test_transforms.py 82.6 KB
Newer Older
1
import itertools
2
import os
3
4
import torch
import torchvision.transforms as transforms
5
import torchvision.transforms.functional as F
6
import torchvision.transforms.functional_tensor as F_t
7
from torch._utils_internal import get_file_path_2
8
from numpy.testing import assert_array_almost_equal
9
import unittest
10
import math
11
import random
12
import numpy as np
13
import pytest
14
15
16
17
18
19
from PIL import Image
try:
    import accimage
except ImportError:
    accimage = None

20
21
22
23
24
try:
    from scipy import stats
except ImportError:
    stats = None

25
from common_utils import cycle_over, int_dtypes, float_dtypes
26
from _assert_utils import assert_equal
27
28


29
GRACE_HOPPER = get_file_path_2(
30
    os.path.dirname(os.path.abspath(__file__)), 'assets', 'encode_jpeg', 'grace_hopper_517x606.jpg')
31
32


33
class Tester(unittest.TestCase):
34

35
    def test_center_crop(self):
36
37
38
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        oheight = random.randint(5, (height - 2) / 2) * 2
39
40
        owidth = random.randint(5, (width - 2) / 2) * 2

41
        img = torch.ones(3, height, width)
42
43
44
        oh1 = (height - oheight) // 2
        ow1 = (width - owidth) // 2
        imgnarrow = img[:, oh1:oh1 + oheight, ow1:ow1 + owidth]
45
46
47
48
49
50
        imgnarrow.fill_(0)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
51
52
        self.assertEqual(result.sum(), 0,
                         "height: {} width: {} oheight: {} owdith: {}".format(height, width, oheight, owidth))
53
54
55
56
57
58
59
60
        oheight += 1
        owidth += 1
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        sum1 = result.sum()
61
62
        self.assertGreater(sum1, 1,
                           "height: {} width: {} oheight: {} owdith: {}".format(height, width, oheight, owidth))
63
        oheight += 1
64
        owidth += 1
65
66
67
68
69
70
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        sum2 = result.sum()
71
72
73
74
        self.assertGreater(sum2, 0,
                           "height: {} width: {} oheight: {} owdith: {}".format(height, width, oheight, owidth))
        self.assertGreater(sum2, sum1,
                           "height: {} width: {} oheight: {} owdith: {}".format(height, width, oheight, owidth))
75

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
    def test_center_crop_2(self):
        """ Tests when center crop size is larger than image size, along any dimension"""
        even_image_size = (random.randint(10, 32) * 2, random.randint(10, 32) * 2)
        odd_image_size = (even_image_size[0] + 1, even_image_size[1] + 1)

        # Since height is independent of width, we can ignore images with odd height and even width and vice-versa.
        input_image_sizes = [even_image_size, odd_image_size]

        # Get different crop sizes
        delta = random.choice((1, 3, 5))
        crop_size_delta = [-2 * delta, -delta, 0, delta, 2 * delta]
        crop_size_params = itertools.product(input_image_sizes, crop_size_delta, crop_size_delta)

        for (input_image_size, delta_height, delta_width) in crop_size_params:
            img = torch.ones(3, *input_image_size)
            crop_size = (input_image_size[0] + delta_height, input_image_size[1] + delta_width)

            # Test both transforms, one with PIL input and one with tensor
            output_pil = transforms.Compose([
                transforms.ToPILImage(),
                transforms.CenterCrop(crop_size),
                transforms.ToTensor()],
            )(img)
            self.assertEqual(output_pil.size()[1:3], crop_size,
                             "image_size: {} crop_size: {}".format(input_image_size, crop_size))

            output_tensor = transforms.CenterCrop(crop_size)(img)
            self.assertEqual(output_tensor.size()[1:3], crop_size,
                             "image_size: {} crop_size: {}".format(input_image_size, crop_size))

            # Ensure output for PIL and Tensor are equal
107
108
109
110
            assert_equal(
                output_tensor, output_pil, check_stride=False,
                msg="image_size: {} crop_size: {}".format(input_image_size, crop_size)
            )
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

            # Check if content in center of both image and cropped output is same.
            center_size = (min(crop_size[0], input_image_size[0]), min(crop_size[1], input_image_size[1]))
            crop_center_tl, input_center_tl = [0, 0], [0, 0]
            for index in range(2):
                if crop_size[index] > input_image_size[index]:
                    crop_center_tl[index] = (crop_size[index] - input_image_size[index]) // 2
                else:
                    input_center_tl[index] = (input_image_size[index] - crop_size[index]) // 2

            output_center = output_pil[
                :,
                crop_center_tl[0]:crop_center_tl[0] + center_size[0],
                crop_center_tl[1]:crop_center_tl[1] + center_size[1]
            ]

            img_center = img[
                :,
                input_center_tl[0]:input_center_tl[0] + center_size[0],
                input_center_tl[1]:input_center_tl[1] + center_size[1]
            ]

133
134
135
136
            assert_equal(
                output_center, img_center, check_stride=False,
                msg="image_size: {} crop_size: {}".format(input_image_size, crop_size)
            )
137

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
    def test_five_crop(self):
        to_pil_image = transforms.ToPILImage()
        h = random.randint(5, 25)
        w = random.randint(5, 25)
        for single_dim in [True, False]:
            crop_h = random.randint(1, h)
            crop_w = random.randint(1, w)
            if single_dim:
                crop_h = min(crop_h, crop_w)
                crop_w = crop_h
                transform = transforms.FiveCrop(crop_h)
            else:
                transform = transforms.FiveCrop((crop_h, crop_w))

            img = torch.FloatTensor(3, h, w).uniform_()
            results = transform(to_pil_image(img))

155
            self.assertEqual(len(results), 5)
156
            for crop in results:
157
                self.assertEqual(crop.size, (crop_w, crop_h))
158
159
160
161
162
163
164
165

            to_pil_image = transforms.ToPILImage()
            tl = to_pil_image(img[:, 0:crop_h, 0:crop_w])
            tr = to_pil_image(img[:, 0:crop_h, w - crop_w:])
            bl = to_pil_image(img[:, h - crop_h:, 0:crop_w])
            br = to_pil_image(img[:, h - crop_h:, w - crop_w:])
            center = transforms.CenterCrop((crop_h, crop_w))(to_pil_image(img))
            expected_output = (tl, tr, bl, br, center)
166
            self.assertEqual(results, expected_output)
167
168
169
170
171
172
173
174
175
176
177
178

    def test_ten_crop(self):
        to_pil_image = transforms.ToPILImage()
        h = random.randint(5, 25)
        w = random.randint(5, 25)
        for should_vflip in [True, False]:
            for single_dim in [True, False]:
                crop_h = random.randint(1, h)
                crop_w = random.randint(1, w)
                if single_dim:
                    crop_h = min(crop_h, crop_w)
                    crop_w = crop_h
179
180
                    transform = transforms.TenCrop(crop_h,
                                                   vertical_flip=should_vflip)
181
182
                    five_crop = transforms.FiveCrop(crop_h)
                else:
183
184
                    transform = transforms.TenCrop((crop_h, crop_w),
                                                   vertical_flip=should_vflip)
185
186
187
188
189
                    five_crop = transforms.FiveCrop((crop_h, crop_w))

                img = to_pil_image(torch.FloatTensor(3, h, w).uniform_())
                results = transform(img)
                expected_output = five_crop(img)
190
191
192
193
194

                # Checking if FiveCrop and TenCrop can be printed as string
                transform.__repr__()
                five_crop.__repr__()

195
196
197
198
199
200
201
                if should_vflip:
                    vflipped_img = img.transpose(Image.FLIP_TOP_BOTTOM)
                    expected_output += five_crop(vflipped_img)
                else:
                    hflipped_img = img.transpose(Image.FLIP_LEFT_RIGHT)
                    expected_output += five_crop(hflipped_img)

202
203
                self.assertEqual(len(results), 10)
                self.assertEqual(results, expected_output)
204

205
    def test_randomperspective(self):
Francisco Massa's avatar
Francisco Massa committed
206
        for _ in range(10):
207
208
209
210
211
212
213
214
215
216
            height = random.randint(24, 32) * 2
            width = random.randint(24, 32) * 2
            img = torch.ones(3, height, width)
            to_pil_image = transforms.ToPILImage()
            img = to_pil_image(img)
            perp = transforms.RandomPerspective()
            startpoints, endpoints = perp.get_params(width, height, 0.5)
            tr_img = F.perspective(img, startpoints, endpoints)
            tr_img2 = F.to_tensor(F.perspective(tr_img, endpoints, startpoints))
            tr_img = F.to_tensor(tr_img)
217
218
219
220
            self.assertEqual(img.size[0], width)
            self.assertEqual(img.size[1], height)
            self.assertGreater(torch.nn.functional.mse_loss(tr_img, F.to_tensor(img)) + 0.3,
                               torch.nn.functional.mse_loss(tr_img2, F.to_tensor(img)))
221

222
    def test_randomperspective_fill(self):
223
224
225
226
227
228
229
230

        # assert fill being either a Sequence or a Number
        with self.assertRaises(TypeError):
            transforms.RandomPerspective(fill={})

        t = transforms.RandomPerspective(fill=None)
        self.assertTrue(t.fill == 0)

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
        height = 100
        width = 100
        img = torch.ones(3, height, width)
        to_pil_image = transforms.ToPILImage()
        img = to_pil_image(img)

        modes = ("L", "RGB", "F")
        nums_bands = [len(mode) for mode in modes]
        fill = 127

        for mode, num_bands in zip(modes, nums_bands):
            img_conv = img.convert(mode)
            perspective = transforms.RandomPerspective(p=1, fill=fill)
            tr_img = perspective(img_conv)
            pixel = tr_img.getpixel((0, 0))

            if not isinstance(pixel, tuple):
                pixel = (pixel,)
            self.assertTupleEqual(pixel, tuple([fill] * num_bands))

        for mode, num_bands in zip(modes, nums_bands):
            img_conv = img.convert(mode)
            startpoints, endpoints = transforms.RandomPerspective.get_params(width, height, 0.5)
            tr_img = F.perspective(img_conv, startpoints, endpoints, fill=fill)
            pixel = tr_img.getpixel((0, 0))
256

