test_transforms.py 83.1 KB
Newer Older
1
import itertools
2
import os
3
4
import torch
import torchvision.transforms as transforms
5
import torchvision.transforms.functional as F
6
import torchvision.transforms.functional_tensor as F_t
7
from torch._utils_internal import get_file_path_2
8
from numpy.testing import assert_array_almost_equal
9
import unittest
10
import math
11
import random
12
import numpy as np
13
import pytest
14
15
16
17
18
19
from PIL import Image
try:
    import accimage
except ImportError:
    accimage = None

20
21
22
23
24
try:
    from scipy import stats
except ImportError:
    stats = None

25
from common_utils import cycle_over, int_dtypes, float_dtypes
26
from _assert_utils import assert_equal
27
28


29
GRACE_HOPPER = get_file_path_2(
30
    os.path.dirname(os.path.abspath(__file__)), 'assets', 'encode_jpeg', 'grace_hopper_517x606.jpg')
31
32


33
class Tester(unittest.TestCase):
34

35
    def test_center_crop(self):
36
37
38
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        oheight = random.randint(5, (height - 2) / 2) * 2
39
40
        owidth = random.randint(5, (width - 2) / 2) * 2

41
        img = torch.ones(3, height, width)
42
43
44
        oh1 = (height - oheight) // 2
        ow1 = (width - owidth) // 2
        imgnarrow = img[:, oh1:oh1 + oheight, ow1:ow1 + owidth]
45
46
47
48
49
50
        imgnarrow.fill_(0)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
51
52
        self.assertEqual(result.sum(), 0,
                         "height: {} width: {} oheight: {} owdith: {}".format(height, width, oheight, owidth))
53
54
55
56
57
58
59
60
        oheight += 1
        owidth += 1
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        sum1 = result.sum()
61
62
        self.assertGreater(sum1, 1,
                           "height: {} width: {} oheight: {} owdith: {}".format(height, width, oheight, owidth))
63
        oheight += 1
64
        owidth += 1
65
66
67
68
69
70
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        sum2 = result.sum()
71
72
73
74
        self.assertGreater(sum2, 0,
                           "height: {} width: {} oheight: {} owdith: {}".format(height, width, oheight, owidth))
        self.assertGreater(sum2, sum1,
                           "height: {} width: {} oheight: {} owdith: {}".format(height, width, oheight, owidth))
75

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
    def test_center_crop_2(self):
        """ Tests when center crop size is larger than image size, along any dimension"""
        even_image_size = (random.randint(10, 32) * 2, random.randint(10, 32) * 2)
        odd_image_size = (even_image_size[0] + 1, even_image_size[1] + 1)

        # Since height is independent of width, we can ignore images with odd height and even width and vice-versa.
        input_image_sizes = [even_image_size, odd_image_size]

        # Get different crop sizes
        delta = random.choice((1, 3, 5))
        crop_size_delta = [-2 * delta, -delta, 0, delta, 2 * delta]
        crop_size_params = itertools.product(input_image_sizes, crop_size_delta, crop_size_delta)

        for (input_image_size, delta_height, delta_width) in crop_size_params:
            img = torch.ones(3, *input_image_size)
            crop_size = (input_image_size[0] + delta_height, input_image_size[1] + delta_width)

            # Test both transforms, one with PIL input and one with tensor
            output_pil = transforms.Compose([
                transforms.ToPILImage(),
                transforms.CenterCrop(crop_size),
                transforms.ToTensor()],
            )(img)
            self.assertEqual(output_pil.size()[1:3], crop_size,
                             "image_size: {} crop_size: {}".format(input_image_size, crop_size))

            output_tensor = transforms.CenterCrop(crop_size)(img)
            self.assertEqual(output_tensor.size()[1:3], crop_size,
                             "image_size: {} crop_size: {}".format(input_image_size, crop_size))

            # Ensure output for PIL and Tensor are equal
107
108
109
110
            assert_equal(
                output_tensor, output_pil, check_stride=False,
                msg="image_size: {} crop_size: {}".format(input_image_size, crop_size)
            )
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

            # Check if content in center of both image and cropped output is same.
            center_size = (min(crop_size[0], input_image_size[0]), min(crop_size[1], input_image_size[1]))
            crop_center_tl, input_center_tl = [0, 0], [0, 0]
            for index in range(2):
                if crop_size[index] > input_image_size[index]:
                    crop_center_tl[index] = (crop_size[index] - input_image_size[index]) // 2
                else:
                    input_center_tl[index] = (input_image_size[index] - crop_size[index]) // 2

            output_center = output_pil[
                :,
                crop_center_tl[0]:crop_center_tl[0] + center_size[0],
                crop_center_tl[1]:crop_center_tl[1] + center_size[1]
            ]

            img_center = img[
                :,
                input_center_tl[0]:input_center_tl[0] + center_size[0],
                input_center_tl[1]:input_center_tl[1] + center_size[1]
            ]

133
134
135
136
            assert_equal(
                output_center, img_center, check_stride=False,
                msg="image_size: {} crop_size: {}".format(input_image_size, crop_size)
            )
137

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
    def test_five_crop(self):
        to_pil_image = transforms.ToPILImage()
        h = random.randint(5, 25)
        w = random.randint(5, 25)
        for single_dim in [True, False]:
            crop_h = random.randint(1, h)
            crop_w = random.randint(1, w)
            if single_dim:
                crop_h = min(crop_h, crop_w)
                crop_w = crop_h
                transform = transforms.FiveCrop(crop_h)
            else:
                transform = transforms.FiveCrop((crop_h, crop_w))

            img = torch.FloatTensor(3, h, w).uniform_()
            results = transform(to_pil_image(img))

155
            self.assertEqual(len(results), 5)
156
            for crop in results:
157
                self.assertEqual(crop.size, (crop_w, crop_h))
158
159
160
161
162
163
164
165

            to_pil_image = transforms.ToPILImage()
            tl = to_pil_image(img[:, 0:crop_h, 0:crop_w])
            tr = to_pil_image(img[:, 0:crop_h, w - crop_w:])
            bl = to_pil_image(img[:, h - crop_h:, 0:crop_w])
            br = to_pil_image(img[:, h - crop_h:, w - crop_w:])
            center = transforms.CenterCrop((crop_h, crop_w))(to_pil_image(img))
            expected_output = (tl, tr, bl, br, center)
166
            self.assertEqual(results, expected_output)
167
168
169
170
171
172
173
174
175
176
177
178

    def test_ten_crop(self):
        to_pil_image = transforms.ToPILImage()
        h = random.randint(5, 25)
        w = random.randint(5, 25)
        for should_vflip in [True, False]:
            for single_dim in [True, False]:
                crop_h = random.randint(1, h)
                crop_w = random.randint(1, w)
                if single_dim:
                    crop_h = min(crop_h, crop_w)
                    crop_w = crop_h
179
180
                    transform = transforms.TenCrop(crop_h,
                                                   vertical_flip=should_vflip)
181
182
                    five_crop = transforms.FiveCrop(crop_h)
                else:
183
184
                    transform = transforms.TenCrop((crop_h, crop_w),
                                                   vertical_flip=should_vflip)
185
186
187
188
189
                    five_crop = transforms.FiveCrop((crop_h, crop_w))

                img = to_pil_image(torch.FloatTensor(3, h, w).uniform_())
                results = transform(img)
                expected_output = five_crop(img)
190
191
192
193
194

                # Checking if FiveCrop and TenCrop can be printed as string
                transform.__repr__()
                five_crop.__repr__()

195
196
197
198
199
200
201
                if should_vflip:
                    vflipped_img = img.transpose(Image.FLIP_TOP_BOTTOM)
                    expected_output += five_crop(vflipped_img)
                else:
                    hflipped_img = img.transpose(Image.FLIP_LEFT_RIGHT)
                    expected_output += five_crop(hflipped_img)

202
203
                self.assertEqual(len(results), 10)
                self.assertEqual(results, expected_output)
204

205
206
207
208
209
210
211
212
    def test_randomresized_params(self):
        height = random.randint(24, 32) * 2
        width = random.randint(24, 32) * 2
        img = torch.ones(3, height, width)
        to_pil_image = transforms.ToPILImage()
        img = to_pil_image(img)
        size = 100
        epsilon = 0.05
213
        min_scale = 0.25
Francisco Massa's avatar
Francisco Massa committed
214
        for _ in range(10):
215
            scale_min = max(round(random.random(), 2), min_scale)
216
            scale_range = (scale_min, scale_min + round(random.random(), 2))
217
            aspect_min = max(round(random.random(), 2), epsilon)
218
219
            aspect_ratio_range = (aspect_min, aspect_min + round(random.random(), 2))
            randresizecrop = transforms.RandomResizedCrop(size, scale_range, aspect_ratio_range)
220
            i, j, h, w = randresizecrop.get_params(img, scale_range, aspect_ratio_range)
221
            aspect_ratio_obtained = w / h
222
223
224
225
226
227
228
            self.assertTrue((min(aspect_ratio_range) - epsilon <= aspect_ratio_obtained and
                             aspect_ratio_obtained <= max(aspect_ratio_range) + epsilon) or
                            aspect_ratio_obtained == 1.0)
            self.assertIsInstance(i, int)
            self.assertIsInstance(j, int)
            self.assertIsInstance(h, int)
            self.assertIsInstance(w, int)
229

230
    def test_randomperspective(self):
Francisco Massa's avatar
Francisco Massa committed
231
        for _ in range(10):
232
233
234
235
236
237
238
239
240
241
            height = random.randint(24, 32) * 2
            width = random.randint(24, 32) * 2
            img = torch.ones(3, height, width)
            to_pil_image = transforms.ToPILImage()
            img = to_pil_image(img)
            perp = transforms.RandomPerspective()
            startpoints, endpoints = perp.get_params(width, height, 0.5)
            tr_img = F.perspective(img, startpoints, endpoints)
            tr_img2 = F.to_tensor(F.perspective(tr_img, endpoints, startpoints))
            tr_img = F.to_tensor(tr_img)
242
243
244
245
            self.assertEqual(img.size[0], width)
            self.assertEqual(img.size[1], height)
            self.assertGreater(torch.nn.functional.mse_loss(tr_img, F.to_tensor(img)) + 0.3,
                               torch.nn.functional.mse_loss(tr_img2, F.to_tensor(img)))
246

