"vscode:/vscode.git/clone" did not exist on "013d1322a1c4559ee6606afb92d54a8240e07994"
server.rs 91.2 KB
Newer Older
1
/// HTTP Server logic
OlivierDehaene's avatar
OlivierDehaene committed
2
use crate::config::Config;
Nicolas Patry's avatar
Nicolas Patry committed
3
use crate::infer::{Backend, Infer, InferError, InferResponse, InferStreamResponse};
4
5
6
7
8
#[cfg(feature = "kserve")]
use crate::kserve::{
    kerve_server_metadata, kserve_health_live, kserve_health_ready, kserve_model_infer,
    kserve_model_metadata, kserve_model_metadata_ready,
};
9
10
11
12
use crate::sagemaker::{
    sagemaker_compatibility, SagemakerRequest, SagemakerResponse, SagemakerStreamResponse,
    __path_sagemaker_compatibility,
};
13
use crate::validation::ValidationError;
Nicolas Patry's avatar
Nicolas Patry committed
14
15
use crate::vertex::vertex_compatibility;
use crate::ChatTokenizeResponse;
16
use crate::{
17
18
19
    usage_stats, BestOfSequence, Details, ErrorResponse, FinishReason, FunctionName,
    GenerateParameters, GenerateRequest, GenerateResponse, GrammarType, HubModelInfo,
    HubProcessorConfig, HubTokenizerConfig, Info, Message, MessageChunk, MessageContent,
Nicolas Patry's avatar
Nicolas Patry committed
20
    OutputMessage, PrefillToken, SimpleToken, StreamDetails, StreamOptions, StreamResponse,
21
22
    TextMessage, Token, TokenizeResponse, Tokenizer, ToolCallDelta, ToolCallMessage, Url, Usage,
    Validation,
23
24
25
26
};
use crate::{
    ChatCompletion, ChatCompletionChoice, ChatCompletionChunk, ChatCompletionComplete,
    ChatCompletionDelta, ChatCompletionLogprob, ChatCompletionLogprobs, ChatCompletionTopLogprob,
27
    ChatRequest, Chunk, CompatGenerateRequest, Completion, CompletionComplete, CompletionFinal,
Nicolas Patry's avatar
Nicolas Patry committed
28
    CompletionRequest, CompletionType, DeltaToolCall, Function, Prompt, Tool,
29
};
30
use crate::{FunctionDefinition, HubPreprocessorConfig, ToolCall, ToolChoice};
drbh's avatar
drbh committed
31
use crate::{ModelInfo, ModelsInfo};
32
use async_stream::__private::AsyncStream;
33
use axum::extract::{DefaultBodyLimit, Extension};
Nicolas Patry's avatar
Nicolas Patry committed
34
use axum::http::{HeaderMap, HeaderValue, Method, StatusCode};
35
use axum::response::sse::{Event, KeepAlive, Sse};
36
use axum::response::{IntoResponse, Response};
Olivier Dehaene's avatar
Olivier Dehaene committed
37
use axum::routing::{get, post};
38
use axum::{http, Json, Router};
Nicolas Patry's avatar
Nicolas Patry committed
39
use axum_tracing_opentelemetry::middleware::OtelAxumLayer;
40
use futures::stream::StreamExt;
41
use futures::stream::{FuturesOrdered, FuturesUnordered};
42
use futures::Stream;
drbh's avatar
drbh committed
43
use futures::TryStreamExt;
Nicolas Patry's avatar
Nicolas Patry committed
44
45
use hf_hub::api::tokio::{Api, ApiBuilder, ApiRepo};
use hf_hub::{Cache, Repo, RepoType};
Erik Kaunismäki's avatar
Erik Kaunismäki committed
46
use http::header::AUTHORIZATION;
47
use metrics_exporter_prometheus::{Matcher, PrometheusBuilder, PrometheusHandle};
48
use pyo3::prelude::*;
Nicolas Patry's avatar
Nicolas Patry committed
49
use pyo3::types::IntoPyDict;
50
use regex::Regex;
drbh's avatar
drbh committed
51
use serde_json::Value;
52
use std::convert::Infallible;
Nicolas Patry's avatar
Nicolas Patry committed
53
54
55
56
use std::fs::File;
use std::io::BufReader;
use std::net::{IpAddr, Ipv4Addr, SocketAddr};
use std::path::{Path, PathBuf};
OlivierDehaene's avatar
OlivierDehaene committed
57
use thiserror::Error;
58
use tokio::select;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
59
use tokio::signal;
60
use tokio::sync::oneshot;
Olivier Dehaene's avatar
Olivier Dehaene committed
61
use tokio::time::Instant;
62
use tower_http::cors::{AllowOrigin, CorsLayer};
63
use tracing::{info_span, instrument, Instrument};
64
65
use utoipa::OpenApi;
use utoipa_swagger_ui::SwaggerUi;
Olivier Dehaene's avatar
Olivier Dehaene committed
66