257
258
259
260
261
262
263
264
            if not isinstance(pixel, tuple):
                pixel = (pixel,)
            self.assertTupleEqual(pixel, tuple([fill] * num_bands))

            for wrong_num_bands in set(nums_bands) - {num_bands}:
                with self.assertRaises(ValueError):
                    F.perspective(img_conv, startpoints, endpoints, fill=tuple([fill] * wrong_num_bands))

265
266
267
268
    def test_random_crop(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        oheight = random.randint(5, (height - 2) / 2) * 2
269
        owidth = random.randint(5, (width - 2) / 2) * 2
270
271
272
273
274
275
        img = torch.ones(3, height, width)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
276
277
        self.assertEqual(result.size(1), oheight)
        self.assertEqual(result.size(2), owidth)
278

279
280
281
282
283
284
        padding = random.randint(1, 20)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth), padding=padding),
            transforms.ToTensor(),
        ])(img)
285
286
        self.assertEqual(result.size(1), oheight)
        self.assertEqual(result.size(2), owidth)
287

288
289
290
291
292
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((height, width)),
            transforms.ToTensor()
        ])(img)
293
294
        self.assertEqual(result.size(1), height)
        self.assertEqual(result.size(2), width)
295
        torch.testing.assert_close(result, img)
296

297
298
299
300
301
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((height + 1, width + 1), pad_if_needed=True),
            transforms.ToTensor(),
        ])(img)
302
303
        self.assertEqual(result.size(1), height + 1)
        self.assertEqual(result.size(2), width + 1)
304

vfdev's avatar
vfdev committed
305
306
307
308
309
        t = transforms.RandomCrop(48)
        img = torch.ones(3, 32, 32)
        with self.assertRaisesRegex(ValueError, r"Required crop size .+ is larger then input image size .+"):
            t(img)

310
    def test_to_tensor(self):
311
        test_channels = [1, 3, 4]
312
313
        height, width = 4, 4
        trans = transforms.ToTensor()
314

315
316
317
318
319
320
321
        with self.assertRaises(TypeError):
            trans(np.random.rand(1, height, width).tolist())

        with self.assertRaises(ValueError):
            trans(np.random.rand(height))
            trans(np.random.rand(1, 1, height, width))

322
323
324
325
        for channels in test_channels:
            input_data = torch.ByteTensor(channels, height, width).random_(0, 255).float().div_(255)
            img = transforms.ToPILImage()(input_data)
            output = trans(img)
326
            torch.testing.assert_close(output, input_data, check_stride=False)
327

328
            ndarray = np.random.randint(low=0, high=255, size=(height, width, channels)).astype(np.uint8)
329
330
            output = trans(ndarray)
            expected_output = ndarray.transpose((2, 0, 1)) / 255.0
331
            torch.testing.assert_close(output.numpy(), expected_output, check_stride=False, check_dtype=False)
332

333
334
335
            ndarray = np.random.rand(height, width, channels).astype(np.float32)
            output = trans(ndarray)
            expected_output = ndarray.transpose((2, 0, 1))
336
            torch.testing.assert_close(output.numpy(), expected_output, check_stride=False, check_dtype=False)
337

338
339
340
341
        # separate test for mode '1' PIL images
        input_data = torch.ByteTensor(1, height, width).bernoulli_()
        img = transforms.ToPILImage()(input_data.mul(255)).convert('1')
        output = trans(img)
342
        torch.testing.assert_close(input_data, output, check_dtype=False, check_stride=False)
343

344
345
346
347
348
349
350
351
352
353
354
355
356
357
    def test_to_tensor_with_other_default_dtypes(self):
        current_def_dtype = torch.get_default_dtype()

        t = transforms.ToTensor()
        np_arr = np.random.randint(0, 255, (32, 32, 3), dtype=np.uint8)
        img = Image.fromarray(np_arr)

        for dtype in [torch.float16, torch.float, torch.double]:
            torch.set_default_dtype(dtype)
            res = t(img)
            self.assertTrue(res.dtype == dtype, msg=f"{res.dtype} vs {dtype}")

        torch.set_default_dtype(current_def_dtype)

358
359
360
361
    def test_max_value(self):
        for dtype in int_dtypes():
            self.assertEqual(F_t._max_value(dtype), torch.iinfo(dtype).max)

362
363
364
365
        # remove float testing as it can lead to errors such as
        # runtime error: 5.7896e+76 is outside the range of representable values of type 'float'
        # for dtype in float_dtypes():
        #     self.assertGreater(F_t._max_value(dtype), torch.finfo(dtype).max)
366

367
368
369
370
371
372
    def test_convert_image_dtype_float_to_float(self):
        for input_dtype, output_dtypes in cycle_over(float_dtypes()):
            input_image = torch.tensor((0.0, 1.0), dtype=input_dtype)
            for output_dtype in output_dtypes:
                with self.subTest(input_dtype=input_dtype, output_dtype=output_dtype):
                    transform = transforms.ConvertImageDtype(output_dtype)
373
374
                    transform_script = torch.jit.script(F.convert_image_dtype)

375
                    output_image = transform(input_image)
376
377
                    output_image_script = transform_script(input_image, output_dtype)

378
                    torch.testing.assert_close(output_image_script, output_image, rtol=0.0, atol=1e-6)
379
380
381
382
383
384
385
386
387
388
389
390
391

                    actual_min, actual_max = output_image.tolist()
                    desired_min, desired_max = 0.0, 1.0

                    self.assertAlmostEqual(actual_min, desired_min)
                    self.assertAlmostEqual(actual_max, desired_max)

    def test_convert_image_dtype_float_to_int(self):
        for input_dtype in float_dtypes():
            input_image = torch.tensor((0.0, 1.0), dtype=input_dtype)
            for output_dtype in int_dtypes():
                with self.subTest(input_dtype=input_dtype, output_dtype=output_dtype):
                    transform = transforms.ConvertImageDtype(output_dtype)
392
                    transform_script = torch.jit.script(F.convert_image_dtype)
393
394
395
396
397
398
399
400

                    if (input_dtype == torch.float32 and output_dtype in (torch.int32, torch.int64)) or (
                            input_dtype == torch.float64 and output_dtype == torch.int64
                    ):
                        with self.assertRaises(RuntimeError):
                            transform(input_image)
                    else:
                        output_image = transform(input_image)
401
402
                        output_image_script = transform_script(input_image, output_dtype)

403
                        torch.testing.assert_close(output_image_script, output_image, rtol=0.0, atol=1e-6)
404
405
406
407
408
409
410
411
412
413
414
415
416

                        actual_min, actual_max = output_image.tolist()
                        desired_min, desired_max = 0, torch.iinfo(output_dtype).max

                        self.assertEqual(actual_min, desired_min)
                        self.assertEqual(actual_max, desired_max)

    def test_convert_image_dtype_int_to_float(self):
        for input_dtype in int_dtypes():
            input_image = torch.tensor((0, torch.iinfo(input_dtype).max), dtype=input_dtype)
            for output_dtype in float_dtypes():
                with self.subTest(input_dtype=input_dtype, output_dtype=output_dtype):
                    transform = transforms.ConvertImageDtype(output_dtype)
417
418
                    transform_script = torch.jit.script(F.convert_image_dtype)

419
                    output_image = transform(input_image)
420
421
                    output_image_script = transform_script(input_image, output_dtype)

422
                    torch.testing.assert_close(output_image_script, output_image, rtol=0.0, atol=1e-6)
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

                    actual_min, actual_max = output_image.tolist()
                    desired_min, desired_max = 0.0, 1.0

                    self.assertAlmostEqual(actual_min, desired_min)
                    self.assertGreaterEqual(actual_min, desired_min)
                    self.assertAlmostEqual(actual_max, desired_max)
                    self.assertLessEqual(actual_max, desired_max)

    def test_convert_image_dtype_int_to_int(self):
        for input_dtype, output_dtypes in cycle_over(int_dtypes()):
            input_max = torch.iinfo(input_dtype).max
            input_image = torch.tensor((0, input_max), dtype=input_dtype)
            for output_dtype in output_dtypes:
                output_max = torch.iinfo(output_dtype).max

                with self.subTest(input_dtype=input_dtype, output_dtype=output_dtype):
                    transform = transforms.ConvertImageDtype(output_dtype)
441
442
                    transform_script = torch.jit.script(F.convert_image_dtype)

443
                    output_image = transform(input_image)
444
445
                    output_image_script = transform_script(input_image, output_dtype)

446
447
448
449
450
451
                    torch.testing.assert_close(
                        output_image_script,
                        output_image,
                        rtol=0.0,
                        atol=1e-6,
                        msg="{} vs {}".format(output_image_script, output_image),
452
                    )
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

                    actual_min, actual_max = output_image.tolist()
                    desired_min, desired_max = 0, output_max

                    # see https://github.com/pytorch/vision/pull/2078#issuecomment-641036236 for details
                    if input_max >= output_max:
                        error_term = 0
                    else:
                        error_term = 1 - (torch.iinfo(output_dtype).max + 1) // (torch.iinfo(input_dtype).max + 1)

                    self.assertEqual(actual_min, desired_min)
                    self.assertEqual(actual_max, desired_max + error_term)

    def test_convert_image_dtype_int_to_int_consistency(self):
        for input_dtype, output_dtypes in cycle_over(int_dtypes()):
            input_max = torch.iinfo(input_dtype).max
            input_image = torch.tensor((0, input_max), dtype=input_dtype)
            for output_dtype in output_dtypes:
                output_max = torch.iinfo(output_dtype).max
                if output_max <= input_max:
                    continue

                with self.subTest(input_dtype=input_dtype, output_dtype=output_dtype):
                    transform = transforms.ConvertImageDtype(output_dtype)
                    inverse_transfrom = transforms.ConvertImageDtype(input_dtype)
                    output_image = inverse_transfrom(transform(input_image))

                    actual_min, actual_max = output_image.tolist()
                    desired_min, desired_max = 0, input_max

                    self.assertEqual(actual_min, desired_min)
                    self.assertEqual(actual_max, desired_max)

486
487
488
489
490
491
492
    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_to_tensor(self):
        trans = transforms.ToTensor()