247
    def test_randomperspective_fill(self):
248
249
250
251
252
253
254
255

        # assert fill being either a Sequence or a Number
        with self.assertRaises(TypeError):
            transforms.RandomPerspective(fill={})

        t = transforms.RandomPerspective(fill=None)
        self.assertTrue(t.fill == 0)

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
        height = 100
        width = 100
        img = torch.ones(3, height, width)
        to_pil_image = transforms.ToPILImage()
        img = to_pil_image(img)

        modes = ("L", "RGB", "F")
        nums_bands = [len(mode) for mode in modes]
        fill = 127

        for mode, num_bands in zip(modes, nums_bands):
            img_conv = img.convert(mode)
            perspective = transforms.RandomPerspective(p=1, fill=fill)
            tr_img = perspective(img_conv)
            pixel = tr_img.getpixel((0, 0))

            if not isinstance(pixel, tuple):
                pixel = (pixel,)
            self.assertTupleEqual(pixel, tuple([fill] * num_bands))

        for mode, num_bands in zip(modes, nums_bands):
            img_conv = img.convert(mode)
            startpoints, endpoints = transforms.RandomPerspective.get_params(width, height, 0.5)
            tr_img = F.perspective(img_conv, startpoints, endpoints, fill=fill)
            pixel = tr_img.getpixel((0, 0))
281

282
283
284
285
286
287
288
289
            if not isinstance(pixel, tuple):
                pixel = (pixel,)
            self.assertTupleEqual(pixel, tuple([fill] * num_bands))

            for wrong_num_bands in set(nums_bands) - {num_bands}:
                with self.assertRaises(ValueError):
                    F.perspective(img_conv, startpoints, endpoints, fill=tuple([fill] * wrong_num_bands))

290
    def test_resize(self):
291

292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
        input_sizes = [
            # height, width
            # square image
            (28, 28),
            (27, 27),
            # rectangular image: h < w
            (28, 34),
            (29, 35),
            # rectangular image: h > w
            (34, 28),
            (35, 29),
        ]
        test_output_sizes_1 = [
            # single integer
            22, 27, 28, 36,
            # single integer in tuple/list
            [22, ], (27, ),
        ]
        test_output_sizes_2 = [
            # two integers
            [22, 22], [22, 28], [22, 36],
            [27, 22], [36, 22], [28, 28],
            [28, 37], [37, 27], [37, 37]
        ]

        for height, width in input_sizes:
            img = Image.new("RGB", size=(width, height), color=127)

            for osize in test_output_sizes_1:
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
                for max_size in (None, 37, 1000):

                    t = transforms.Resize(osize, max_size=max_size)
                    result = t(img)

                    msg = "{}, {} - {} - {}".format(height, width, osize, max_size)
                    osize = osize[0] if isinstance(osize, (list, tuple)) else osize
                    # If size is an int, smaller edge of the image will be matched to this number.
                    # i.e, if height > width, then image will be rescaled to (size * height / width, size).
                    if height < width:
                        exp_w, exp_h = (int(osize * width / height), osize)  # (w, h)
                        if max_size is not None and max_size < exp_w:
                            exp_w, exp_h = max_size, int(max_size * exp_h / exp_w)
                        self.assertEqual(result.size, (exp_w, exp_h), msg=msg)
                    elif width < height:
                        exp_w, exp_h = (osize, int(osize * height / width))  # (w, h)
                        if max_size is not None and max_size < exp_h:
                            exp_w, exp_h = int(max_size * exp_w / exp_h), max_size
                        self.assertEqual(result.size, (exp_w, exp_h), msg=msg)
                    else:
                        exp_w, exp_h = (osize, osize)  # (w, h)
                        if max_size is not None and max_size < osize:
                            exp_w, exp_h = max_size, max_size
                        self.assertEqual(result.size, (exp_w, exp_h), msg=msg)
345

346
347
        for height, width in input_sizes:
            img = Image.new("RGB", size=(width, height), color=127)
348

349
350
            for osize in test_output_sizes_2:
                oheight, owidth = osize
351

352
353
                t = transforms.Resize(osize)
                result = t(img)
354

355
                self.assertEqual((owidth, oheight), result.size)
356

357
358
359
360
        with self.assertWarnsRegex(UserWarning, r"Anti-alias option is always applied for PIL Image input"):
            t = transforms.Resize(osize, antialias=False)
            t(img)

361
362
363
364
    def test_random_crop(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        oheight = random.randint(5, (height - 2) / 2) * 2
365
        owidth = random.randint(5, (width - 2) / 2) * 2
366
367
368
369
370
371
        img = torch.ones(3, height, width)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
372
373
        self.assertEqual(result.size(1), oheight)
        self.assertEqual(result.size(2), owidth)
374

375
376
377
378
379
380
        padding = random.randint(1, 20)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth), padding=padding),
            transforms.ToTensor(),
        ])(img)
381
382
        self.assertEqual(result.size(1), oheight)
        self.assertEqual(result.size(2), owidth)
383

384
385
386
387
388
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((height, width)),
            transforms.ToTensor()
        ])(img)
389
390
        self.assertEqual(result.size(1), height)
        self.assertEqual(result.size(2), width)
391
        torch.testing.assert_close(result, img)
392

393
394
395
396
397
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((height + 1, width + 1), pad_if_needed=True),
            transforms.ToTensor(),
        ])(img)
398
399
        self.assertEqual(result.size(1), height + 1)
        self.assertEqual(result.size(2), width + 1)
400

vfdev's avatar
vfdev committed
401
402
403
404
405
        t = transforms.RandomCrop(48)
        img = torch.ones(3, 32, 32)
        with self.assertRaisesRegex(ValueError, r"Required crop size .+ is larger then input image size .+"):
            t(img)

406
    def test_to_tensor(self):
407
        test_channels = [1, 3, 4]
408
409
        height, width = 4, 4
        trans = transforms.ToTensor()
410

411
412
413
414
415
416
417
        with self.assertRaises(TypeError):
            trans(np.random.rand(1, height, width).tolist())

        with self.assertRaises(ValueError):
            trans(np.random.rand(height))
            trans(np.random.rand(1, 1, height, width))

418
419
420
421
        for channels in test_channels:
            input_data = torch.ByteTensor(channels, height, width).random_(0, 255).float().div_(255)
            img = transforms.ToPILImage()(input_data)
            output = trans(img)
422
            torch.testing.assert_close(output, input_data, check_stride=False)
423

424
            ndarray = np.random.randint(low=0, high=255, size=(height, width, channels)).astype(np.uint8)
425
426
            output = trans(ndarray)
            expected_output = ndarray.transpose((2, 0, 1)) / 255.0
427
            torch.testing.assert_close(output.numpy(), expected_output, check_stride=False, check_dtype=False)
428

429
430
431
            ndarray = np.random.rand(height, width, channels).astype(np.float32)
            output = trans(ndarray)
            expected_output = ndarray.transpose((2, 0, 1))
432
            torch.testing.assert_close(output.numpy(), expected_output, check_stride=False, check_dtype=False)
433

434
435
436
437
        # separate test for mode '1' PIL images
        input_data = torch.ByteTensor(1, height, width).bernoulli_()
        img = transforms.ToPILImage()(input_data.mul(255)).convert('1')
        output = trans(img)
438
        torch.testing.assert_close(input_data, output, check_dtype=False, check_stride=False)
439

440
441
442
443
444
445
446
447
448
449
450
451
452
453
    def test_to_tensor_with_other_default_dtypes(self):
        current_def_dtype = torch.get_default_dtype()

        t = transforms.ToTensor()
        np_arr = np.random.randint(0, 255, (32, 32, 3), dtype=np.uint8)
        img = Image.fromarray(np_arr)

        for dtype in [torch.float16, torch.float, torch.double]:
            torch.set_default_dtype(dtype)
            res = t(img)
            self.assertTrue(res.dtype == dtype, msg=f"{res.dtype} vs {dtype}")

        torch.set_default_dtype(current_def_dtype)

454
455
456
457
    def test_max_value(self):
        for dtype in int_dtypes():
            self.assertEqual(F_t._max_value(dtype), torch.iinfo(dtype).max)

458
459
460
461
        # remove float testing as it can lead to errors such as
        # runtime error: 5.7896e+76 is outside the range of representable values of type 'float'
        # for dtype in float_dtypes():
        #     self.assertGreater(F_t._max_value(dtype), torch.finfo(dtype).max)
462

463
464
465
466
467
468
    def test_convert_image_dtype_float_to_float(self):
        for input_dtype, output_dtypes in cycle_over(float_dtypes()):
            input_image = torch.tensor((0.0, 1.0), dtype=input_dtype)
            for output_dtype in output_dtypes:
                with self.subTest(input_dtype=input_dtype, output_dtype=output_dtype):
                    transform = transforms.ConvertImageDtype(output_dtype)
469
470
                    transform_script = torch.jit.script(F.convert_image_dtype)

471
                    output_image = transform(input_image)
472
473
                    output_image_script = transform_script(input_image, output_dtype)

474
                    torch.testing.assert_close(output_image_script, output_image, rtol=0.0, atol=1e-6)
475
476
477
478
479
480
481
482
483
484
485
486
487

                    actual_min, actual_max = output_image.tolist()
                    desired_min, desired_max = 0.0, 1.0

                    self.assertAlmostEqual(actual_min, desired_min)
                    self.assertAlmostEqual(actual_max, desired_max)

    def test_convert_image_dtype_float_to_int(self):
        for input_dtype in float_dtypes():
            input_image = torch.tensor((0.0, 1.0), dtype=input_dtype)
            for output_dtype in int_dtypes():
                with self.subTest(input_dtype=input_dtype, output_dtype=output_dtype):
                    transform = transforms.ConvertImageDtype(output_dtype)
488
                    transform_script = torch.jit.script(F.convert_image_dtype)
489
490
491
492
493
494
495
496

                    if (input_dtype == torch.float32 and output_dtype in (torch.int32, torch.int64)) or (
                            input_dtype == torch.float64 and output_dtype == torch.int64
                    ):
                        with self.assertRaises(RuntimeError):
                            transform(input_image)
                    else:
                        output_image = transform(input_image)
497
498
                        output_image_script = transform_script(input_image, output_dtype)

499
                        torch.testing.assert_close(output_image_script, output_image, rtol=0.0, atol=1e-6)
500
501
502
503
504
505
506
507
508
509
510
511
512

                        actual_min, actual_max = output_image.tolist()
                        desired_min, desired_max = 0, torch.iinfo(output_dtype).max

