbers.Number, (list, tuple))):
        raise TypeError("Shear should be either a single value or a sequence of two values")

1012
1013
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
1014

vfdev's avatar
vfdev committed
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
    if isinstance(angle, int):
        angle = float(angle)

    if isinstance(translate, tuple):
        translate = list(translate)

    if isinstance(shear, numbers.Number):
        shear = [shear, 0.0]

    if isinstance(shear, tuple):
        shear = list(shear)

    if len(shear) == 1:
        shear = [shear[0], shear[0]]

    if len(shear) != 2:
        raise ValueError("Shear should be a sequence containing two values. Got {}".format(shear))

    img_size = _get_image_size(img)
    if not isinstance(img, torch.Tensor):
        # center = (img_size[0] * 0.5 + 0.5, img_size[1] * 0.5 + 0.5)
        # it is visually better to estimate the center without 0.5 offset
        # otherwise image rotated by 90 degrees is shifted vs output image of torch.rot90 or F_t.affine
        center = [img_size[0] * 0.5, img_size[1] * 0.5]
        matrix = _get_inverse_affine_matrix(center, angle, translate, scale, shear)
1040
1041
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.affine(img, matrix=matrix, interpolation=pil_interpolation, fill=fill)
1042

1043
1044
    translate_f = [1.0 * t for t in translate]
    matrix = _get_inverse_affine_matrix([0.0, 0.0], angle, translate_f, scale, shear)
1045
    return F_t.affine(img, matrix=matrix, interpolation=interpolation.value, fill=fill)
1046
1047


1048
@torch.jit.unused
1049
def to_grayscale(img, num_output_channels=1):
1050
    """Convert PIL image of any mode (RGB, HSV, LAB, etc) to grayscale version of image.
1051
1052

    Args:
1053
1054
        img (PIL Image): PIL Image to be converted to grayscale.
        num_output_channels (int): number of channels of the output image. Value can be 1 or 3. Default, 1.
1055
1056

    Returns:
1057
1058
1059
1060
        PIL Image: Grayscale version of the image.
            if num_output_channels = 1 : returned image is single channel

            if num_output_channels = 3 : returned image is 3 channel with r = g = b
1061
    """
1062
1063
    if isinstance(img, Image.Image):
        return F_pil.to_grayscale(img, num_output_channels)
1064

1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
    raise TypeError("Input should be PIL Image")


def rgb_to_grayscale(img: Tensor, num_output_channels: int = 1) -> Tensor:
    """Convert RGB image to grayscale version of image.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions

    Note:
        Please, note that this method supports only RGB images as input. For inputs in other color spaces,
        please, consider using meth:`~torchvision.transforms.functional.to_grayscale` with PIL Image.

    Args:
        img (PIL Image or Tensor): RGB Image to be converted to grayscale.
        num_output_channels (int): number of channels of the output image. Value can be 1 or 3. Default, 1.

    Returns:
        PIL Image or Tensor: Grayscale version of the image.
            if num_output_channels = 1 : returned image is single channel

            if num_output_channels = 3 : returned image is 3 channel with r = g = b
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.to_grayscale(img, num_output_channels)

    return F_t.rgb_to_grayscale(img, num_output_channels)
1091
1092


1093
def erase(img: Tensor, i: int, j: int, h: int, w: int, v: Tensor, inplace: bool = False) -> Tensor:
1094
1095
1096
1097
1098
1099
1100
1101
1102
    """ Erase the input Tensor Image with given value.

    Args:
        img (Tensor Image): Tensor image of size (C, H, W) to be erased
        i (int): i in (i,j) i.e coordinates of the upper left corner.
        j (int): j in (i,j) i.e coordinates of the upper left corner.
        h (int): Height of the erased region.
        w (int): Width of the erased region.
        v: Erasing value.
Zhun Zhong's avatar
Zhun Zhong committed
1103
        inplace(bool, optional): For in-place operations. By default is set False.
1104
1105
1106
1107
1108
1109
1110

    Returns:
        Tensor Image: Erased image.
    """
    if not isinstance(img, torch.Tensor):
        raise TypeError('img should be Tensor Image. Got {}'.format(type(img)))

1111
1112
1113
    if not inplace:
        img = img.clone()

vfdev's avatar
vfdev committed
1114
    img[..., i:i + h, j:j + w] = v
1115
    return img
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175


def gaussian_blur(img: Tensor, kernel_size: List[int], sigma: Optional[List[float]] = None) -> Tensor:
    """Performs Gaussian blurring on the img by given kernel.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions

    Args:
        img (PIL Image or Tensor): Image to be blurred
        kernel_size (sequence of ints or int): Gaussian kernel size. Can be a sequence of integers
            like ``(kx, ky)`` or a single integer for square kernels.
            In torchscript mode kernel_size as single int is not supported, use a tuple or
            list of length 1: ``[ksize, ]``.
        sigma (sequence of floats or float, optional): Gaussian kernel standard deviation. Can be a
            sequence of floats like ``(sigma_x, sigma_y)`` or a single float to define the
            same sigma in both X/Y directions. If None, then it is computed using
            ``kernel_size`` as ``sigma = 0.3 * ((kernel_size - 1) * 0.5 - 1) + 0.8``.
            Default, None. In torchscript mode sigma as single float is
            not supported, use a tuple or list of length 1: ``[sigma, ]``.

    Returns:
        PIL Image or Tensor: Gaussian Blurred version of the image.
    """
    if not isinstance(kernel_size, (int, list, tuple)):
        raise TypeError('kernel_size should be int or a sequence of integers. Got {}'.format(type(kernel_size)))
    if isinstance(kernel_size, int):
        kernel_size = [kernel_size, kernel_size]
    if len(kernel_size) != 2:
        raise ValueError('If kernel_size is a sequence its length should be 2. Got {}'.format(len(kernel_size)))
    for ksize in kernel_size:
        if ksize % 2 == 0 or ksize < 0:
            raise ValueError('kernel_size should have odd and positive integers. Got {}'.format(kernel_size))

    if sigma is None:
        sigma = [ksize * 0.15 + 0.35 for ksize in kernel_size]

    if sigma is not None and not isinstance(sigma, (int, float, list, tuple)):
        raise TypeError('sigma should be either float or sequence of floats. Got {}'.format(type(sigma)))
    if isinstance(sigma, (int, float)):
        sigma = [float(sigma), float(sigma)]
    if isinstance(sigma, (list, tuple)) and len(sigma) == 1:
        sigma = [sigma[0], sigma[0]]
    if len(sigma) != 2:
        raise ValueError('If sigma is a sequence, its length should be 2. Got {}'.format(len(sigma)))
    for s in sigma:
        if s <= 0.:
            raise ValueError('sigma should have positive values. Got {}'.format(sigma))

    t_img = img
    if not isinstance(img, torch.Tensor):
        if not F_pil._is_pil_image(img):
            raise TypeError('img should be PIL Image or Tensor. Got {}'.format(type(img)))

        t_img = to_tensor(img)

    output = F_t.gaussian_blur(t_img, kernel_size, sigma)

    if not isinstance(img, torch.Tensor):
        output = to_pil_image(output)
    return output