        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

493
        torch.testing.assert_close(output, expected_output)
494
495
496
497
498
499
500
501
502
503
504
505
506
507

    def test_pil_to_tensor(self):
        test_channels = [1, 3, 4]
        height, width = 4, 4
        trans = transforms.PILToTensor()

        with self.assertRaises(TypeError):
            trans(np.random.rand(1, height, width).tolist())
            trans(np.random.rand(1, height, width))

        for channels in test_channels:
            input_data = torch.ByteTensor(channels, height, width).random_(0, 255)
            img = transforms.ToPILImage()(input_data)
            output = trans(img)
508
            torch.testing.assert_close(input_data, output, check_stride=False)
509
510
511
512
513

            input_data = np.random.randint(low=0, high=255, size=(height, width, channels)).astype(np.uint8)
            img = transforms.ToPILImage()(input_data)
            output = trans(img)
            expected_output = input_data.transpose((2, 0, 1))
514
            torch.testing.assert_close(output.numpy(), expected_output)
515
516
517
518
519

            input_data = torch.as_tensor(np.random.rand(channels, height, width).astype(np.float32))
            img = transforms.ToPILImage()(input_data)  # CHW -> HWC and (* 255).byte()
            output = trans(img)  # HWC -> CHW
            expected_output = (input_data * 255).byte()
520
            torch.testing.assert_close(output, expected_output, check_stride=False)
521
522
523
524

        # separate test for mode '1' PIL images
        input_data = torch.ByteTensor(1, height, width).bernoulli_()
        img = transforms.ToPILImage()(input_data.mul(255)).convert('1')
525
526
        output = trans(img).view(torch.uint8).bool().to(torch.uint8)
        torch.testing.assert_close(input_data, output, check_stride=False)
527
528
529
530
531
532
533
534
535

    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_pil_to_tensor(self):
        trans = transforms.PILToTensor()

        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
536
        torch.testing.assert_close(output, expected_output, check_stride=False)
537
538
539
540

    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_resize(self):
        trans = transforms.Compose([
541
            transforms.Resize(256, interpolation=Image.LINEAR),
542
543
544
            transforms.ToTensor(),
        ])

545
546
547
        # Checking if Compose, Resize and ToTensor can be printed as string
        trans.__repr__()

548
549
550
551
552
553
554
        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
        self.assertLess(np.abs((expected_output - output).mean()), 1e-3)
        self.assertLess((expected_output - output).var(), 1e-5)
        # note the high absolute tolerance
555
        self.assertTrue(np.allclose(output.numpy(), expected_output.numpy(), atol=5e-2))
556
557
558
559
560
561
562
563

    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_crop(self):
        trans = transforms.Compose([
            transforms.CenterCrop(256),
            transforms.ToTensor(),
        ])

564
565
566
        # Checking if Compose, CenterCrop and ToTensor can be printed as string
        trans.__repr__()

567
568
569
570
        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
571
        torch.testing.assert_close(output, expected_output)
572

573
    def test_1_channel_tensor_to_pil_image(self):
574
575
        to_tensor = transforms.ToTensor()

576
        img_data_float = torch.Tensor(1, 4, 4).uniform_()
577
578
579
580
        img_data_byte = torch.ByteTensor(1, 4, 4).random_(0, 255)
        img_data_short = torch.ShortTensor(1, 4, 4).random_()
        img_data_int = torch.IntTensor(1, 4, 4).random_()

581
582
583
584
585
586
587
588
589
590
        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_outputs = [img_data_float.mul(255).int().float().div(255).numpy(),
                            img_data_byte.float().div(255.0).numpy(),
                            img_data_short.numpy(),
                            img_data_int.numpy()]
        expected_modes = ['L', 'L', 'I;16', 'I']

        for img_data, expected_output, mode in zip(inputs, expected_outputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
591
                self.assertEqual(img.mode, mode)
592
                torch.testing.assert_close(expected_output, to_tensor(img).numpy(), check_stride=False)
593
594
        # 'F' mode for torch.FloatTensor
        img_F_mode = transforms.ToPILImage(mode='F')(img_data_float)
595
        self.assertEqual(img_F_mode.mode, 'F')
596
597
598
        torch.testing.assert_close(
            np.array(Image.fromarray(img_data_float.squeeze(0).numpy(), mode='F')), np.array(img_F_mode)
        )
599
600
601
602
603
604
605
606
607
608
609
610

    def test_1_channel_ndarray_to_pil_image(self):
        img_data_float = torch.Tensor(4, 4, 1).uniform_().numpy()
        img_data_byte = torch.ByteTensor(4, 4, 1).random_(0, 255).numpy()
        img_data_short = torch.ShortTensor(4, 4, 1).random_().numpy()
        img_data_int = torch.IntTensor(4, 4, 1).random_().numpy()

        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_modes = ['F', 'L', 'I;16', 'I']
        for img_data, mode in zip(inputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
611
                self.assertEqual(img.mode, mode)
612
613
614
                # note: we explicitly convert img's dtype because pytorch doesn't support uint16
                # and otherwise assert_close wouldn't be able to construct a tensor from the uint16 array
                torch.testing.assert_close(img_data[:, :, 0], np.asarray(img).astype(img_data.dtype))
615

surgan12's avatar
surgan12 committed
616
617
618
619
    def test_2_channel_ndarray_to_pil_image(self):
        def verify_img_data(img_data, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
620
                self.assertEqual(img.mode, 'LA')  # default should assume LA
surgan12's avatar
surgan12 committed
621
622
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
623
                self.assertEqual(img.mode, mode)
surgan12's avatar
surgan12 committed
624
625
            split = img.split()
            for i in range(2):
626
                torch.testing.assert_close(img_data[:, :, i], np.asarray(split[i]), check_stride=False)
surgan12's avatar
surgan12 committed
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643

        img_data = torch.ByteTensor(4, 4, 2).random_(0, 255).numpy()
        for mode in [None, 'LA']:
            verify_img_data(img_data, mode)

        transforms.ToPILImage().__repr__()

        with self.assertRaises(ValueError):
            # should raise if we try a mode for 4 or 1 or 3 channel images
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
            transforms.ToPILImage(mode='RGB')(img_data)

    def test_2_channel_tensor_to_pil_image(self):
        def verify_img_data(img_data, expected_output, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
644
                self.assertEqual(img.mode, 'LA')  # default should assume LA
surgan12's avatar
surgan12 committed
645
646
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
647
                self.assertEqual(img.mode, mode)
surgan12's avatar
surgan12 committed
648
649
            split = img.split()
            for i in range(2):
650
                self.assertTrue(np.allclose(expected_output[i].numpy(), F.to_tensor(split[i]).numpy()))
surgan12's avatar
surgan12 committed
651
652
653
654
655
656
657
658
659
660
661
662

        img_data = torch.Tensor(2, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)
        for mode in [None, 'LA']:
            verify_img_data(img_data, expected_output, mode=mode)

        with self.assertRaises(ValueError):
            # should raise if we try a mode for 4 or 1 or 3 channel images
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
            transforms.ToPILImage(mode='RGB')(img_data)

663
664
665
666
    def test_3_channel_tensor_to_pil_image(self):
        def verify_img_data(img_data, expected_output, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
667
                self.assertEqual(img.mode, 'RGB')  # default should assume RGB
668
669
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
670
                self.assertEqual(img.mode, mode)
671
672
            split = img.split()
            for i in range(3):
673
                self.assertTrue(np.allclose(expected_output[i].numpy(), F.to_tensor(split[i]).numpy()))
674

675
676
677
678
        img_data = torch.Tensor(3, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)
        for mode in [None, 'RGB', 'HSV', 'YCbCr']:
            verify_img_data(img_data, expected_output, mode=mode)
679

680
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
681
            # should raise if we try a mode for 4 or 1 or 2 channel images
682
683
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
684
            transforms.ToPILImage(mode='LA')(img_data)
685

Varun Agrawal's avatar
Varun Agrawal committed
686
687
688
        with self.assertRaises(ValueError):
            transforms.ToPILImage()(torch.Tensor(1, 3, 4, 4).uniform_())

689
690
691
692
    def test_3_channel_ndarray_to_pil_image(self):
        def verify_img_data(img_data, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
693
                self.assertEqual(img.mode, 'RGB')  # default should assume RGB
694
695
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
696
                self.assertEqual(img.mode, mode)
697
698
            split = img.split()
            for i in range(3):
699
                torch.testing.assert_close(img_data[:, :, i], np.asarray(split[i]), check_stride=False)
700

701
702
703
704
        img_data = torch.ByteTensor(4, 4, 3).random_(0, 255).numpy()
        for mode in [None, 'RGB', 'HSV', 'YCbCr']:
            verify_img_data(img_data, mode)

705
706
707
        # Checking if ToPILImage can be printed as string
        transforms.ToPILImage().__repr__()

708
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
709
            # should raise if we try a mode for 4 or 1 or 2 channel images
710
711
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
712
            transforms.ToPILImage(mode='LA')(img_data)
713
714
715
716
717

    def test_4_channel_tensor_to_pil_image(self):
        def verify_img_data(img_data, expected_output, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
718
                self.assertEqual(img.mode, 'RGBA')  # default should assume RGBA
719
720
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
721
                self.assertEqual(img.mode, mode)
722
723
724

            split = img.split()
            for i in range(4):
725
                self.assertTrue(np.allclose(expected_output[i].numpy(), F.to_tensor(split[i]).numpy()))
726

727
        img_data = torch.Tensor(4, 4, 4).uniform_()
728
        expected_output = img_data.mul(255).int().float().div(255)
surgan12's avatar
surgan12 committed
729
        for mode in [None, 'RGBA', 'CMYK', 'RGBX']:
730
            verify_img_data(img_data, expected_output, mode)
731

732
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
733
            # should raise if we try a mode for 3 or 1 or 2 channel images
734
735
            transforms.ToPILImage(mode='RGB')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
736
            transforms.ToPILImage(mode='LA')(img_data)
737
738
739
740
741

    def test_4_channel_ndarray_to_pil_image(self):
        def verify_img_data(img_data, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
742
                self.assertEqual(img.mode, 'RGBA')  # default should assume RGBA
743
744
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
745
                self.assertEqual(img.mode, mode)
746
747
            split = img.split()
            for i in range(4):
748
                torch.testing.assert_close(img_data[:, :, i], np.asarray(split[i]), check_stride=False)
749

750
        img_data = torch.ByteTensor(4, 4, 4).random_(0, 255).numpy()
surgan12's avatar
surgan12 committed
751
        for mode in [None, 'RGBA', 'CMYK', 'RGBX']:
752
            verify_img_data(img_data, mode)
753

754
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
755
            # should raise if we try a mode for 3 or 1 or 2 channel images
756
757
            transforms.ToPILImage(mode='RGB')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
758
            transforms.ToPILImage(mode='LA')(img_data)
759