                        self.assertEqual(actual_min, desired_min)
                        self.assertEqual(actual_max, desired_max)

    def test_convert_image_dtype_int_to_float(self):
        for input_dtype in int_dtypes():
            input_image = torch.tensor((0, torch.iinfo(input_dtype).max), dtype=input_dtype)
            for output_dtype in float_dtypes():
                with self.subTest(input_dtype=input_dtype, output_dtype=output_dtype):
                    transform = transforms.ConvertImageDtype(output_dtype)
513
514
                    transform_script = torch.jit.script(F.convert_image_dtype)

515
                    output_image = transform(input_image)
516
517
                    output_image_script = transform_script(input_image, output_dtype)

518
                    torch.testing.assert_close(output_image_script, output_image, rtol=0.0, atol=1e-6)
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536

                    actual_min, actual_max = output_image.tolist()
                    desired_min, desired_max = 0.0, 1.0

                    self.assertAlmostEqual(actual_min, desired_min)
                    self.assertGreaterEqual(actual_min, desired_min)
                    self.assertAlmostEqual(actual_max, desired_max)
                    self.assertLessEqual(actual_max, desired_max)

    def test_convert_image_dtype_int_to_int(self):
        for input_dtype, output_dtypes in cycle_over(int_dtypes()):
            input_max = torch.iinfo(input_dtype).max
            input_image = torch.tensor((0, input_max), dtype=input_dtype)
            for output_dtype in output_dtypes:
                output_max = torch.iinfo(output_dtype).max

                with self.subTest(input_dtype=input_dtype, output_dtype=output_dtype):
                    transform = transforms.ConvertImageDtype(output_dtype)
537
538
                    transform_script = torch.jit.script(F.convert_image_dtype)

539
                    output_image = transform(input_image)
540
541
                    output_image_script = transform_script(input_image, output_dtype)

542
543
544
545
546
547
                    torch.testing.assert_close(
                        output_image_script,
                        output_image,
                        rtol=0.0,
                        atol=1e-6,
                        msg="{} vs {}".format(output_image_script, output_image),
548
                    )
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581

                    actual_min, actual_max = output_image.tolist()
                    desired_min, desired_max = 0, output_max

                    # see https://github.com/pytorch/vision/pull/2078#issuecomment-641036236 for details
                    if input_max >= output_max:
                        error_term = 0
                    else:
                        error_term = 1 - (torch.iinfo(output_dtype).max + 1) // (torch.iinfo(input_dtype).max + 1)

                    self.assertEqual(actual_min, desired_min)
                    self.assertEqual(actual_max, desired_max + error_term)

    def test_convert_image_dtype_int_to_int_consistency(self):
        for input_dtype, output_dtypes in cycle_over(int_dtypes()):
            input_max = torch.iinfo(input_dtype).max
            input_image = torch.tensor((0, input_max), dtype=input_dtype)
            for output_dtype in output_dtypes:
                output_max = torch.iinfo(output_dtype).max
                if output_max <= input_max:
                    continue

                with self.subTest(input_dtype=input_dtype, output_dtype=output_dtype):
                    transform = transforms.ConvertImageDtype(output_dtype)
                    inverse_transfrom = transforms.ConvertImageDtype(input_dtype)
                    output_image = inverse_transfrom(transform(input_image))

                    actual_min, actual_max = output_image.tolist()
                    desired_min, desired_max = 0, input_max

                    self.assertEqual(actual_min, desired_min)
                    self.assertEqual(actual_max, desired_max)

582
583
584
585
586
587
588
    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_to_tensor(self):
        trans = transforms.ToTensor()

        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

589
        torch.testing.assert_close(output, expected_output)
590
591
592
593
594
595
596
597
598
599
600
601
602
603

    def test_pil_to_tensor(self):
        test_channels = [1, 3, 4]
        height, width = 4, 4
        trans = transforms.PILToTensor()

        with self.assertRaises(TypeError):
            trans(np.random.rand(1, height, width).tolist())
            trans(np.random.rand(1, height, width))

        for channels in test_channels:
            input_data = torch.ByteTensor(channels, height, width).random_(0, 255)
            img = transforms.ToPILImage()(input_data)
            output = trans(img)
604
            torch.testing.assert_close(input_data, output, check_stride=False)
605
606
607
608
609

            input_data = np.random.randint(low=0, high=255, size=(height, width, channels)).astype(np.uint8)
            img = transforms.ToPILImage()(input_data)
            output = trans(img)
            expected_output = input_data.transpose((2, 0, 1))
610
            torch.testing.assert_close(output.numpy(), expected_output)
611
612
613
614
615

            input_data = torch.as_tensor(np.random.rand(channels, height, width).astype(np.float32))
            img = transforms.ToPILImage()(input_data)  # CHW -> HWC and (* 255).byte()
            output = trans(img)  # HWC -> CHW
            expected_output = (input_data * 255).byte()
616
            torch.testing.assert_close(output, expected_output, check_stride=False)
617
618
619
620

        # separate test for mode '1' PIL images
        input_data = torch.ByteTensor(1, height, width).bernoulli_()
        img = transforms.ToPILImage()(input_data.mul(255)).convert('1')
621
622
        output = trans(img).view(torch.uint8).bool().to(torch.uint8)
        torch.testing.assert_close(input_data, output, check_stride=False)
623
624
625
626
627
628
629
630
631

    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_pil_to_tensor(self):
        trans = transforms.PILToTensor()

        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
632
        torch.testing.assert_close(output, expected_output, check_stride=False)
633
634
635
636

    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_resize(self):
        trans = transforms.Compose([
637
            transforms.Resize(256, interpolation=Image.LINEAR),
638
639
640
            transforms.ToTensor(),
        ])

641
642
643
        # Checking if Compose, Resize and ToTensor can be printed as string
        trans.__repr__()

644
645
646
647
648
649
650
        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
        self.assertLess(np.abs((expected_output - output).mean()), 1e-3)
        self.assertLess((expected_output - output).var(), 1e-5)
        # note the high absolute tolerance
651
        self.assertTrue(np.allclose(output.numpy(), expected_output.numpy(), atol=5e-2))
652
653
654
655
656
657
658
659

    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_crop(self):
        trans = transforms.Compose([
            transforms.CenterCrop(256),
            transforms.ToTensor(),
        ])

660
661
662
        # Checking if Compose, CenterCrop and ToTensor can be printed as string
        trans.__repr__()

663
664
665
666
        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
667
        torch.testing.assert_close(output, expected_output)
668

669
    def test_1_channel_tensor_to_pil_image(self):
670
671
        to_tensor = transforms.ToTensor()

672
        img_data_float = torch.Tensor(1, 4, 4).uniform_()
673
674
675
676
        img_data_byte = torch.ByteTensor(1, 4, 4).random_(0, 255)
        img_data_short = torch.ShortTensor(1, 4, 4).random_()
        img_data_int = torch.IntTensor(1, 4, 4).random_()

677
678
679
680
681
682
683
684
685
686
        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_outputs = [img_data_float.mul(255).int().float().div(255).numpy(),
                            img_data_byte.float().div(255.0).numpy(),
                            img_data_short.numpy(),
                            img_data_int.numpy()]
        expected_modes = ['L', 'L', 'I;16', 'I']

        for img_data, expected_output, mode in zip(inputs, expected_outputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
687
                self.assertEqual(img.mode, mode)
688
                torch.testing.assert_close(expected_output, to_tensor(img).numpy(), check_stride=False)
689
690
        # 'F' mode for torch.FloatTensor
        img_F_mode = transforms.ToPILImage(mode='F')(img_data_float)
691
        self.assertEqual(img_F_mode.mode, 'F')
692
693
694
        torch.testing.assert_close(
            np.array(Image.fromarray(img_data_float.squeeze(0).numpy(), mode='F')), np.array(img_F_mode)
        )
695
696
697
698
699
700
701
702
703
704
705
706

    def test_1_channel_ndarray_to_pil_image(self):
        img_data_float = torch.Tensor(4, 4, 1).uniform_().numpy()
        img_data_byte = torch.ByteTensor(4, 4, 1).random_(0, 255).numpy()
        img_data_short = torch.ShortTensor(4, 4, 1).random_().numpy()
        img_data_int = torch.IntTensor(4, 4, 1).random_().numpy()

        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_modes = ['F', 'L', 'I;16', 'I']
        for img_data, mode in zip(inputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
707
                self.assertEqual(img.mode, mode)
708
709
710
                # note: we explicitly convert img's dtype because pytorch doesn't support uint16
                # and otherwise assert_close wouldn't be able to construct a tensor from the uint16 array
                torch.testing.assert_close(img_data[:, :, 0], np.asarray(img).astype(img_data.dtype))
711

surgan12's avatar
surgan12 committed
712
713
714
715
    def test_2_channel_ndarray_to_pil_image(self):
        def verify_img_data(img_data, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
716
                self.assertEqual(img.mode, 'LA')  # default should assume LA
surgan12's avatar
surgan12 committed
717
718
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
719
                self.assertEqual(img.mode, mode)
surgan12's avatar
surgan12 committed
720
721
            split = img.split()
            for i in range(2):
722
                torch.testing.assert_close(img_data[:, :, i], np.asarray(split[i]), check_stride=False)
surgan12's avatar
surgan12 committed
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739

        img_data = torch.ByteTensor(4, 4, 2).random_(0, 255).numpy()
        for mode in [None, 'LA']:
            verify_img_data(img_data, mode)

        transforms.ToPILImage().__repr__()

        with self.assertRaises(ValueError):
            # should raise if we try a mode for 4 or 1 or 3 channel images
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
            transforms.ToPILImage(mode='RGB')(img_data)

    def test_2_channel_tensor_to_pil_image(self):
        def verify_img_data(img_data, expected_output, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
740
                self.assertEqual(img.mode, 'LA')  # default should assume LA
surgan12's avatar
surgan12 committed
741
742
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
743
                self.assertEqual(img.mode, mode)
surgan12's avatar
surgan12 committed
744
745
            split = img.split()
            for i in range(2):
746
                self.assertTrue(np.allclose(expected_output[i].numpy(), F.to_tensor(split[i]).numpy()))
surgan12's avatar
surgan12 committed
747
748
749
750
751
752
753
754
755
756
757
758

        img_data = torch.Tensor(2, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)
        for mode in [None, 'LA']:
            verify_img_data(img_data, expected_output, mode=mode)

        with self.assertRaises(ValueError):
            # should raise if we try a mode for 4 or 1 or 3 channel images
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
            transforms.ToPILImage(mode='RGB')(img_data)