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
fn encoding_to_tokens(encoding: &tokenizers::Encoding, input: &str) -> Vec<SimpleToken> {
    let offsets = encoding.get_offsets();
    let input_ids = encoding.get_ids();
    if offsets.len() == input_ids.len() {
        input_ids
            .iter()
            .zip(offsets)
            .map(|(&id, &(start, stop))| {
                let text = input
                    .chars()
                    .skip(start)
                    .take(stop - start)
                    .collect::<String>();
                SimpleToken {
                    id,
                    text,
                    start,
                    stop,
                }
            })
            .collect()
    } else {
        encoding
            .get_ids()
            .iter()
            .map(|&id| SimpleToken {
                id,
                text: "".to_string(),
                start: 0,
                stop: 0,
            })
            .collect()
    }
}

102
103
/// Generate tokens if `stream == false` or a stream of token if `stream == true`
#[utoipa::path(
104
105
106
107
108
109
110
post,
tag = "Text Generation Inference",
path = "/",
request_body = CompatGenerateRequest,
responses(
(status = 200, description = "Generated Text",
content(
111
("application/json" = Vec<GenerateResponse>),
112
113
114
115
116
117
118
119
120
121
122
("text/event-stream" = StreamResponse),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
123
)]
124
#[instrument(skip(infer, req))]
125
pub(crate) async fn compat_generate(
126
    Extension(default_return_full_text): Extension<bool>,
127
    infer: Extension<Infer>,
128
    compute_type: Extension<ComputeType>,
129
    Json(mut req): Json<CompatGenerateRequest>,
130
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
131
132
    // default return_full_text given the pipeline_tag
    if req.parameters.return_full_text.is_none() {
133
        req.parameters.return_full_text = Some(default_return_full_text)
134
135
    }

136
137
    // switch on stream
    if req.stream {
138
        Ok(generate_stream(infer, compute_type, Json(req.into()))
139
140
141
            .await
            .into_response())
    } else {
142
        let (headers, Json(generation)) = generate(infer, compute_type, Json(req.into())).await?;
143
        // wrap generation inside a Vec to match api-inference
144
        Ok((headers, Json(vec![generation])).into_response())
145
146
147
    }
}

148
149
/// Text Generation Inference endpoint info
#[utoipa::path(
150
151
152
153
get,
tag = "Text Generation Inference",
path = "/info",
responses((status = 200, description = "Served model info", body = Info))
154
155
)]
#[instrument]
156
157
async fn get_model_info(info: Extension<Info>) -> Json<Info> {
    Json(info.0)
158
159
}

drbh's avatar
drbh committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
#[utoipa::path(
get,
tag = "Text Generation Inference",
path = "/v1/models",
responses(
(status = 200, description = "Served model info", body = ModelInfo),
(status = 404, description = "Model not found", body = ErrorResponse),
)
)]
#[instrument(skip(info))]
/// Get model info
async fn openai_get_model_info(info: Extension<Info>) -> Json<ModelsInfo> {
    Json(ModelsInfo {
        data: vec![ModelInfo {
            id: info.0.model_id.clone(),
            object: "model".to_string(),
            created: 0, // TODO: determine how to get this
            owned_by: info.0.model_id.clone(),
        }],
        ..Default::default()
    })
}

183
/// Template and tokenize ChatRequest
184
185
186
187
188
#[utoipa::path(
    post,
    tag = "Text Generation Inference",
    path = "/chat_tokenize",
    request_body = ChatRequest,
189
190
191
192
    responses(
    (status = 200, description = "Templated and tokenized ChatRequest", body = ChatTokenizeResponse),
    (status = 404, description = "Failed to tokenize ChatRequest", body = ErrorResponse),
    )
193
194
195
)]
async fn get_chat_tokenize(
    Extension(infer): Extension<Infer>,
Nicolas Patry's avatar
Nicolas Patry committed
196
    Json(chat): Json<ChatRequest>,
197
198
199
) -> Result<(HeaderMap, Json<ChatTokenizeResponse>), (StatusCode, Json<ErrorResponse>)> {
    metrics::counter!("tgi_request_count").increment(1);

Nicolas Patry's avatar
Nicolas Patry committed
200
    let generate_request: GenerateRequest = chat.try_into_generate(&infer)?.0;
201
202
203
    let input = generate_request.inputs.clone();
    let encoding = infer.tokenize(generate_request).await?;