Varun Agrawal's avatar
Varun Agrawal committed
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
    def test_2d_tensor_to_pil_image(self):
        to_tensor = transforms.ToTensor()

        img_data_float = torch.Tensor(4, 4).uniform_()
        img_data_byte = torch.ByteTensor(4, 4).random_(0, 255)
        img_data_short = torch.ShortTensor(4, 4).random_()
        img_data_int = torch.IntTensor(4, 4).random_()

        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_outputs = [img_data_float.mul(255).int().float().div(255).numpy(),
                            img_data_byte.float().div(255.0).numpy(),
                            img_data_short.numpy(),
                            img_data_int.numpy()]
        expected_modes = ['L', 'L', 'I;16', 'I']

        for img_data, expected_output, mode in zip(inputs, expected_outputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
778
                self.assertEqual(img.mode, mode)
779
                np.testing.assert_allclose(expected_output, to_tensor(img).numpy()[0])
Varun Agrawal's avatar
Varun Agrawal committed
780
781
782
783
784
785
786
787
788
789
790
791

    def test_2d_ndarray_to_pil_image(self):
        img_data_float = torch.Tensor(4, 4).uniform_().numpy()
        img_data_byte = torch.ByteTensor(4, 4).random_(0, 255).numpy()
        img_data_short = torch.ShortTensor(4, 4).random_().numpy()
        img_data_int = torch.IntTensor(4, 4).random_().numpy()

        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_modes = ['F', 'L', 'I;16', 'I']
        for img_data, mode in zip(inputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
792
                self.assertEqual(img.mode, mode)
793
                np.testing.assert_allclose(img_data, img)
Varun Agrawal's avatar
Varun Agrawal committed
794
795

    def test_tensor_bad_types_to_pil_image(self):
796
        with self.assertRaisesRegex(ValueError, r'pic should be 2/3 dimensional. Got \d+ dimensions.'):
Varun Agrawal's avatar
Varun Agrawal committed
797
            transforms.ToPILImage()(torch.ones(1, 3, 4, 4))
798
799
        with self.assertRaisesRegex(ValueError, r'pic should not have > 4 channels. Got \d+ channels.'):
            transforms.ToPILImage()(torch.ones(6, 4, 4))
Varun Agrawal's avatar
Varun Agrawal committed
800

801
    def test_ndarray_bad_types_to_pil_image(self):
802
        trans = transforms.ToPILImage()
803
804
        reg_msg = r'Input type \w+ is not supported'
        with self.assertRaisesRegex(TypeError, reg_msg):
805
            trans(np.ones([4, 4, 1], np.int64))
806
        with self.assertRaisesRegex(TypeError, reg_msg):
807
            trans(np.ones([4, 4, 1], np.uint16))
808
        with self.assertRaisesRegex(TypeError, reg_msg):
809
            trans(np.ones([4, 4, 1], np.uint32))
810
        with self.assertRaisesRegex(TypeError, reg_msg):
811
812
            trans(np.ones([4, 4, 1], np.float64))

813
        with self.assertRaisesRegex(ValueError, r'pic should be 2/3 dimensional. Got \d+ dimensions.'):
Varun Agrawal's avatar
Varun Agrawal committed
814
            transforms.ToPILImage()(np.ones([1, 4, 4, 3]))
815
816
        with self.assertRaisesRegex(ValueError, r'pic should not have > 4 channels. Got \d+ channels.'):
            transforms.ToPILImage()(np.ones([4, 4, 6]))
Varun Agrawal's avatar
Varun Agrawal committed
817

818
819
    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_vertical_flip(self):
820
821
        random_state = random.getstate()
        random.seed(42)
822
823
824
        img = transforms.ToPILImage()(torch.rand(3, 10, 10))
        vimg = img.transpose(Image.FLIP_TOP_BOTTOM)

825
        num_samples = 250
826
        num_vertical = 0
827
        for _ in range(num_samples):
828
829
830
831
            out = transforms.RandomVerticalFlip()(img)
            if out == vimg:
                num_vertical += 1

832
833
        p_value = stats.binom_test(num_vertical, num_samples, p=0.5)
        random.setstate(random_state)
834
        self.assertGreater(p_value, 0.0001)
835

836
837
838
839
840
841
842
843
844
        num_samples = 250
        num_vertical = 0
        for _ in range(num_samples):
            out = transforms.RandomVerticalFlip(p=0.7)(img)
            if out == vimg:
                num_vertical += 1

        p_value = stats.binom_test(num_vertical, num_samples, p=0.7)
        random.setstate(random_state)
845
        self.assertGreater(p_value, 0.0001)
846

847
848
849
        # Checking if RandomVerticalFlip can be printed as string
        transforms.RandomVerticalFlip().__repr__()

850
851
    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_horizontal_flip(self):
852
853
        random_state = random.getstate()
        random.seed(42)
854
855
856
        img = transforms.ToPILImage()(torch.rand(3, 10, 10))
        himg = img.transpose(Image.FLIP_LEFT_RIGHT)

857
        num_samples = 250
858
        num_horizontal = 0
859
        for _ in range(num_samples):
860
861
862
863
            out = transforms.RandomHorizontalFlip()(img)
            if out == himg:
                num_horizontal += 1

864
865
        p_value = stats.binom_test(num_horizontal, num_samples, p=0.5)
        random.setstate(random_state)
866
        self.assertGreater(p_value, 0.0001)
867

868
869
870
871
872
873
874
875
876
        num_samples = 250
        num_horizontal = 0
        for _ in range(num_samples):
            out = transforms.RandomHorizontalFlip(p=0.7)(img)
            if out == himg:
                num_horizontal += 1

        p_value = stats.binom_test(num_horizontal, num_samples, p=0.7)
        random.setstate(random_state)
877
        self.assertGreater(p_value, 0.0001)
878

879
880
881
        # Checking if RandomHorizontalFlip can be printed as string
        transforms.RandomHorizontalFlip().__repr__()

882
    @unittest.skipIf(stats is None, 'scipy.stats is not available')
883
884
885
886
887
888
889
890
891
892
893
894
    def test_normalize(self):
        def samples_from_standard_normal(tensor):
            p_value = stats.kstest(list(tensor.view(-1)), 'norm', args=(0, 1)).pvalue
            return p_value > 0.0001

        random_state = random.getstate()
        random.seed(42)
        for channels in [1, 3]:
            img = torch.rand(channels, 10, 10)
            mean = [img[c].mean() for c in range(channels)]
            std = [img[c].std() for c in range(channels)]
            normalized = transforms.Normalize(mean, std)(img)
895
            self.assertTrue(samples_from_standard_normal(normalized))
896
897
        random.setstate(random_state)

898
899
900
        # Checking if Normalize can be printed as string
        transforms.Normalize(mean, std).__repr__()

901
902
903
        # Checking the optional in-place behaviour
        tensor = torch.rand((1, 16, 16))
        tensor_inplace = transforms.Normalize((0.5,), (0.5,), inplace=True)(tensor)
904
        assert_equal(tensor, tensor_inplace)
905

906
907
908
909
910
911
912
913
914
    def test_normalize_different_dtype(self):
        for dtype1 in [torch.float32, torch.float64]:
            img = torch.rand(3, 10, 10, dtype=dtype1)
            for dtype2 in [torch.int64, torch.float32, torch.float64]:
                mean = torch.tensor([1, 2, 3], dtype=dtype2)
                std = torch.tensor([1, 2, 1], dtype=dtype2)
                # checks that it doesn't crash
                transforms.functional.normalize(img, mean, std)

915
916
917
918
919
920
921
    def test_normalize_3d_tensor(self):
        torch.manual_seed(28)
        n_channels = 3
        img_size = 10
        mean = torch.rand(n_channels)
        std = torch.rand(n_channels)
        img = torch.rand(n_channels, img_size, img_size)
922
        target = F.normalize(img, mean, std)
923
924
925
926
927
928
929

        mean_unsqueezed = mean.view(-1, 1, 1)
        std_unsqueezed = std.view(-1, 1, 1)
        result1 = F.normalize(img, mean_unsqueezed, std_unsqueezed)
        result2 = F.normalize(img,
                              mean_unsqueezed.repeat(1, img_size, img_size),
                              std_unsqueezed.repeat(1, img_size, img_size))
930
931
        torch.testing.assert_close(target, result1)
        torch.testing.assert_close(target, result2)
932

933
934
935
936
937
938
939
940
941
942
943
    def test_color_jitter(self):
        color_jitter = transforms.ColorJitter(2, 2, 2, 0.1)

        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')

        for i in range(10):
            y_pil = color_jitter(x_pil)
944
            self.assertEqual(y_pil.mode, x_pil.mode)
945
946

            y_pil_2 = color_jitter(x_pil_2)
947
            self.assertEqual(y_pil_2.mode, x_pil_2.mode)
948

949
950
951
        # Checking if ColorJitter can be printed as string
        color_jitter.__repr__()

952
    def test_linear_transformation(self):
ekka's avatar
ekka committed
953
954
955
956
957
958
959
960
961
962
963
964
        num_samples = 1000
        x = torch.randn(num_samples, 3, 10, 10)
        flat_x = x.view(x.size(0), x.size(1) * x.size(2) * x.size(3))
        # compute principal components
        sigma = torch.mm(flat_x.t(), flat_x) / flat_x.size(0)
        u, s, _ = np.linalg.svd(sigma.numpy())
        zca_epsilon = 1e-10  # avoid division by 0
        d = torch.Tensor(np.diag(1. / np.sqrt(s + zca_epsilon)))
        u = torch.Tensor(u)
        principal_components = torch.mm(torch.mm(u, d), u.t())
        mean_vector = (torch.sum(flat_x, dim=0) / flat_x.size(0))
        # initialize whitening matrix
965
        whitening = transforms.LinearTransformation(principal_components, mean_vector)
ekka's avatar
ekka committed
966
967
968
969
970
971
972
973
974
975
        # estimate covariance and mean using weak law of large number
        num_features = flat_x.size(1)
        cov = 0.0
        mean = 0.0
        for i in x:
            xwhite = whitening(i)
            xwhite = xwhite.view(1, -1).numpy()
            cov += np.dot(xwhite, xwhite.T) / num_features
            mean += np.sum(xwhite) / num_features
        # if rtol for std = 1e-3 then rtol for cov = 2e-3 as std**2 = cov
976
977
978
979
        torch.testing.assert_close(cov / num_samples, np.identity(1), rtol=2e-3, atol=1e-8, check_dtype=False,
                                   msg="cov not close to 1")
        torch.testing.assert_close(mean / num_samples, 0, rtol=1e-3, atol=1e-8, check_dtype=False,
                                   msg="mean not close to 0")
ekka's avatar
ekka committed
980