759
760
761
762
    def test_3_channel_tensor_to_pil_image(self):
        def verify_img_data(img_data, expected_output, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
763
                self.assertEqual(img.mode, 'RGB')  # default should assume RGB
764
765
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
766
                self.assertEqual(img.mode, mode)
767
768
            split = img.split()
            for i in range(3):
769
                self.assertTrue(np.allclose(expected_output[i].numpy(), F.to_tensor(split[i]).numpy()))
770

771
772
773
774
        img_data = torch.Tensor(3, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)
        for mode in [None, 'RGB', 'HSV', 'YCbCr']:
            verify_img_data(img_data, expected_output, mode=mode)
775

776
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
777
            # should raise if we try a mode for 4 or 1 or 2 channel images
778
779
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
780
            transforms.ToPILImage(mode='LA')(img_data)
781

Varun Agrawal's avatar
Varun Agrawal committed
782
783
784
        with self.assertRaises(ValueError):
            transforms.ToPILImage()(torch.Tensor(1, 3, 4, 4).uniform_())

785
786
787
788
    def test_3_channel_ndarray_to_pil_image(self):
        def verify_img_data(img_data, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
789
                self.assertEqual(img.mode, 'RGB')  # default should assume RGB
790
791
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
792
                self.assertEqual(img.mode, mode)
793
794
            split = img.split()
            for i in range(3):
795
                torch.testing.assert_close(img_data[:, :, i], np.asarray(split[i]), check_stride=False)
796

797
798
799
800
        img_data = torch.ByteTensor(4, 4, 3).random_(0, 255).numpy()
        for mode in [None, 'RGB', 'HSV', 'YCbCr']:
            verify_img_data(img_data, mode)

801
802
803
        # Checking if ToPILImage can be printed as string
        transforms.ToPILImage().__repr__()

804
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
805
            # should raise if we try a mode for 4 or 1 or 2 channel images
806
807
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
808
            transforms.ToPILImage(mode='LA')(img_data)
809
810
811
812
813

    def test_4_channel_tensor_to_pil_image(self):
        def verify_img_data(img_data, expected_output, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
814
                self.assertEqual(img.mode, 'RGBA')  # default should assume RGBA
815
816
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
817
                self.assertEqual(img.mode, mode)
818
819
820

            split = img.split()
            for i in range(4):
821
                self.assertTrue(np.allclose(expected_output[i].numpy(), F.to_tensor(split[i]).numpy()))
822

823
        img_data = torch.Tensor(4, 4, 4).uniform_()
824
        expected_output = img_data.mul(255).int().float().div(255)
surgan12's avatar
surgan12 committed
825
        for mode in [None, 'RGBA', 'CMYK', 'RGBX']:
826
            verify_img_data(img_data, expected_output, mode)
827

828
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
829
            # should raise if we try a mode for 3 or 1 or 2 channel images
830
831
            transforms.ToPILImage(mode='RGB')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
832
            transforms.ToPILImage(mode='LA')(img_data)
833
834
835
836
837

    def test_4_channel_ndarray_to_pil_image(self):
        def verify_img_data(img_data, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
838
                self.assertEqual(img.mode, 'RGBA')  # default should assume RGBA
839
840
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
841
                self.assertEqual(img.mode, mode)
842
843
            split = img.split()
            for i in range(4):
844
                torch.testing.assert_close(img_data[:, :, i], np.asarray(split[i]), check_stride=False)
845

846
        img_data = torch.ByteTensor(4, 4, 4).random_(0, 255).numpy()
surgan12's avatar
surgan12 committed
847
        for mode in [None, 'RGBA', 'CMYK', 'RGBX']:
848
            verify_img_data(img_data, mode)
849

850
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
851
            # should raise if we try a mode for 3 or 1 or 2 channel images
852
853
            transforms.ToPILImage(mode='RGB')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
854
            transforms.ToPILImage(mode='LA')(img_data)
855

Varun Agrawal's avatar
Varun Agrawal committed
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
    def test_2d_tensor_to_pil_image(self):
        to_tensor = transforms.ToTensor()

        img_data_float = torch.Tensor(4, 4).uniform_()
        img_data_byte = torch.ByteTensor(4, 4).random_(0, 255)
        img_data_short = torch.ShortTensor(4, 4).random_()
        img_data_int = torch.IntTensor(4, 4).random_()

        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_outputs = [img_data_float.mul(255).int().float().div(255).numpy(),
                            img_data_byte.float().div(255.0).numpy(),
                            img_data_short.numpy(),
                            img_data_int.numpy()]
        expected_modes = ['L', 'L', 'I;16', 'I']

        for img_data, expected_output, mode in zip(inputs, expected_outputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
874
                self.assertEqual(img.mode, mode)
875
                np.testing.assert_allclose(expected_output, to_tensor(img).numpy()[0])
Varun Agrawal's avatar
Varun Agrawal committed
876
877
878
879
880
881
882
883
884
885
886
887

    def test_2d_ndarray_to_pil_image(self):
        img_data_float = torch.Tensor(4, 4).uniform_().numpy()
        img_data_byte = torch.ByteTensor(4, 4).random_(0, 255).numpy()
        img_data_short = torch.ShortTensor(4, 4).random_().numpy()
        img_data_int = torch.IntTensor(4, 4).random_().numpy()

        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_modes = ['F', 'L', 'I;16', 'I']
        for img_data, mode in zip(inputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
888
                self.assertEqual(img.mode, mode)
889
                np.testing.assert_allclose(img_data, img)
Varun Agrawal's avatar
Varun Agrawal committed
890
891

    def test_tensor_bad_types_to_pil_image(self):
892
        with self.assertRaisesRegex(ValueError, r'pic should be 2/3 dimensional. Got \d+ dimensions.'):
Varun Agrawal's avatar
Varun Agrawal committed
893
            transforms.ToPILImage()(torch.ones(1, 3, 4, 4))
894
895
        with self.assertRaisesRegex(ValueError, r'pic should not have > 4 channels. Got \d+ channels.'):
            transforms.ToPILImage()(torch.ones(6, 4, 4))
Varun Agrawal's avatar
Varun Agrawal committed
896

897
    def test_ndarray_bad_types_to_pil_image(self):
898
        trans = transforms.ToPILImage()
899
900
        reg_msg = r'Input type \w+ is not supported'
        with self.assertRaisesRegex(TypeError, reg_msg):
901
            trans(np.ones([4, 4, 1], np.int64))
902
        with self.assertRaisesRegex(TypeError, reg_msg):
903
            trans(np.ones([4, 4, 1], np.uint16))
904
        with self.assertRaisesRegex(TypeError, reg_msg):
905
            trans(np.ones([4, 4, 1], np.uint32))
906
        with self.assertRaisesRegex(TypeError, reg_msg):
907
908
            trans(np.ones([4, 4, 1], np.float64))

909
        with self.assertRaisesRegex(ValueError, r'pic should be 2/3 dimensional. Got \d+ dimensions.'):
Varun Agrawal's avatar
Varun Agrawal committed
910
            transforms.ToPILImage()(np.ones([1, 4, 4, 3]))
911
912
        with self.assertRaisesRegex(ValueError, r'pic should not have > 4 channels. Got \d+ channels.'):
            transforms.ToPILImage()(np.ones([4, 4, 6]))
Varun Agrawal's avatar
Varun Agrawal committed
913

914
915
    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_vertical_flip(self):
916
917
        random_state = random.getstate()
        random.seed(42)
918
919
920
        img = transforms.ToPILImage()(torch.rand(3, 10, 10))
        vimg = img.transpose(Image.FLIP_TOP_BOTTOM)

921
        num_samples = 250
922
        num_vertical = 0
923
        for _ in range(num_samples):
924
925
926
927
            out = transforms.RandomVerticalFlip()(img)
            if out == vimg:
                num_vertical += 1

928
929
        p_value = stats.binom_test(num_vertical, num_samples, p=0.5)
        random.setstate(random_state)
930
        self.assertGreater(p_value, 0.0001)
931

932
933
934
935
936
937
938
939
940
        num_samples = 250
        num_vertical = 0
        for _ in range(num_samples):
            out = transforms.RandomVerticalFlip(p=0.7)(img)
            if out == vimg:
                num_vertical += 1

        p_value = stats.binom_test(num_vertical, num_samples, p=0.7)
        random.setstate(random_state)
941
        self.assertGreater(p_value, 0.0001)
942

943
944
945
        # Checking if RandomVerticalFlip can be printed as string
        transforms.RandomVerticalFlip().__repr__()

946
947
    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_horizontal_flip(self):
948
949
        random_state = random.getstate()
        random.seed(42)
950
951
952
        img = transforms.ToPILImage()(torch.rand(3, 10, 10))
        himg = img.transpose(Image.FLIP_LEFT_RIGHT)

953
        num_samples = 250
954
        num_horizontal = 0
955
        for _ in range(num_samples):
956
957
958
959
            out = transforms.RandomHorizontalFlip()(img)
            if out == himg:
                num_horizontal += 1

960
961
        p_value = stats.binom_test(num_horizontal, num_samples, p=0.5)
        random.setstate(random_state)
962
        self.assertGreater(p_value, 0.0001)
963

964
965
966
967
968
969
970
971
972
        num_samples = 250
        num_horizontal = 0
        for _ in range(num_samples):
            out = transforms.RandomHorizontalFlip(p=0.7)(img)
            if out == himg:
                num_horizontal += 1

        p_value = stats.binom_test(num_horizontal, num_samples, p=0.7)
        random.setstate(random_state)
973
        self.assertGreater(p_value, 0.0001)
974

975
976
977
        # Checking if RandomHorizontalFlip can be printed as string
        transforms.RandomHorizontalFlip().__repr__()

978
    @unittest.skipIf(stats is None, 'scipy.stats is not available')
979
980
981
982
983
984
985
986
987
988
989
990
    def test_normalize(self):
        def samples_from_standard_normal(tensor):
            p_value = stats.kstest(list(tensor.view(-1)), 'norm', args=(0, 1)).pvalue
            return p_value > 0.0001

        random_state = random.getstate()
        random.seed(42)
        for channels in [1, 3]:
            img = torch.rand(channels, 10, 10)
            mean = [img[c].mean() for c in range(channels)]
            std = [img[c].std() for c in range(channels)]
            normalized = transforms.Normalize(mean, std)(img)
991
            self.assertTrue(samples_from_standard_normal(normalized))
992
993
        random.setstate(random_state)

994
995
996
        # Checking if Normalize can be printed as string
        transforms.Normalize(mean, std).__repr__()

997
998
999
        # Checking the optional in-place behaviour
        tensor = torch.rand((1, 16, 16))
        tensor_inplace = transforms.Normalize((0.5,), (0.5,), inplace=True)(tensor)
1000
        assert_equal(tensor, tensor_inplace)
1001

1002
1003
1004
1005
1006
1007
1008
1009
1010
    def test_normalize_different_dtype(self):
        for dtype1 in [torch.float32, torch.float64]:
            img = torch.rand(3, 10, 10, dtype=dtype1)
            for dtype2 in [torch.int64, torch.float32, torch.float64]:
                mean = torch.tensor([1, 2, 3], dtype=dtype2)
                std = torch.tensor([1, 2, 1], dtype=dtype2)
                # checks that it doesn't crash
                transforms.functional.normalize(img, mean, std)

1011
1012
1013
1014
1015
1016
1017
    def test_normalize_3d_tensor(self):
        torch.manual_seed(28)
        n_channels = 3
        img_size = 10
        mean = torch.rand(n_channels)
        std = torch.rand(n_channels)
        img = torch.rand(n_channels, img_size, img_size)
1018
        target = F.normalize(img, mean, std)
1019
1020
1021
1022
1023
1024
1025

        mean_unsqueezed = mean.view(-1, 1, 1)
        std_unsqueezed = std.view(-1, 1, 1)
        result1 = F.normalize(img, mean_unsqueezed, std_unsqueezed)
        result2 = F.normalize(img,
                              mean_unsqueezed.repeat(1, img_size, img_size),
                              std_unsqueezed.repeat(1, img_size, img_size))
1026
1027
        torch.testing.assert_close(target, result1)
        torch.testing.assert_close(target, result2)
1028

1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
    def test_color_jitter(self):
        color_jitter = transforms.ColorJitter(2, 2, 2, 0.1)

        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')

        for i in range(10):
            y_pil = color_jitter(x_pil)
1040
            self.assertEqual(y_pil.mode, x_pil.mode)
1041
1042

            y_pil_2 = color_jitter(x_pil_2)
1043
            self.assertEqual(y_pil_2.mode, x_pil_2.mode)
1044

1045
1046
1047
        # Checking if ColorJitter can be printed as string
        color_jitter.__repr__()

1048
    def test_linear_transformation(self):
ekka's avatar
ekka committed
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
        num_samples = 1000
        x = torch.randn(num_samples, 3, 10, 10)
        flat_x = x.view(x.size(0), x.size(1) * x.size(2) * x.size(3))
        # compute principal components
        sigma = torch.mm(flat_x.t(), flat_x) / flat_x.size(0)
        u, s, _ = np.linalg.svd(sigma.numpy())
        zca_epsilon = 1e-10  # avoid division by 0
        d = torch.Tensor(np.diag(1. / np.sqrt(s + zca_epsilon)))
        u = torch.Tensor(u)
        principal_components = torch.mm(torch.mm(u, d), u.t())
        mean_vector = (torch.sum(flat_x, dim=0) / flat_x.size(0))
        # initialize whitening matrix
1061
        whitening = transforms.LinearTransformation(principal_components, mean_vector)
ekka's avatar
ekka committed
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
        # estimate covariance and mean using weak law of large number
        num_features = flat_x.size(1)
        cov = 0.0
        mean = 0.0
        for i in x:
            xwhite = whitening(i)
            xwhite = xwhite.view(1, -1).numpy()
            cov += np.dot(xwhite, xwhite.T) / num_features
            mean += np.sum(xwhite) / num_features
        # if rtol for std = 1e-3 then rtol for cov = 2e-3 as std**2 = cov
1072
1073
1074
1075
        torch.testing.assert_close(cov / num_samples, np.identity(1), rtol=2e-3, atol=1e-8, check_dtype=False,
                                   msg="cov not close to 1")
        torch.testing.assert_close(mean / num_samples, 0, rtol=1e-3, atol=1e-8, check_dtype=False,
                                   msg="mean not close to 0")
ekka's avatar
ekka committed
1076

1077
        # Checking if LinearTransformation can be printed as string
ekka's avatar
ekka committed
1078
1079
        whitening.__repr__()

1080
    def test_affine(self):
Francisco Massa's avatar
Francisco Massa committed
1081
1082
1083
        input_img = np.zeros((40, 40, 3), dtype=np.uint8)
        cnt = [20, 20]
        for pt in [(16, 16), (20, 16), (20, 20)]:
1084
1085
1086
1087
            for i in range(-5, 5):
                for j in range(-5, 5):
                    input_img[pt[0] + i, pt[1] + j, :] = [255, 155, 55]

vfdev's avatar
vfdev committed
1088
1089
        with self.assertRaises(TypeError, msg="Argument translate should be a sequence"):
            F.affine(input_img, 10, translate=0, scale=1, shear=1)
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100

        pil_img = F.to_pil_image(input_img)

        def _to_3x3_inv(inv_result_matrix):
            result_matrix = np.zeros((3, 3))
            result_matrix[:2, :] = np.array(inv_result_matrix).reshape((2, 3))
            result_matrix[2, 2] = 1
            return np.linalg.inv(result_matrix)

        def _test_transformation(a, t, s, sh):
            a_rad = math.radians(a)
ptrblck's avatar
ptrblck committed
1101
            s_rad = [math.radians(sh_) for sh_ in sh]
1102
1103
1104
1105
1106
            cx, cy = cnt
            tx, ty = t
            sx, sy = s_rad
            rot = a_rad

1107
            # 1) Check transformation matrix:
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
            C = np.array([[1, 0, cx],
                          [0, 1, cy],
                          [0, 0, 1]])
            T = np.array([[1, 0, tx],
                          [0, 1, ty],
                          [0, 0, 1]])
            Cinv = np.linalg.inv(C)

            RS = np.array(
                [[s * math.cos(rot), -s * math.sin(rot), 0],
                 [s * math.sin(rot), s * math.cos(rot), 0],
                 [0, 0, 1]])

            SHx = np.array([[1, -math.tan(sx), 0],
                            [0, 1, 0],
                            [0, 0, 1]])

            SHy = np.array([[1, 0, 0],
                            [-math.tan(sy), 1, 0],
                            [0, 0, 1]])

            RSS = np.matmul(RS, np.matmul(SHy, SHx))

            true_matrix = np.matmul(T, np.matmul(C, np.matmul(RSS, Cinv)))

1133
1134
            result_matrix = _to_3x3_inv(F._get_inverse_affine_matrix(center=cnt, angle=a,
                                                                     translate=t, scale=s, shear=sh))
1135
            self.assertLess(np.sum(np.abs(true_matrix - result_matrix)), 1e-10)
1136
            # 2) Perform inverse mapping:
Francisco Massa's avatar
Francisco Massa committed
1137
            true_result = np.zeros((40, 40, 3), dtype=np.uint8)
1138
1139
1140
            inv_true_matrix = np.linalg.inv(true_matrix)
            for y in range(true_result.shape[0]):
                for x in range(true_result.shape[1]):
1141
1142
1143
1144
1145
1146
                    # Same as for PIL:
                    # https://github.com/python-pillow/Pillow/blob/71f8ec6a0cfc1008076a023c0756542539d057ab/
                    # src/libImaging/Geometry.c#L1060
                    input_pt = np.array([x + 0.5, y + 0.5, 1.0])
                    res = np.floor(np.dot(inv_true_matrix, input_pt)).astype(np.int)
                    _x, _y = res[:2]
1147
1148
1149
1150
                    if 0 <= _x < input_img.shape[1] and 0 <= _y < input_img.shape[0]:
                        true_result[y, x, :] = input_img[_y, _x, :]

            result = F.affine(pil_img, angle=a, translate=t, scale=s, shear=sh)
1151
            self.assertEqual(result.size, pil_img.size)
1152
1153
1154
1155
            # Compute number of different pixels:
            np_result = np.array(result)
            n_diff_pixels = np.sum(np_result != true_result) / 3
            # Accept 3 wrong pixels
1156
1157
            self.assertLess(n_diff_pixels, 3,
                            "a={}, t={}, s={}, sh={}\n".format(a, t, s, sh) +
1158
                            "n diff pixels={}\n".format(n_diff_pixels))
1159
1160
1161

        # Test rotation
        a = 45
ptrblck's avatar
ptrblck committed
1162
        _test_transformation(a=a, t=(0, 0), s=1.0, sh=(0.0, 0.0))
1163
1164
1165

        # Test translation
        t = [10, 15]
ptrblck's avatar
ptrblck committed
1166
        _test_transformation(a=0.0, t=t, s=1.0, sh=(0.0, 0.0))
1167
1168
1169

        # Test scale
        s = 1.2
ptrblck's avatar
ptrblck committed
1170
        _test_transformation(a=0.0, t=(0.0, 0.0), s=s, sh=(0.0, 0.0))
1171
1172

        # Test shear
ptrblck's avatar
ptrblck committed
1173
        sh = [45.0, 25.0]
1174
1175
1176
        _test_transformation(a=0.0, t=(0.0, 0.0), s=1.0, sh=sh)

        # Test rotation, scale, translation, shear
1177
        for a in range(-90, 90, 36):
1178
            for t1 in range(-10, 10, 5):
1179
                for s in [0.77, 1.0, 1.27]:
1180
                    for sh in range(-15, 15, 5):
ptrblck's avatar
ptrblck committed
1181
                        _test_transformation(a=a, t=(t1, t1), s=s, sh=(sh, sh))
1182

1183
1184
1185
1186
1187
1188
1189
    def test_random_rotation(self):

        with self.assertRaises(ValueError):
            transforms.RandomRotation(-0.7)
            transforms.RandomRotation([-0.7])
            transforms.RandomRotation([-0.7, 0, 0.7])

1190
1191
1192
1193
1194
1195
1196
        # assert fill being either a Sequence or a Number
        with self.assertRaises(TypeError):
            transforms.RandomRotation(0, fill={})

        t = transforms.RandomRotation(0, fill=None)
        self.assertTrue(t.fill == 0)