981
        # Checking if LinearTransformation can be printed as string
ekka's avatar
ekka committed
982
983
        whitening.__repr__()

984
    def test_affine(self):
Francisco Massa's avatar
Francisco Massa committed
985
986
987
        input_img = np.zeros((40, 40, 3), dtype=np.uint8)
        cnt = [20, 20]
        for pt in [(16, 16), (20, 16), (20, 20)]:
988
989
990
991
            for i in range(-5, 5):
                for j in range(-5, 5):
                    input_img[pt[0] + i, pt[1] + j, :] = [255, 155, 55]

vfdev's avatar
vfdev committed
992
993
        with self.assertRaises(TypeError, msg="Argument translate should be a sequence"):
            F.affine(input_img, 10, translate=0, scale=1, shear=1)
994
995
996
997
998
999
1000
1001
1002
1003
1004

        pil_img = F.to_pil_image(input_img)

        def _to_3x3_inv(inv_result_matrix):
            result_matrix = np.zeros((3, 3))
            result_matrix[:2, :] = np.array(inv_result_matrix).reshape((2, 3))
            result_matrix[2, 2] = 1
            return np.linalg.inv(result_matrix)

        def _test_transformation(a, t, s, sh):
            a_rad = math.radians(a)
ptrblck's avatar
ptrblck committed
1005
            s_rad = [math.radians(sh_) for sh_ in sh]
1006
1007
1008
1009
1010
            cx, cy = cnt
            tx, ty = t
            sx, sy = s_rad
            rot = a_rad

1011
            # 1) Check transformation matrix:
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
            C = np.array([[1, 0, cx],
                          [0, 1, cy],
                          [0, 0, 1]])
            T = np.array([[1, 0, tx],
                          [0, 1, ty],
                          [0, 0, 1]])
            Cinv = np.linalg.inv(C)

            RS = np.array(
                [[s * math.cos(rot), -s * math.sin(rot), 0],
                 [s * math.sin(rot), s * math.cos(rot), 0],
                 [0, 0, 1]])

            SHx = np.array([[1, -math.tan(sx), 0],
                            [0, 1, 0],
                            [0, 0, 1]])

            SHy = np.array([[1, 0, 0],
                            [-math.tan(sy), 1, 0],
                            [0, 0, 1]])

            RSS = np.matmul(RS, np.matmul(SHy, SHx))

            true_matrix = np.matmul(T, np.matmul(C, np.matmul(RSS, Cinv)))

1037
1038
            result_matrix = _to_3x3_inv(F._get_inverse_affine_matrix(center=cnt, angle=a,
                                                                     translate=t, scale=s, shear=sh))
1039
            self.assertLess(np.sum(np.abs(true_matrix - result_matrix)), 1e-10)
1040
            # 2) Perform inverse mapping:
Francisco Massa's avatar
Francisco Massa committed
1041
            true_result = np.zeros((40, 40, 3), dtype=np.uint8)
1042
1043
1044
            inv_true_matrix = np.linalg.inv(true_matrix)
            for y in range(true_result.shape[0]):
                for x in range(true_result.shape[1]):
1045
1046
1047
1048
1049
1050
                    # Same as for PIL:
                    # https://github.com/python-pillow/Pillow/blob/71f8ec6a0cfc1008076a023c0756542539d057ab/
                    # src/libImaging/Geometry.c#L1060
                    input_pt = np.array([x + 0.5, y + 0.5, 1.0])
                    res = np.floor(np.dot(inv_true_matrix, input_pt)).astype(np.int)
                    _x, _y = res[:2]
1051
1052
1053
1054
                    if 0 <= _x < input_img.shape[1] and 0 <= _y < input_img.shape[0]:
                        true_result[y, x, :] = input_img[_y, _x, :]

            result = F.affine(pil_img, angle=a, translate=t, scale=s, shear=sh)
1055
            self.assertEqual(result.size, pil_img.size)
1056
1057
1058
1059
            # Compute number of different pixels:
            np_result = np.array(result)
            n_diff_pixels = np.sum(np_result != true_result) / 3
            # Accept 3 wrong pixels
1060
1061
            self.assertLess(n_diff_pixels, 3,
                            "a={}, t={}, s={}, sh={}\n".format(a, t, s, sh) +
1062
                            "n diff pixels={}\n".format(n_diff_pixels))
1063
1064
1065

        # Test rotation
        a = 45
ptrblck's avatar
ptrblck committed
1066
        _test_transformation(a=a, t=(0, 0), s=1.0, sh=(0.0, 0.0))
1067
1068
1069

        # Test translation
        t = [10, 15]
ptrblck's avatar
ptrblck committed
1070
        _test_transformation(a=0.0, t=t, s=1.0, sh=(0.0, 0.0))
1071
1072
1073

        # Test scale
        s = 1.2
ptrblck's avatar
ptrblck committed
1074
        _test_transformation(a=0.0, t=(0.0, 0.0), s=s, sh=(0.0, 0.0))
1075
1076

        # Test shear
ptrblck's avatar
ptrblck committed
1077
        sh = [45.0, 25.0]
1078
1079
1080
        _test_transformation(a=0.0, t=(0.0, 0.0), s=1.0, sh=sh)

        # Test rotation, scale, translation, shear
1081
        for a in range(-90, 90, 36):
1082
            for t1 in range(-10, 10, 5):
1083
                for s in [0.77, 1.0, 1.27]:
1084
                    for sh in range(-15, 15, 5):
ptrblck's avatar
ptrblck committed
1085
                        _test_transformation(a=a, t=(t1, t1), s=s, sh=(sh, sh))
1086

1087
1088
1089
1090
1091
1092
1093
    def test_random_rotation(self):

        with self.assertRaises(ValueError):
            transforms.RandomRotation(-0.7)
            transforms.RandomRotation([-0.7])
            transforms.RandomRotation([-0.7, 0, 0.7])

1094
1095
1096
1097
1098
1099
1100
        # assert fill being either a Sequence or a Number
        with self.assertRaises(TypeError):
            transforms.RandomRotation(0, fill={})

        t = transforms.RandomRotation(0, fill=None)
        self.assertTrue(t.fill == 0)

1101
1102
        t = transforms.RandomRotation(10)
        angle = t.get_params(t.degrees)
1103
        self.assertTrue(angle > -10 and angle < 10)
1104
1105
1106

        t = transforms.RandomRotation((-10, 10))
        angle = t.get_params(t.degrees)
1107
        self.assertTrue(-10 < angle < 10)
1108

1109
1110
1111
        # Checking if RandomRotation can be printed as string
        t.__repr__()

1112
1113
1114
        # assert deprecation warning and non-BC
        with self.assertWarnsRegex(UserWarning, r"Argument resample is deprecated and will be removed"):
            t = transforms.RandomRotation((-10, 10), resample=2)
1115
            self.assertEqual(t.interpolation, transforms.InterpolationMode.BILINEAR)
1116
1117

        # assert changed type warning
1118
        with self.assertWarnsRegex(UserWarning, r"Argument interpolation should be of type InterpolationMode"):
1119
            t = transforms.RandomRotation((-10, 10), interpolation=2)
1120
            self.assertEqual(t.interpolation, transforms.InterpolationMode.BILINEAR)
1121

1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
    def test_random_affine(self):

        with self.assertRaises(ValueError):
            transforms.RandomAffine(-0.7)
            transforms.RandomAffine([-0.7])
            transforms.RandomAffine([-0.7, 0, 0.7])

            transforms.RandomAffine([-90, 90], translate=2.0)
            transforms.RandomAffine([-90, 90], translate=[-1.0, 1.0])
            transforms.RandomAffine([-90, 90], translate=[-1.0, 0.0, 1.0])

            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.0])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[-1.0, 1.0])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, -0.5])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 3.0, -0.5])

            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=-7)
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 0, 10])
ptrblck's avatar
ptrblck committed
1141
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 0, 10, 0, 10])
1142

1143
1144
1145
1146
1147
1148
1149
        # assert fill being either a Sequence or a Number
        with self.assertRaises(TypeError):
            transforms.RandomAffine(0, fill={})

        t = transforms.RandomAffine(0, fill=None)
        self.assertTrue(t.fill == 0)

1150
1151
1152
        x = np.zeros((100, 100, 3), dtype=np.uint8)
        img = F.to_pil_image(x)

ptrblck's avatar
ptrblck committed
1153
        t = transforms.RandomAffine(10, translate=[0.5, 0.3], scale=[0.7, 1.3], shear=[-10, 10, 20, 40])
1154
1155
1156
        for _ in range(100):
            angle, translations, scale, shear = t.get_params(t.degrees, t.translate, t.scale, t.shear,
                                                             img_size=img.size)
1157
1158
1159
1160
1161
1162
1163
1164
            self.assertTrue(-10 < angle < 10)
            self.assertTrue(-img.size[0] * 0.5 <= translations[0] <= img.size[0] * 0.5,
                            "{} vs {}".format(translations[0], img.size[0] * 0.5))
            self.assertTrue(-img.size[1] * 0.5 <= translations[1] <= img.size[1] * 0.5,
                            "{} vs {}".format(translations[1], img.size[1] * 0.5))
            self.assertTrue(0.7 < scale < 1.3)
            self.assertTrue(-10 < shear[0] < 10)
            self.assertTrue(-20 < shear[1] < 40)
1165
1166
1167
1168

        # Checking if RandomAffine can be printed as string
        t.__repr__()

1169
        t = transforms.RandomAffine(10, interpolation=transforms.InterpolationMode.BILINEAR)
1170
1171
1172
1173
1174
        self.assertIn("bilinear", t.__repr__())

        # assert deprecation warning and non-BC
        with self.assertWarnsRegex(UserWarning, r"Argument resample is deprecated and will be removed"):
            t = transforms.RandomAffine(10, resample=2)
1175
            self.assertEqual(t.interpolation, transforms.InterpolationMode.BILINEAR)
1176
1177
1178
1179
1180
1181

        with self.assertWarnsRegex(UserWarning, r"Argument fillcolor is deprecated and will be removed"):
            t = transforms.RandomAffine(10, fillcolor=10)
            self.assertEqual(t.fill, 10)

        # assert changed type warning
1182
        with self.assertWarnsRegex(UserWarning, r"Argument interpolation should be of type InterpolationMode"):
1183
            t = transforms.RandomAffine(10, interpolation=2)
1184
            self.assertEqual(t.interpolation, transforms.InterpolationMode.BILINEAR)
1185

1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
    def test_autoaugment(self):
        for policy in transforms.AutoAugmentPolicy:
            for fill in [None, 85, (128, 128, 128)]:
                random.seed(42)
                img = Image.open(GRACE_HOPPER)
                transform = transforms.AutoAugment(policy=policy, fill=fill)
                for _ in range(100):
                    img = transform(img)
                transform.__repr__()

1196
    @unittest.skipIf(stats is None, 'scipy.stats not available')
1197
1198
1199
    def test_random_erasing(self):
        img = torch.ones(3, 128, 128)

1200
        t = transforms.RandomErasing(scale=(0.1, 0.1), ratio=(1 / 3, 3.))
1201
1202
        y, x, h, w, v = t.get_params(img, t.scale, t.ratio, [t.value, ])
        aspect_ratio = h / w
1203
1204
1205
        # Add some tolerance due to the rounding and int conversion used in the transform
        tol = 0.05
        self.assertTrue(1 / 3 - tol <= aspect_ratio <= 3 + tol)
1206
1207
1208
1209
1210
1211
1212
1213
1214

        aspect_ratios = []
        random.seed(42)
        trial = 1000
        for _ in range(trial):
            y, x, h, w, v = t.get_params(img, t.scale, t.ratio, [t.value, ])
            aspect_ratios.append(h / w)

        count_bigger_then_ones = len([1 for aspect_ratio in aspect_ratios if aspect_ratio > 1])
1215
1216
        p_value = stats.binom_test(count_bigger_then_ones, trial, p=0.5)
        self.assertGreater(p_value, 0.0001)
1217

1218
1219
1220
        # Checking if RandomErasing can be printed as string
        t.__repr__()

1221

1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
def test_randomresized_params():
    height = random.randint(24, 32) * 2
    width = random.randint(24, 32) * 2
    img = torch.ones(3, height, width)
    to_pil_image = transforms.ToPILImage()
    img = to_pil_image(img)
    size = 100
    epsilon = 0.05
    min_scale = 0.25
    for _ in range(10):
        scale_min = max(round(random.random(), 2), min_scale)
        scale_range = (scale_min, scale_min + round(random.random(), 2))
        aspect_min = max(round(random.random(), 2), epsilon)
        aspect_ratio_range = (aspect_min, aspect_min + round(random.random(), 2))
        randresizecrop = transforms.RandomResizedCrop(size, scale_range, aspect_ratio_range)
        i, j, h, w = randresizecrop.get_params(img, scale_range, aspect_ratio_range)
        aspect_ratio_obtained = w / h
        assert((min(aspect_ratio_range) - epsilon <= aspect_ratio_obtained and
                aspect_ratio_obtained <= max(aspect_ratio_range) + epsilon) or
               aspect_ratio_obtained == 1.0)
        assert isinstance(i, int)
        assert isinstance(j, int)
        assert isinstance(h, int)
        assert isinstance(w, int)


@pytest.mark.parametrize('height, width', [
    # height, width
    # square image
    (28, 28),
    (27, 27),
    # rectangular image: h < w
    (28, 34),
    (29, 35),
    # rectangular image: h > w
    (34, 28),
    (35, 29),
])
@pytest.mark.parametrize('osize', [
    # single integer
    22, 27, 28, 36,
    # single integer in tuple/list
    [22, ], (27, ),
])
@pytest.mark.parametrize('max_size', (None, 37, 1000))
def test_resize(height, width, osize, max_size):
    img = Image.new("RGB", size=(width, height), color=127)

    t = transforms.Resize(osize, max_size=max_size)
    result = t(img)

    msg = "{}, {} - {} - {}".format(height, width, osize, max_size)
    osize = osize[0] if isinstance(osize, (list, tuple)) else osize
    # If size is an int, smaller edge of the image will be matched to this number.
    # i.e, if height > width, then image will be rescaled to (size * height / width, size).
    if height < width:
        exp_w, exp_h = (int(osize * width / height), osize)  # (w, h)
        if max_size is not None and max_size < exp_w:
            exp_w, exp_h = max_size, int(max_size * exp_h / exp_w)
        assert result.size == (exp_w, exp_h), msg
    elif width < height:
        exp_w, exp_h = (osize, int(osize * height / width))  # (w, h)
        if max_size is not None and max_size < exp_h:
            exp_w, exp_h = int(max_size * exp_w / exp_h), max_size
        assert result.size == (exp_w, exp_h), msg
    else:
        exp_w, exp_h = (osize, osize)  # (w, h)
        if max_size is not None and max_size < osize:
            exp_w, exp_h = max_size, max_size
        assert result.size == (exp_w, exp_h), msg


@pytest.mark.parametrize('height, width', [
    # height, width
    # square image
    (28, 28),
    (27, 27),
    # rectangular image: h < w
    (28, 34),
    (29, 35),
    # rectangular image: h > w
    (34, 28),
    (35, 29),
])
@pytest.mark.parametrize('osize', [
    # two integers sequence output
    [22, 22], [22, 28], [22, 36],
    [27, 22], [36, 22], [28, 28],
    [28, 37], [37, 27], [37, 37]
])
def test_resize_sequence_output(height, width, osize):
    img = Image.new("RGB", size=(width, height), color=127)
    oheight, owidth = osize

    t = transforms.Resize(osize)
    result = t(img)

    assert (owidth, oheight) == result.size


def test_resize_antialias_error():
    osize = [37, 37]
    img = Image.new("RGB", size=(35, 29), color=127)

    with pytest.warns(UserWarning, match=r"Anti-alias option is always applied for PIL Image input"):
        t = transforms.Resize(osize, antialias=False)
        t(img)


1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
class TestPad:

    def test_pad(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        img = torch.ones(3, height, width)
        padding = random.randint(1, 20)
        fill = random.randint(1, 50)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.Pad(padding, fill=fill),
            transforms.ToTensor(),
        ])(img)
        assert result.size(1) == height + 2 * padding
        assert result.size(2) == width + 2 * padding
        # check that all elements in the padded region correspond
        # to the pad value
        fill_v = fill / 255
        eps = 1e-5
        h_padded = result[:, :padding, :]
        w_padded = result[:, :, :padding]
        torch.testing.assert_close(
            h_padded, torch.full_like(h_padded, fill_value=fill_v), check_stride=False, rtol=0.0, atol=eps
        )
        torch.testing.assert_close(
            w_padded, torch.full_like(w_padded, fill_value=fill_v), check_stride=False, rtol=0.0, atol=eps
        )
        pytest.raises(ValueError, transforms.Pad(padding, fill=(1, 2)),
                      transforms.ToPILImage()(img))

    def test_pad_with_tuple_of_pad_values(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        img = transforms.ToPILImage()(torch.ones(3, height, width))

        padding = tuple([random.randint(1, 20) for _ in range(2)])
        output = transforms.Pad(padding)(img)
        assert output.size == (width + padding[0] * 2, height + padding[1] * 2)

        padding = tuple([random.randint(1, 20) for _ in range(4)])
        output = transforms.Pad(padding)(img)
        assert output.size[0] == width + padding[0] + padding[2]
        assert output.size[1] == height + padding[1] + padding[3]

        # Checking if Padding can be printed as string
        transforms.Pad(padding).__repr__()

    def test_pad_with_non_constant_padding_modes(self):
        """Unit tests for edge, reflect, symmetric padding"""
        img = torch.zeros(3, 27, 27).byte()
        img[:, :, 0] = 1  # Constant value added to leftmost edge
        img = transforms.ToPILImage()(img)
        img = F.pad(img, 1, (200, 200, 200))

        # pad 3 to all sidess
        edge_padded_img = F.pad(img, 3, padding_mode='edge')
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # edge_pad, edge_pad, edge_pad, constant_pad, constant value added to leftmost edge, 0
        edge_middle_slice = np.asarray(edge_padded_img).transpose(2, 0, 1)[0][17][:6]
        assert_equal(edge_middle_slice, np.asarray([200, 200, 200, 200, 1, 0], dtype=np.uint8), check_stride=False)
        assert transforms.ToTensor()(edge_padded_img).size() == (3, 35, 35)

        # Pad 3 to left/right, 2 to top/bottom
        reflect_padded_img = F.pad(img, (3, 2), padding_mode='reflect')
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # reflect_pad, reflect_pad, reflect_pad, constant_pad, constant value added to leftmost edge, 0
        reflect_middle_slice = np.asarray(reflect_padded_img).transpose(2, 0, 1)[0][17][:6]
        assert_equal(reflect_middle_slice, np.asarray([0, 0, 1, 200, 1, 0], dtype=np.uint8), check_stride=False)
        assert transforms.ToTensor()(reflect_padded_img).size() == (3, 33, 35)

        # Pad 3 to left, 2 to top, 2 to right, 1 to bottom
        symmetric_padded_img = F.pad(img, (3, 2, 2, 1), padding_mode='symmetric')
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # sym_pad, sym_pad, sym_pad, constant_pad, constant value added to leftmost edge, 0
        symmetric_middle_slice = np.asarray(symmetric_padded_img).transpose(2, 0, 1)[0][17][:6]
        assert_equal(symmetric_middle_slice, np.asarray([0, 1, 200, 200, 1, 0], dtype=np.uint8), check_stride=False)
        assert transforms.ToTensor()(symmetric_padded_img).size() == (3, 32, 34)