1197
1198
        t = transforms.RandomRotation(10)
        angle = t.get_params(t.degrees)
1199
        self.assertTrue(angle > -10 and angle < 10)
1200
1201
1202

        t = transforms.RandomRotation((-10, 10))
        angle = t.get_params(t.degrees)
1203
        self.assertTrue(-10 < angle < 10)
1204

1205
1206
1207
        # Checking if RandomRotation can be printed as string
        t.__repr__()

1208
1209
1210
        # assert deprecation warning and non-BC
        with self.assertWarnsRegex(UserWarning, r"Argument resample is deprecated and will be removed"):
            t = transforms.RandomRotation((-10, 10), resample=2)
1211
            self.assertEqual(t.interpolation, transforms.InterpolationMode.BILINEAR)
1212
1213

        # assert changed type warning
1214
        with self.assertWarnsRegex(UserWarning, r"Argument interpolation should be of type InterpolationMode"):
1215
            t = transforms.RandomRotation((-10, 10), interpolation=2)
1216
            self.assertEqual(t.interpolation, transforms.InterpolationMode.BILINEAR)
1217

1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
    def test_random_affine(self):

        with self.assertRaises(ValueError):
            transforms.RandomAffine(-0.7)
            transforms.RandomAffine([-0.7])
            transforms.RandomAffine([-0.7, 0, 0.7])

            transforms.RandomAffine([-90, 90], translate=2.0)
            transforms.RandomAffine([-90, 90], translate=[-1.0, 1.0])
            transforms.RandomAffine([-90, 90], translate=[-1.0, 0.0, 1.0])

            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.0])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[-1.0, 1.0])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, -0.5])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 3.0, -0.5])

            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=-7)
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 0, 10])
ptrblck's avatar
ptrblck committed
1237
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 0, 10, 0, 10])
1238

1239
1240
1241
1242
1243
1244
1245
        # assert fill being either a Sequence or a Number
        with self.assertRaises(TypeError):
            transforms.RandomAffine(0, fill={})

        t = transforms.RandomAffine(0, fill=None)
        self.assertTrue(t.fill == 0)

1246
1247
1248
        x = np.zeros((100, 100, 3), dtype=np.uint8)
        img = F.to_pil_image(x)

ptrblck's avatar
ptrblck committed
1249
        t = transforms.RandomAffine(10, translate=[0.5, 0.3], scale=[0.7, 1.3], shear=[-10, 10, 20, 40])
1250
1251
1252
        for _ in range(100):
            angle, translations, scale, shear = t.get_params(t.degrees, t.translate, t.scale, t.shear,
                                                             img_size=img.size)
1253
1254
1255
1256
1257
1258
1259
1260
            self.assertTrue(-10 < angle < 10)
            self.assertTrue(-img.size[0] * 0.5 <= translations[0] <= img.size[0] * 0.5,
                            "{} vs {}".format(translations[0], img.size[0] * 0.5))
            self.assertTrue(-img.size[1] * 0.5 <= translations[1] <= img.size[1] * 0.5,
                            "{} vs {}".format(translations[1], img.size[1] * 0.5))
            self.assertTrue(0.7 < scale < 1.3)
            self.assertTrue(-10 < shear[0] < 10)
            self.assertTrue(-20 < shear[1] < 40)
1261
1262
1263
1264

        # Checking if RandomAffine can be printed as string
        t.__repr__()

1265
        t = transforms.RandomAffine(10, interpolation=transforms.InterpolationMode.BILINEAR)
1266
1267
1268
1269
1270
        self.assertIn("bilinear", t.__repr__())

        # assert deprecation warning and non-BC
        with self.assertWarnsRegex(UserWarning, r"Argument resample is deprecated and will be removed"):
            t = transforms.RandomAffine(10, resample=2)
1271
            self.assertEqual(t.interpolation, transforms.InterpolationMode.BILINEAR)
1272
1273
1274
1275
1276
1277

        with self.assertWarnsRegex(UserWarning, r"Argument fillcolor is deprecated and will be removed"):
            t = transforms.RandomAffine(10, fillcolor=10)
            self.assertEqual(t.fill, 10)

        # assert changed type warning
1278
        with self.assertWarnsRegex(UserWarning, r"Argument interpolation should be of type InterpolationMode"):
1279
            t = transforms.RandomAffine(10, interpolation=2)
1280
            self.assertEqual(t.interpolation, transforms.InterpolationMode.BILINEAR)
1281

1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
    def test_autoaugment(self):
        for policy in transforms.AutoAugmentPolicy:
            for fill in [None, 85, (128, 128, 128)]:
                random.seed(42)
                img = Image.open(GRACE_HOPPER)
                transform = transforms.AutoAugment(policy=policy, fill=fill)
                for _ in range(100):
                    img = transform(img)
                transform.__repr__()

1292
    @unittest.skipIf(stats is None, 'scipy.stats not available')
1293
1294
1295
    def test_random_erasing(self):
        img = torch.ones(3, 128, 128)

1296
        t = transforms.RandomErasing(scale=(0.1, 0.1), ratio=(1 / 3, 3.))
1297
1298
        y, x, h, w, v = t.get_params(img, t.scale, t.ratio, [t.value, ])
        aspect_ratio = h / w
1299
1300
1301
        # Add some tolerance due to the rounding and int conversion used in the transform
        tol = 0.05
        self.assertTrue(1 / 3 - tol <= aspect_ratio <= 3 + tol)
1302
1303
1304
1305
1306
1307
1308
1309
1310

        aspect_ratios = []
        random.seed(42)
        trial = 1000
        for _ in range(trial):
            y, x, h, w, v = t.get_params(img, t.scale, t.ratio, [t.value, ])
            aspect_ratios.append(h / w)

        count_bigger_then_ones = len([1 for aspect_ratio in aspect_ratios if aspect_ratio > 1])
1311
1312
        p_value = stats.binom_test(count_bigger_then_ones, trial, p=0.5)
        self.assertGreater(p_value, 0.0001)
1313

1314
1315
1316
        # Checking if RandomErasing can be printed as string
        t.__repr__()

1317

1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
class TestPad:

    def test_pad(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        img = torch.ones(3, height, width)
        padding = random.randint(1, 20)
        fill = random.randint(1, 50)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.Pad(padding, fill=fill),
            transforms.ToTensor(),
        ])(img)
        assert result.size(1) == height + 2 * padding
        assert result.size(2) == width + 2 * padding
        # check that all elements in the padded region correspond
        # to the pad value
        fill_v = fill / 255
        eps = 1e-5
        h_padded = result[:, :padding, :]
        w_padded = result[:, :, :padding]
        torch.testing.assert_close(
            h_padded, torch.full_like(h_padded, fill_value=fill_v), check_stride=False, rtol=0.0, atol=eps
        )
        torch.testing.assert_close(
            w_padded, torch.full_like(w_padded, fill_value=fill_v), check_stride=False, rtol=0.0, atol=eps
        )
        pytest.raises(ValueError, transforms.Pad(padding, fill=(1, 2)),
                      transforms.ToPILImage()(img))

    def test_pad_with_tuple_of_pad_values(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        img = transforms.ToPILImage()(torch.ones(3, height, width))

        padding = tuple([random.randint(1, 20) for _ in range(2)])
        output = transforms.Pad(padding)(img)
        assert output.size == (width + padding[0] * 2, height + padding[1] * 2)

        padding = tuple([random.randint(1, 20) for _ in range(4)])
        output = transforms.Pad(padding)(img)
        assert output.size[0] == width + padding[0] + padding[2]
        assert output.size[1] == height + padding[1] + padding[3]

        # Checking if Padding can be printed as string
        transforms.Pad(padding).__repr__()

    def test_pad_with_non_constant_padding_modes(self):
        """Unit tests for edge, reflect, symmetric padding"""
        img = torch.zeros(3, 27, 27).byte()
        img[:, :, 0] = 1  # Constant value added to leftmost edge
        img = transforms.ToPILImage()(img)
        img = F.pad(img, 1, (200, 200, 200))

        # pad 3 to all sidess
        edge_padded_img = F.pad(img, 3, padding_mode='edge')
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # edge_pad, edge_pad, edge_pad, constant_pad, constant value added to leftmost edge, 0
        edge_middle_slice = np.asarray(edge_padded_img).transpose(2, 0, 1)[0][17][:6]
        assert_equal(edge_middle_slice, np.asarray([200, 200, 200, 200, 1, 0], dtype=np.uint8), check_stride=False)
        assert transforms.ToTensor()(edge_padded_img).size() == (3, 35, 35)

        # Pad 3 to left/right, 2 to top/bottom
        reflect_padded_img = F.pad(img, (3, 2), padding_mode='reflect')
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # reflect_pad, reflect_pad, reflect_pad, constant_pad, constant value added to leftmost edge, 0
        reflect_middle_slice = np.asarray(reflect_padded_img).transpose(2, 0, 1)[0][17][:6]
        assert_equal(reflect_middle_slice, np.asarray([0, 0, 1, 200, 1, 0], dtype=np.uint8), check_stride=False)
        assert transforms.ToTensor()(reflect_padded_img).size() == (3, 33, 35)

        # Pad 3 to left, 2 to top, 2 to right, 1 to bottom
        symmetric_padded_img = F.pad(img, (3, 2, 2, 1), padding_mode='symmetric')
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # sym_pad, sym_pad, sym_pad, constant_pad, constant value added to leftmost edge, 0
        symmetric_middle_slice = np.asarray(symmetric_padded_img).transpose(2, 0, 1)[0][17][:6]
        assert_equal(symmetric_middle_slice, np.asarray([0, 1, 200, 200, 1, 0], dtype=np.uint8), check_stride=False)
        assert transforms.ToTensor()(symmetric_padded_img).size() == (3, 32, 34)

        # Check negative padding explicitly for symmetric case, since it is not
        # implemented for tensor case to compare to
        # Crop 1 to left, pad 2 to top, pad 3 to right, crop 3 to bottom
        symmetric_padded_img_neg = F.pad(img, (-1, 2, 3, -3), padding_mode='symmetric')
        symmetric_neg_middle_left = np.asarray(symmetric_padded_img_neg).transpose(2, 0, 1)[0][17][:3]
        symmetric_neg_middle_right = np.asarray(symmetric_padded_img_neg).transpose(2, 0, 1)[0][17][-4:]
        assert_equal(symmetric_neg_middle_left, np.asarray([1, 0, 0], dtype=np.uint8), check_stride=False)
        assert_equal(symmetric_neg_middle_right, np.asarray([200, 200, 0, 0], dtype=np.uint8), check_stride=False)
        assert transforms.ToTensor()(symmetric_padded_img_neg).size() == (3, 28, 31)

    def test_pad_raises_with_invalid_pad_sequence_len(self):
        with pytest.raises(ValueError):
            transforms.Pad(())

        with pytest.raises(ValueError):
            transforms.Pad((1, 2, 3))

        with pytest.raises(ValueError):
            transforms.Pad((1, 2, 3, 4, 5))

    def test_pad_with_mode_F_images(self):
        pad = 2
        transform = transforms.Pad(pad)

        img = Image.new("F", (10, 10))
        padded_img = transform(img)
        assert_equal(padded_img.size, [edge_size + 2 * pad for edge_size in img.size], check_stride=False)


1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
@pytest.mark.skipif(stats is None, reason="scipy.stats not available")
@pytest.mark.parametrize('fn, trans, config', [
                        (F.invert, transforms.RandomInvert, {}),
                        (F.posterize, transforms.RandomPosterize, {"bits": 4}),
                        (F.solarize, transforms.RandomSolarize, {"threshold": 192}),
                        (F.adjust_sharpness, transforms.RandomAdjustSharpness, {"sharpness_factor": 2.0}),
                        (F.autocontrast, transforms.RandomAutocontrast, {}),
                        (F.equalize, transforms.RandomEqualize, {})])
@pytest.mark.parametrize('p', (.5, .7))
def test_randomness(fn, trans, config, p):
    random_state = random.getstate()
    random.seed(42)
    img = transforms.ToPILImage()(torch.rand(3, 16, 18))

    inv_img = fn(img, **config)

    num_samples = 250
    counts = 0
    for _ in range(num_samples):
        tranformation = trans(p=p, **config)
        tranformation.__repr__()
        out = tranformation(img)
        if out == inv_img:
            counts += 1

    p_value = stats.binom_test(counts, num_samples, p=p)
    random.setstate(random_state)
    assert p_value > 0.0001


1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
def test_adjust_brightness():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
    x_pil = Image.fromarray(x_np, mode='RGB')

    # test 0
    y_pil = F.adjust_brightness(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_brightness(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [0, 2, 6, 27, 67, 113, 18, 4, 117, 45, 127, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_brightness(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 10, 26, 108, 255, 255, 74, 16, 255, 180, 255, 2]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjust_contrast():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
    x_pil = Image.fromarray(x_np, mode='RGB')

    # test 0
    y_pil = F.adjust_contrast(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_contrast(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [43, 45, 49, 70, 110, 156, 61, 47, 160, 88, 170, 43]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_contrast(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 0, 0, 22, 184, 255, 0, 0, 255, 94, 255, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


@pytest.mark.skipif(Image.__version__ >= '7', reason="Temporarily disabled")
def test_adjust_saturation():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
    x_pil = Image.fromarray(x_np, mode='RGB')

    # test 0
    y_pil = F.adjust_saturation(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_saturation(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [2, 4, 8, 87, 128, 173, 39, 25, 138, 133, 215, 88]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_saturation(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 6, 22, 0, 149, 255, 32, 0, 255, 4, 255, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjust_hue():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
    x_pil = Image.fromarray(x_np, mode='RGB')

    with pytest.raises(ValueError):
        F.adjust_hue(x_pil, -0.7)
        F.adjust_hue(x_pil, 1)

    # test 0: almost same as x_data but not exact.
    # probably because hsv <-> rgb floating point ops
    y_pil = F.adjust_hue(x_pil, 0)
    y_np = np.array(y_pil)
    y_ans = [0, 5, 13, 54, 139, 226, 35, 8, 234, 91, 255, 1]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 1
    y_pil = F.adjust_hue(x_pil, 0.25)
    y_np = np.array(y_pil)
    y_ans = [13, 0, 12, 224, 54, 226, 234, 8, 99, 1, 222, 255]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_hue(x_pil, -0.25)
    y_np = np.array(y_pil)
    y_ans = [0, 13, 2, 54, 226, 58, 8, 234, 152, 255, 43, 1]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjust_sharpness():
    x_shape = [4, 4, 3]
    x_data = [75, 121, 114, 105, 97, 107, 105, 32, 66, 111, 117, 114, 99, 104, 97, 0,
              0, 65, 108, 101, 120, 97, 110, 100, 101, 114, 32, 86, 114, 121, 110, 105,
              111, 116, 105, 115, 0, 0, 73, 32, 108, 111, 118, 101, 32, 121, 111, 117]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
    x_pil = Image.fromarray(x_np, mode='RGB')

    # test 0
    y_pil = F.adjust_sharpness(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_sharpness(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [75, 121, 114, 105, 97, 107, 105, 32, 66, 111, 117, 114, 99, 104, 97, 30,
             30, 74, 103, 96, 114, 97, 110, 100, 101, 114, 32, 81, 103, 108, 102, 101,
             107, 116, 105, 115, 0, 0, 73, 32, 108, 111, 118, 101, 32, 121, 111, 117]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_sharpness(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [75, 121, 114, 105, 97, 107, 105, 32, 66, 111, 117, 114, 99, 104, 97, 0,
             0, 46, 118, 111, 132, 97, 110, 100, 101, 114, 32, 95, 135, 146, 126, 112,
             119, 116, 105, 115, 0, 0, 73, 32, 108, 111, 118, 101, 32, 121, 111, 117]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 3
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
    x_pil = Image.fromarray(x_np, mode='RGB')
    x_th = torch.tensor(x_np.transpose(2, 0, 1))
    y_pil = F.adjust_sharpness(x_pil, 2)
    y_np = np.array(y_pil).transpose(2, 0, 1)
    y_th = F.adjust_sharpness(x_th, 2)
    torch.testing.assert_close(y_np, y_th.numpy())


def test_adjust_gamma():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
    x_pil = Image.fromarray(x_np, mode='RGB')

    # test 0
    y_pil = F.adjust_gamma(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_gamma(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [0, 35, 57, 117, 186, 241, 97, 45, 245, 152, 255, 16]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_gamma(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 0, 0, 11, 71, 201, 5, 0, 215, 31, 255, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjusts_L_mode():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
    x_rgb = Image.fromarray(x_np, mode='RGB')

    x_l = x_rgb.convert('L')
    assert F.adjust_brightness(x_l, 2).mode == 'L'
    assert F.adjust_saturation(x_l, 2).mode == 'L'
    assert F.adjust_contrast(x_l, 2).mode == 'L'
    assert F.adjust_hue(x_l, 0.4).mode == 'L'
    assert F.adjust_sharpness(x_l, 2).mode == 'L'
    assert F.adjust_gamma(x_l, 0.5).mode == 'L'


1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
def test_rotate():
    x = np.zeros((100, 100, 3), dtype=np.uint8)
    x[40, 40] = [255, 255, 255]

    with pytest.raises(TypeError, match=r"img should be PIL Image"):
        F.rotate(x, 10)

    img = F.to_pil_image(x)

    result = F.rotate(img, 45)
    assert result.size == (100, 100)
    r, c, ch = np.where(result)
    assert all(x in r for x in [49, 50])
    assert all(x in c for x in [36])
    assert all(x in ch for x in [0, 1, 2])

    result = F.rotate(img, 45, expand=True)
    assert result.size == (142, 142)
    r, c, ch = np.where(result)
    assert all(x in r for x in [70, 71])
    assert all(x in c for x in [57])
    assert all(x in ch for x in [0, 1, 2])

    result = F.rotate(img, 45, center=(40, 40))
    assert result.size == (100, 100)
    r, c, ch = np.where(result)
    assert all(x in r for x in [40])
    assert all(x in c for x in [40])
    assert all(x in ch for x in [0, 1, 2])

    result_a = F.rotate(img, 90)
    result_b = F.rotate(img, -270)

    assert_equal(np.array(result_a), np.array(result_b))


@pytest.mark.parametrize('mode', ["L", "RGB", "F"])
def test_rotate_fill(mode):
    img = F.to_pil_image(np.ones((100, 100, 3), dtype=np.uint8) * 255, "RGB")

    num_bands = len(mode)
    wrong_num_bands = num_bands + 1
    fill = 127

    img_conv = img.convert(mode)
    img_rot = F.rotate(img_conv, 45.0, fill=fill)
    pixel = img_rot.getpixel((0, 0))

    if not isinstance(pixel, tuple):
        pixel = (pixel,)
    assert pixel == tuple([fill] * num_bands)

    with pytest.raises(ValueError):
        F.rotate(img_conv, 45.0, fill=tuple([fill] * wrong_num_bands))


def test_gaussian_blur_asserts():
    np_img = np.ones((100, 100, 3), dtype=np.uint8) * 255
    img = F.to_pil_image(np_img, "RGB")

    with pytest.raises(ValueError, match=r"If kernel_size is a sequence its length should be 2"):
        F.gaussian_blur(img, [3])
    with pytest.raises(ValueError, match=r"If kernel_size is a sequence its length should be 2"):
        F.gaussian_blur(img, [3, 3, 3])
    with pytest.raises(ValueError, match=r"Kernel size should be a tuple/list of two integers"):
        transforms.GaussianBlur([3, 3, 3])

    with pytest.raises(ValueError, match=r"kernel_size should have odd and positive integers"):
        F.gaussian_blur(img, [4, 4])
    with pytest.raises(ValueError, match=r"Kernel size value should be an odd and positive number"):
        transforms.GaussianBlur([4, 4])

    with pytest.raises(ValueError, match=r"kernel_size should have odd and positive integers"):
        F.gaussian_blur(img, [-3, -3])
    with pytest.raises(ValueError, match=r"Kernel size value should be an odd and positive number"):
        transforms.GaussianBlur([-3, -3])

    with pytest.raises(ValueError, match=r"If sigma is a sequence, its length should be 2"):
        F.gaussian_blur(img, 3, [1, 1, 1])
    with pytest.raises(ValueError, match=r"sigma should be a single number or a list/tuple with length 2"):
        transforms.GaussianBlur(3, [1, 1, 1])

    with pytest.raises(ValueError, match=r"sigma should have positive values"):
        F.gaussian_blur(img, 3, -1.0)
    with pytest.raises(ValueError, match=r"If sigma is a single number, it must be positive"):
        transforms.GaussianBlur(3, -1.0)

    with pytest.raises(TypeError, match=r"kernel_size should be int or a sequence of integers"):
        F.gaussian_blur(img, "kernel_size_string")
    with pytest.raises(ValueError, match=r"Kernel size should be a tuple/list of two integers"):
        transforms.GaussianBlur("kernel_size_string")

    with pytest.raises(TypeError, match=r"sigma should be either float or sequence of floats"):
        F.gaussian_blur(img, 3, "sigma_string")
    with pytest.raises(ValueError, match=r"sigma should be a single number or a list/tuple with length 2"):
        transforms.GaussianBlur(3, "sigma_string")


def test_lambda():
    trans = transforms.Lambda(lambda x: x.add(10))
    x = torch.randn(10)
    y = trans(x)
    assert_equal(y, torch.add(x, 10))

    trans = transforms.Lambda(lambda x: x.add_(10))
    x = torch.randn(10)
    y = trans(x)
    assert_equal(y, x)