        # Check negative padding explicitly for symmetric case, since it is not
        # implemented for tensor case to compare to
        # Crop 1 to left, pad 2 to top, pad 3 to right, crop 3 to bottom
        symmetric_padded_img_neg = F.pad(img, (-1, 2, 3, -3), padding_mode='symmetric')
        symmetric_neg_middle_left = np.asarray(symmetric_padded_img_neg).transpose(2, 0, 1)[0][17][:3]
        symmetric_neg_middle_right = np.asarray(symmetric_padded_img_neg).transpose(2, 0, 1)[0][17][-4:]
        assert_equal(symmetric_neg_middle_left, np.asarray([1, 0, 0], dtype=np.uint8), check_stride=False)
        assert_equal(symmetric_neg_middle_right, np.asarray([200, 200, 0, 0], dtype=np.uint8), check_stride=False)
        assert transforms.ToTensor()(symmetric_padded_img_neg).size() == (3, 28, 31)

    def test_pad_raises_with_invalid_pad_sequence_len(self):
        with pytest.raises(ValueError):
            transforms.Pad(())

        with pytest.raises(ValueError):
            transforms.Pad((1, 2, 3))

        with pytest.raises(ValueError):
            transforms.Pad((1, 2, 3, 4, 5))

    def test_pad_with_mode_F_images(self):
        pad = 2
        transform = transforms.Pad(pad)

        img = Image.new("F", (10, 10))
        padded_img = transform(img)
        assert_equal(padded_img.size, [edge_size + 2 * pad for edge_size in img.size], check_stride=False)


1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
@pytest.mark.skipif(stats is None, reason="scipy.stats not available")
@pytest.mark.parametrize('fn, trans, config', [
                        (F.invert, transforms.RandomInvert, {}),
                        (F.posterize, transforms.RandomPosterize, {"bits": 4}),
                        (F.solarize, transforms.RandomSolarize, {"threshold": 192}),
                        (F.adjust_sharpness, transforms.RandomAdjustSharpness, {"sharpness_factor": 2.0}),
                        (F.autocontrast, transforms.RandomAutocontrast, {}),
                        (F.equalize, transforms.RandomEqualize, {})])
@pytest.mark.parametrize('p', (.5, .7))
def test_randomness(fn, trans, config, p):
    random_state = random.getstate()
    random.seed(42)
    img = transforms.ToPILImage()(torch.rand(3, 16, 18))

    inv_img = fn(img, **config)

    num_samples = 250
    counts = 0
    for _ in range(num_samples):
        tranformation = trans(p=p, **config)
        tranformation.__repr__()
        out = tranformation(img)
        if out == inv_img:
            counts += 1

    p_value = stats.binom_test(counts, num_samples, p=p)
    random.setstate(random_state)
    assert p_value > 0.0001


1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
def test_adjust_brightness():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
    x_pil = Image.fromarray(x_np, mode='RGB')

    # test 0
    y_pil = F.adjust_brightness(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_brightness(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [0, 2, 6, 27, 67, 113, 18, 4, 117, 45, 127, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_brightness(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 10, 26, 108, 255, 255, 74, 16, 255, 180, 255, 2]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjust_contrast():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
    x_pil = Image.fromarray(x_np, mode='RGB')

    # test 0
    y_pil = F.adjust_contrast(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_contrast(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [43, 45, 49, 70, 110, 156, 61, 47, 160, 88, 170, 43]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_contrast(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 0, 0, 22, 184, 255, 0, 0, 255, 94, 255, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


@pytest.mark.skipif(Image.__version__ >= '7', reason="Temporarily disabled")
def test_adjust_saturation():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
    x_pil = Image.fromarray(x_np, mode='RGB')

    # test 0
    y_pil = F.adjust_saturation(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_saturation(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [2, 4, 8, 87, 128, 173, 39, 25, 138, 133, 215, 88]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_saturation(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 6, 22, 0, 149, 255, 32, 0, 255, 4, 255, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjust_hue():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
    x_pil = Image.fromarray(x_np, mode='RGB')

    with pytest.raises(ValueError):
        F.adjust_hue(x_pil, -0.7)
        F.adjust_hue(x_pil, 1)

    # test 0: almost same as x_data but not exact.
    # probably because hsv <-> rgb floating point ops
    y_pil = F.adjust_hue(x_pil, 0)
    y_np = np.array(y_pil)
    y_ans = [0, 5, 13, 54, 139, 226, 35, 8, 234, 91, 255, 1]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 1
    y_pil = F.adjust_hue(x_pil, 0.25)
    y_np = np.array(y_pil)
    y_ans = [13, 0, 12, 224, 54, 226, 234, 8, 99, 1, 222, 255]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_hue(x_pil, -0.25)
    y_np = np.array(y_pil)
    y_ans = [0, 13, 2, 54, 226, 58, 8, 234, 152, 255, 43, 1]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjust_sharpness():
    x_shape = [4, 4, 3]
    x_data = [75, 121, 114, 105, 97, 107, 105, 32, 66, 111, 117, 114, 99, 104, 97, 0,
              0, 65, 108, 101, 120, 97, 110, 100, 101, 114, 32, 86, 114, 121, 110, 105,
              111, 116, 105, 115, 0, 0, 73, 32, 108, 111, 118, 101, 32, 121, 111, 117]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
    x_pil = Image.fromarray(x_np, mode='RGB')

    # test 0
    y_pil = F.adjust_sharpness(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_sharpness(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [75, 121, 114, 105, 97, 107, 105, 32, 66, 111, 117, 114, 99, 104, 97, 30,
             30, 74, 103, 96, 114, 97, 110, 100, 101, 114, 32, 81, 103, 108, 102, 101,
             107, 116, 105, 115, 0, 0, 73, 32, 108, 111, 118, 101, 32, 121, 111, 117]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_sharpness(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [75, 121, 114, 105, 97, 107, 105, 32, 66, 111, 117, 114, 99, 104, 97, 0,
             0, 46, 118, 111, 132, 97, 110, 100, 101, 114, 32, 95, 135, 146, 126, 112,
             119, 116, 105, 115, 0, 0, 73, 32, 108, 111, 118, 101, 32, 121, 111, 117]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 3
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
    x_pil = Image.fromarray(x_np, mode='RGB')
    x_th = torch.tensor(x_np.transpose(2, 0, 1))
    y_pil = F.adjust_sharpness(x_pil, 2)
    y_np = np.array(y_pil).transpose(2, 0, 1)
    y_th = F.adjust_sharpness(x_th, 2)
    torch.testing.assert_close(y_np, y_th.numpy())


def test_adjust_gamma():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
    x_pil = Image.fromarray(x_np, mode='RGB')

    # test 0
    y_pil = F.adjust_gamma(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_gamma(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [0, 35, 57, 117, 186, 241, 97, 45, 245, 152, 255, 16]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_gamma(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 0, 0, 11, 71, 201, 5, 0, 215, 31, 255, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjusts_L_mode():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
    x_rgb = Image.fromarray(x_np, mode='RGB')

    x_l = x_rgb.convert('L')
    assert F.adjust_brightness(x_l, 2).mode == 'L'
    assert F.adjust_saturation(x_l, 2).mode == 'L'
    assert F.adjust_contrast(x_l, 2).mode == 'L'
    assert F.adjust_hue(x_l, 0.4).mode == 'L'
    assert F.adjust_sharpness(x_l, 2).mode == 'L'
    assert F.adjust_gamma(x_l, 0.5).mode == 'L'


1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
def test_rotate():
    x = np.zeros((100, 100, 3), dtype=np.uint8)
    x[40, 40] = [255, 255, 255]

    with pytest.raises(TypeError, match=r"img should be PIL Image"):
        F.rotate(x, 10)

    img = F.to_pil_image(x)

    result = F.rotate(img, 45)
    assert result.size == (100, 100)
    r, c, ch = np.where(result)
    assert all(x in r for x in [49, 50])
    assert all(x in c for x in [36])
    assert all(x in ch for x in [0, 1, 2])

    result = F.rotate(img, 45, expand=True)
    assert result.size == (142, 142)
    r, c, ch = np.where(result)
    assert all(x in r for x in [70, 71])
    assert all(x in c for x in [57])
    assert all(x in ch for x in [0, 1, 2])

    result = F.rotate(img, 45, center=(40, 40))
    assert result.size == (100, 100)
    r, c, ch = np.where(result)
    assert all(x in r for x in [40])
    assert all(x in c for x in [40])
    assert all(x in ch for x in [0, 1, 2])

    result_a = F.rotate(img, 90)
    result_b = F.rotate(img, -270)

    assert_equal(np.array(result_a), np.array(result_b))


@pytest.mark.parametrize('mode', ["L", "RGB", "F"])
def test_rotate_fill(mode):
    img = F.to_pil_image(np.ones((100, 100, 3), dtype=np.uint8) * 255, "RGB")

    num_bands = len(mode)
    wrong_num_bands = num_bands + 1
    fill = 127

    img_conv = img.convert(mode)
    img_rot = F.rotate(img_conv, 45.0, fill=fill)
    pixel = img_rot.getpixel((0, 0))

    if not isinstance(pixel, tuple):
        pixel = (pixel,)
    assert pixel == tuple([fill] * num_bands)

    with pytest.raises(ValueError):
        F.rotate(img_conv, 45.0, fill=tuple([fill] * wrong_num_bands))


def test_gaussian_blur_asserts():
    np_img = np.ones((100, 100, 3), dtype=np.uint8) * 255
    img = F.to_pil_image(np_img, "RGB")

    with pytest.raises(ValueError, match=r"If kernel_size is a sequence its length should be 2"):
        F.gaussian_blur(img, [3])
    with pytest.raises(ValueError, match=r"If kernel_size is a sequence its length should be 2"):
        F.gaussian_blur(img, [3, 3, 3])
    with pytest.raises(ValueError, match=r"Kernel size should be a tuple/list of two integers"):
        transforms.GaussianBlur([3, 3, 3])

    with pytest.raises(ValueError, match=r"kernel_size should have odd and positive integers"):
        F.gaussian_blur(img, [4, 4])
    with pytest.raises(ValueError, match=r"Kernel size value should be an odd and positive number"):
        transforms.GaussianBlur([4, 4])

    with pytest.raises(ValueError, match=r"kernel_size should have odd and positive integers"):
        F.gaussian_blur(img, [-3, -3])
    with pytest.raises(ValueError, match=r"Kernel size value should be an odd and positive number"):
        transforms.GaussianBlur([-3, -3])

    with pytest.raises(ValueError, match=r"If sigma is a sequence, its length should be 2"):
        F.gaussian_blur(img, 3, [1, 1, 1])
    with pytest.raises(ValueError, match=r"sigma should be a single number or a list/tuple with length 2"):
        transforms.GaussianBlur(3, [1, 1, 1])

    with pytest.raises(ValueError, match=r"sigma should have positive values"):
        F.gaussian_blur(img, 3, -1.0)
    with pytest.raises(ValueError, match=r"If sigma is a single number, it must be positive"):
        transforms.GaussianBlur(3, -1.0)

    with pytest.raises(TypeError, match=r"kernel_size should be int or a sequence of integers"):
        F.gaussian_blur(img, "kernel_size_string")
    with pytest.raises(ValueError, match=r"Kernel size should be a tuple/list of two integers"):
        transforms.GaussianBlur("kernel_size_string")

    with pytest.raises(TypeError, match=r"sigma should be either float or sequence of floats"):
        F.gaussian_blur(img, 3, "sigma_string")
    with pytest.raises(ValueError, match=r"sigma should be a single number or a list/tuple with length 2"):
        transforms.GaussianBlur(3, "sigma_string")


def test_lambda():
    trans = transforms.Lambda(lambda x: x.add(10))
    x = torch.randn(10)
    y = trans(x)
    assert_equal(y, torch.add(x, 10))

    trans = transforms.Lambda(lambda x: x.add_(10))
    x = torch.randn(10)
    y = trans(x)
    assert_equal(y, x)