    # Checking if Lambda can be printed as string
    trans.__repr__()


1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
def test_to_grayscale():
    """Unit tests for grayscale transform"""

    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
    x_pil = Image.fromarray(x_np, mode='RGB')
    x_pil_2 = x_pil.convert('L')
    gray_np = np.array(x_pil_2)

    # Test Set: Grayscale an image with desired number of output channels
    # Case 1: RGB -> 1 channel grayscale
    trans1 = transforms.Grayscale(num_output_channels=1)
    gray_pil_1 = trans1(x_pil)
    gray_np_1 = np.array(gray_pil_1)
    assert gray_pil_1.mode == 'L', 'mode should be L'
    assert gray_np_1.shape == tuple(x_shape[0:2]), 'should be 1 channel'
    assert_equal(gray_np, gray_np_1)

    # Case 2: RGB -> 3 channel grayscale
    trans2 = transforms.Grayscale(num_output_channels=3)
    gray_pil_2 = trans2(x_pil)
    gray_np_2 = np.array(gray_pil_2)
    assert gray_pil_2.mode == 'RGB', 'mode should be RGB'
    assert gray_np_2.shape == tuple(x_shape), 'should be 3 channel'
    assert_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1])
    assert_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2])
    assert_equal(gray_np, gray_np_2[:, :, 0], check_stride=False)

    # Case 3: 1 channel grayscale -> 1 channel grayscale
    trans3 = transforms.Grayscale(num_output_channels=1)
    gray_pil_3 = trans3(x_pil_2)
    gray_np_3 = np.array(gray_pil_3)
    assert gray_pil_3.mode == 'L', 'mode should be L'
    assert gray_np_3.shape == tuple(x_shape[0:2]), 'should be 1 channel'
    assert_equal(gray_np, gray_np_3)

    # Case 4: 1 channel grayscale -> 3 channel grayscale
    trans4 = transforms.Grayscale(num_output_channels=3)
    gray_pil_4 = trans4(x_pil_2)
    gray_np_4 = np.array(gray_pil_4)
    assert gray_pil_4.mode == 'RGB', 'mode should be RGB'
    assert gray_np_4.shape == tuple(x_shape), 'should be 3 channel'
    assert_equal(gray_np_4[:, :, 0], gray_np_4[:, :, 1])
    assert_equal(gray_np_4[:, :, 1], gray_np_4[:, :, 2])
    assert_equal(gray_np, gray_np_4[:, :, 0], check_stride=False)

    # Checking if Grayscale can be printed as string
    trans4.__repr__()


@pytest.mark.skipif(stats is None, reason="scipy.stats not available")
def test_random_grayscale():
    """Unit tests for random grayscale transform"""

    # Test Set 1: RGB -> 3 channel grayscale
    random_state = random.getstate()
    random.seed(42)
    x_shape = [2, 2, 3]
    x_np = np.random.randint(0, 256, x_shape, np.uint8)
    x_pil = Image.fromarray(x_np, mode='RGB')
    x_pil_2 = x_pil.convert('L')
    gray_np = np.array(x_pil_2)

    num_samples = 250
    num_gray = 0
    for _ in range(num_samples):
        gray_pil_2 = transforms.RandomGrayscale(p=0.5)(x_pil)
        gray_np_2 = np.array(gray_pil_2)
        if np.array_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1]) and \
                np.array_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2]) and \
                np.array_equal(gray_np, gray_np_2[:, :, 0]):
            num_gray = num_gray + 1

    p_value = stats.binom_test(num_gray, num_samples, p=0.5)
    random.setstate(random_state)
    assert p_value > 0.0001

    # Test Set 2: grayscale -> 1 channel grayscale
    random_state = random.getstate()
    random.seed(42)
    x_shape = [2, 2, 3]
    x_np = np.random.randint(0, 256, x_shape, np.uint8)
    x_pil = Image.fromarray(x_np, mode='RGB')
    x_pil_2 = x_pil.convert('L')
    gray_np = np.array(x_pil_2)

    num_samples = 250
    num_gray = 0
    for _ in range(num_samples):
        gray_pil_3 = transforms.RandomGrayscale(p=0.5)(x_pil_2)
        gray_np_3 = np.array(gray_pil_3)
        if np.array_equal(gray_np, gray_np_3):
            num_gray = num_gray + 1

    p_value = stats.binom_test(num_gray, num_samples, p=1.0)  # Note: grayscale is always unchanged
    random.setstate(random_state)
    assert p_value > 0.0001

    # Test set 3: Explicit tests
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
    x_pil = Image.fromarray(x_np, mode='RGB')
    x_pil_2 = x_pil.convert('L')
    gray_np = np.array(x_pil_2)

    # Case 3a: RGB -> 3 channel grayscale (grayscaled)
    trans2 = transforms.RandomGrayscale(p=1.0)
    gray_pil_2 = trans2(x_pil)
    gray_np_2 = np.array(gray_pil_2)
    assert gray_pil_2.mode == 'RGB', 'mode should be RGB'
    assert gray_np_2.shape == tuple(x_shape), 'should be 3 channel'
    assert_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1])
    assert_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2])
    assert_equal(gray_np, gray_np_2[:, :, 0], check_stride=False)

    # Case 3b: RGB -> 3 channel grayscale (unchanged)
    trans2 = transforms.RandomGrayscale(p=0.0)
    gray_pil_2 = trans2(x_pil)
    gray_np_2 = np.array(gray_pil_2)
    assert gray_pil_2.mode == 'RGB', 'mode should be RGB'
    assert gray_np_2.shape == tuple(x_shape), 'should be 3 channel'
    assert_equal(x_np, gray_np_2)

    # Case 3c: 1 channel grayscale -> 1 channel grayscale (grayscaled)
    trans3 = transforms.RandomGrayscale(p=1.0)
    gray_pil_3 = trans3(x_pil_2)
    gray_np_3 = np.array(gray_pil_3)
    assert gray_pil_3.mode == 'L', 'mode should be L'
    assert gray_np_3.shape == tuple(x_shape[0:2]), 'should be 1 channel'
    assert_equal(gray_np, gray_np_3)

    # Case 3d: 1 channel grayscale -> 1 channel grayscale (unchanged)
    trans3 = transforms.RandomGrayscale(p=0.0)
    gray_pil_3 = trans3(x_pil_2)
    gray_np_3 = np.array(gray_pil_3)
    assert gray_pil_3.mode == 'L', 'mode should be L'
    assert gray_np_3.shape == tuple(x_shape[0:2]), 'should be 1 channel'
    assert_equal(gray_np, gray_np_3)

    # Checking if RandomGrayscale can be printed as string
    trans3.__repr__()


1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
@pytest.mark.skipif(stats is None, reason='scipy.stats not available')
def test_random_apply():
    random_state = random.getstate()
    random.seed(42)
    random_apply_transform = transforms.RandomApply(
        [
            transforms.RandomRotation((-45, 45)),
            transforms.RandomHorizontalFlip(),
            transforms.RandomVerticalFlip(),
        ], p=0.75
    )
    img = transforms.ToPILImage()(torch.rand(3, 10, 10))
    num_samples = 250
    num_applies = 0
    for _ in range(num_samples):
        out = random_apply_transform(img)
        if out != img:
            num_applies += 1

    p_value = stats.binom_test(num_applies, num_samples, p=0.75)
    random.setstate(random_state)
    assert p_value > 0.0001

    # Checking if RandomApply can be printed as string
    random_apply_transform.__repr__()


@pytest.mark.skipif(stats is None, reason='scipy.stats not available')
def test_random_choice():
    random_state = random.getstate()
    random.seed(42)
    random_choice_transform = transforms.RandomChoice(
        [
            transforms.Resize(15),
            transforms.Resize(20),
            transforms.CenterCrop(10)
        ]
    )
    img = transforms.ToPILImage()(torch.rand(3, 25, 25))
    num_samples = 250
    num_resize_15 = 0
    num_resize_20 = 0
    num_crop_10 = 0
    for _ in range(num_samples):
        out = random_choice_transform(img)
        if out.size == (15, 15):
            num_resize_15 += 1
        elif out.size == (20, 20):
            num_resize_20 += 1
        elif out.size == (10, 10):
            num_crop_10 += 1

    p_value = stats.binom_test(num_resize_15, num_samples, p=0.33333)
    assert p_value > 0.0001
    p_value = stats.binom_test(num_resize_20, num_samples, p=0.33333)
    assert p_value > 0.0001
    p_value = stats.binom_test(num_crop_10, num_samples, p=0.33333)
    assert p_value > 0.0001

    random.setstate(random_state)
    # Checking if RandomChoice can be printed as string
    random_choice_transform.__repr__()


@pytest.mark.skipif(stats is None, reason='scipy.stats not available')
def test_random_order():
    random_state = random.getstate()
    random.seed(42)
    random_order_transform = transforms.RandomOrder(
        [
            transforms.Resize(20),
            transforms.CenterCrop(10)
        ]
    )
    img = transforms.ToPILImage()(torch.rand(3, 25, 25))
    num_samples = 250
    num_normal_order = 0
    resize_crop_out = transforms.CenterCrop(10)(transforms.Resize(20)(img))
    for _ in range(num_samples):
        out = random_order_transform(img)
        if out == resize_crop_out:
            num_normal_order += 1

    p_value = stats.binom_test(num_normal_order, num_samples, p=0.5)
    random.setstate(random_state)
    assert p_value > 0.0001

    # Checking if RandomOrder can be printed as string
    random_order_transform.__repr__()


2000
2001
if __name__ == '__main__':
    unittest.main()