    # Checking if Lambda can be printed as string
    trans.__repr__()


1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
def test_to_grayscale():
    """Unit tests for grayscale transform"""

    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
    x_pil = Image.fromarray(x_np, mode='RGB')
    x_pil_2 = x_pil.convert('L')
    gray_np = np.array(x_pil_2)

    # Test Set: Grayscale an image with desired number of output channels
    # Case 1: RGB -> 1 channel grayscale
    trans1 = transforms.Grayscale(num_output_channels=1)
    gray_pil_1 = trans1(x_pil)
    gray_np_1 = np.array(gray_pil_1)
    assert gray_pil_1.mode == 'L', 'mode should be L'
    assert gray_np_1.shape == tuple(x_shape[0:2]), 'should be 1 channel'
    assert_equal(gray_np, gray_np_1)

    # Case 2: RGB -> 3 channel grayscale
    trans2 = transforms.Grayscale(num_output_channels=3)
    gray_pil_2 = trans2(x_pil)
    gray_np_2 = np.array(gray_pil_2)
    assert gray_pil_2.mode == 'RGB', 'mode should be RGB'
    assert gray_np_2.shape == tuple(x_shape), 'should be 3 channel'
    assert_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1])
    assert_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2])
    assert_equal(gray_np, gray_np_2[:, :, 0], check_stride=False)

    # Case 3: 1 channel grayscale -> 1 channel grayscale
    trans3 = transforms.Grayscale(num_output_channels=1)
    gray_pil_3 = trans3(x_pil_2)
    gray_np_3 = np.array(gray_pil_3)
    assert gray_pil_3.mode == 'L', 'mode should be L'
    assert gray_np_3.shape == tuple(x_shape[0:2]), 'should be 1 channel'
    assert_equal(gray_np, gray_np_3)

    # Case 4: 1 channel grayscale -> 3 channel grayscale
    trans4 = transforms.Grayscale(num_output_channels=3)
    gray_pil_4 = trans4(x_pil_2)
    gray_np_4 = np.array(gray_pil_4)
    assert gray_pil_4.mode == 'RGB', 'mode should be RGB'
    assert gray_np_4.shape == tuple(x_shape), 'should be 3 channel'
    assert_equal(gray_np_4[:, :, 0], gray_np_4[:, :, 1])
    assert_equal(gray_np_4[:, :, 1], gray_np_4[:, :, 2])
    assert_equal(gray_np, gray_np_4[:, :, 0], check_stride=False)

    # Checking if Grayscale can be printed as string
    trans4.__repr__()


@pytest.mark.skipif(stats is None, reason="scipy.stats not available")
def test_random_grayscale():
    """Unit tests for random grayscale transform"""

    # Test Set 1: RGB -> 3 channel grayscale
    random_state = random.getstate()
    random.seed(42)
    x_shape = [2, 2, 3]
    x_np = np.random.randint(0, 256, x_shape, np.uint8)
    x_pil = Image.fromarray(x_np, mode='RGB')
    x_pil_2 = x_pil.convert('L')
    gray_np = np.array(x_pil_2)

    num_samples = 250
    num_gray = 0
    for _ in range(num_samples):
        gray_pil_2 = transforms.RandomGrayscale(p=0.5)(x_pil)
        gray_np_2 = np.array(gray_pil_2)
        if np.array_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1]) and \
                np.array_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2]) and \
                np.array_equal(gray_np, gray_np_2[:, :, 0]):
            num_gray = num_gray + 1

    p_value = stats.binom_test(num_gray, num_samples, p=0.5)
    random.setstate(random_state)
    assert p_value > 0.0001

    # Test Set 2: grayscale -> 1 channel grayscale
    random_state = random.getstate()
    random.seed(42)
    x_shape = [2, 2, 3]
    x_np = np.random.randint(0, 256, x_shape, np.uint8)
    x_pil = Image.fromarray(x_np, mode='RGB')
    x_pil_2 = x_pil.convert('L')
    gray_np = np.array(x_pil_2)

    num_samples = 250
    num_gray = 0
    for _ in range(num_samples):
        gray_pil_3 = transforms.RandomGrayscale(p=0.5)(x_pil_2)
        gray_np_3 = np.array(gray_pil_3)
        if np.array_equal(gray_np, gray_np_3):
            num_gray = num_gray + 1

    p_value = stats.binom_test(num_gray, num_samples, p=1.0)  # Note: grayscale is always unchanged
    random.setstate(random_state)
    assert p_value > 0.0001

    # Test set 3: Explicit tests
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
    x_pil = Image.fromarray(x_np, mode='RGB')
    x_pil_2 = x_pil.convert('L')
    gray_np = np.array(x_pil_2)

    # Case 3a: RGB -> 3 channel grayscale (grayscaled)
    trans2 = transforms.RandomGrayscale(p=1.0)
    gray_pil_2 = trans2(x_pil)
    gray_np_2 = np.array(gray_pil_2)
    assert gray_pil_2.mode == 'RGB', 'mode should be RGB'
    assert gray_np_2.shape == tuple(x_shape), 'should be 3 channel'
    assert_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1])
    assert_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2])
    assert_equal(gray_np, gray_np_2[:, :, 0], check_stride=False)

    # Case 3b: RGB -> 3 channel grayscale (unchanged)
    trans2 = transforms.RandomGrayscale(p=0.0)
    gray_pil_2 = trans2(x_pil)
    gray_np_2 = np.array(gray_pil_2)
    assert gray_pil_2.mode == 'RGB', 'mode should be RGB'
    assert gray_np_2.shape == tuple(x_shape), 'should be 3 channel'
    assert_equal(x_np, gray_np_2)

    # Case 3c: 1 channel grayscale -> 1 channel grayscale (grayscaled)
    trans3 = transforms.RandomGrayscale(p=1.0)
    gray_pil_3 = trans3(x_pil_2)
    gray_np_3 = np.array(gray_pil_3)
    assert gray_pil_3.mode == 'L', 'mode should be L'
    assert gray_np_3.shape == tuple(x_shape[0:2]), 'should be 1 channel'
    assert_equal(gray_np, gray_np_3)

    # Case 3d: 1 channel grayscale -> 1 channel grayscale (unchanged)
    trans3 = transforms.RandomGrayscale(p=0.0)
    gray_pil_3 = trans3(x_pil_2)
    gray_np_3 = np.array(gray_pil_3)
    assert gray_pil_3.mode == 'L', 'mode should be L'
    assert gray_np_3.shape == tuple(x_shape[0:2]), 'should be 1 channel'
    assert_equal(gray_np, gray_np_3)

    # Checking if RandomGrayscale can be printed as string
    trans3.__repr__()


1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
@pytest.mark.skipif(stats is None, reason='scipy.stats not available')
def test_random_apply():
    random_state = random.getstate()
    random.seed(42)
    random_apply_transform = transforms.RandomApply(
        [
            transforms.RandomRotation((-45, 45)),
            transforms.RandomHorizontalFlip(),
            transforms.RandomVerticalFlip(),
        ], p=0.75
    )
    img = transforms.ToPILImage()(torch.rand(3, 10, 10))
    num_samples = 250
    num_applies = 0
    for _ in range(num_samples):
        out = random_apply_transform(img)
        if out != img:
            num_applies += 1

    p_value = stats.binom_test(num_applies, num_samples, p=0.75)
    random.setstate(random_state)
    assert p_value > 0.0001

    # Checking if RandomApply can be printed as string
    random_apply_transform.__repr__()


@pytest.mark.skipif(stats is None, reason='scipy.stats not available')
def test_random_choice():
    random_state = random.getstate()
    random.seed(42)
    random_choice_transform = transforms.RandomChoice(
        [
            transforms.Resize(15),
            transforms.Resize(20),
            transforms.CenterCrop(10)
        ]
    )
    img = transforms.ToPILImage()(torch.rand(3, 25, 25))
    num_samples = 250
    num_resize_15 = 0
    num_resize_20 = 0
    num_crop_10 = 0
    for _ in range(num_samples):
        out = random_choice_transform(img)
        if out.size == (15, 15):
            num_resize_15 += 1
        elif out.size == (20, 20):
            num_resize_20 += 1
        elif out.size == (10, 10):
            num_crop_10 += 1

    p_value = stats.binom_test(num_resize_15, num_samples, p=0.33333)
    assert p_value > 0.0001
    p_value = stats.binom_test(num_resize_20, num_samples, p=0.33333)
    assert p_value > 0.0001
    p_value = stats.binom_test(num_crop_10, num_samples, p=0.33333)
    assert p_value > 0.0001

    random.setstate(random_state)
    # Checking if RandomChoice can be printed as string
    random_choice_transform.__repr__()


@pytest.mark.skipif(stats is None, reason='scipy.stats not available')
def test_random_order():
    random_state = random.getstate()
    random.seed(42)
    random_order_transform = transforms.RandomOrder(
        [
            transforms.Resize(20),
            transforms.CenterCrop(10)
        ]
    )
    img = transforms.ToPILImage()(torch.rand(3, 25, 25))
    num_samples = 250
    num_normal_order = 0
    resize_crop_out = transforms.CenterCrop(10)(transforms.Resize(20)(img))
    for _ in range(num_samples):
        out = random_order_transform(img)
        if out == resize_crop_out:
            num_normal_order += 1

    p_value = stats.binom_test(num_normal_order, num_samples, p=0.5)
    random.setstate(random_state)
    assert p_value > 0.0001

    # Checking if RandomOrder can be printed as string
    random_order_transform.__repr__()


2013
2014
if __name__ == '__main__':
    unittest.main()