204
205
206
207
208
209
210
    let tokens = encoding_to_tokens(&encoding, &input);

    let resp = ChatTokenizeResponse {
        tokenize_response: TokenizeResponse(tokens),
        templated_text: input,
    };
    Ok((HeaderMap::new(), Json(resp)))
211
212
}

213
#[utoipa::path(
214
215
216
217
218
219
220
221
get,
tag = "Text Generation Inference",
path = "/health",
responses(
(status = 200, description = "Everything is working fine"),
(status = 503, description = "Text generation inference is down", body = ErrorResponse,
example = json ! ({"error": "unhealthy", "error_type": "healthcheck"})),
)
222
)]
Nicolas Patry's avatar
Nicolas Patry committed
223
#[instrument(skip(infer))]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
224
/// Health check method
Nicolas Patry's avatar
Nicolas Patry committed
225
226
async fn health(infer: Extension<Infer>) -> Result<(), (StatusCode, Json<ErrorResponse>)> {
    match infer.health().await {
227
228
229
230
231
232
233
234
235
        true => Ok(()),
        false => Err((
            StatusCode::SERVICE_UNAVAILABLE,
            Json(ErrorResponse {
                error: "unhealthy".to_string(),
                error_type: "healthcheck".to_string(),
            }),
        )),
    }
Olivier Dehaene's avatar
Olivier Dehaene committed
236
237
}

238
239
/// Generate tokens
#[utoipa::path(
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
post,
tag = "Text Generation Inference",
path = "/generate",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = GenerateResponse),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
255
)]
256
#[instrument(
257
258
skip_all,
fields(
259
parameters = ? req.parameters,
260
261
262
263
264
265
266
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
267
)]
Olivier Dehaene's avatar
Olivier Dehaene committed
268
async fn generate(
269
    infer: Extension<Infer>,
270
    Extension(ComputeType(compute_type)): Extension<ComputeType>,
271
    Json(req): Json<GenerateRequest>,
272
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
273
    let span = tracing::Span::current();
274
275
276
    generate_internal(infer, ComputeType(compute_type), Json(req), span).await
}

277
pub(crate) async fn generate_internal(
278
279
280
281
282
    infer: Extension<Infer>,
    ComputeType(compute_type): ComputeType,
    Json(req): Json<GenerateRequest>,
    span: tracing::Span,
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
283
    let start_time = Instant::now();
284
    metrics::counter!("tgi_request_count").increment(1);
285

286
    // Do not long ultra long inputs, like image payloads.
287
288
289
290
    tracing::debug!(
        "Input: {}",
        &req.inputs.chars().take(1000).collect::<String>()
    );
291

292
    let compute_characters = req.inputs.chars().count();
293
    let mut add_prompt = None;
294
295
    if req.parameters.return_full_text.unwrap_or(false) {
        add_prompt = Some(req.inputs.clone());
296
297
    }

Nicolas Patry's avatar
Nicolas Patry committed
298
    let details: bool = req.parameters.details || req.parameters.decoder_input_details;
299
300

    // Inference
301
    let (response, best_of_responses) = match req.parameters.best_of {
302
        Some(best_of) if best_of > 1 => {
303
            let (response, best_of_responses) = infer.generate_best_of(req, best_of).await?;
304
305
            (response, Some(best_of_responses))
        }
306
        _ => (infer.generate(req).await?, None),
307
    };
Olivier Dehaene's avatar
Olivier Dehaene committed
308

OlivierDehaene's avatar
OlivierDehaene committed
309
    // Token details
310
    let input_length = response._input_length;
OlivierDehaene's avatar
OlivierDehaene committed
311
    let details = match details {
312
313
314
315
316
317
318
319
320
321
322
323
324
325
        true => {
            // convert best_of_responses
            let best_of_sequences = best_of_responses.map(|responses: Vec<InferResponse>| {
                responses
                    .into_iter()
                    .map(|response: InferResponse| {
                        // Add prompt if return_full_text
                        let mut output_text = response.generated_text.text;
                        if let Some(prompt) = &add_prompt {
                            output_text = prompt.clone() + &output_text;
                        }

                        BestOfSequence {
                            generated_text: output_text,
OlivierDehaene's avatar
OlivierDehaene committed
326
                            finish_reason: response.generated_text.finish_reason,
327
328
329
                            generated_tokens: response.generated_text.generated_tokens,
                            prefill: response.prefill,
                            tokens: response.tokens,
Nicolas Patry's avatar
Nicolas Patry committed
330
                            top_tokens: response.top_tokens,
331
332
333
334
335
336
337
                            seed: response.generated_text.seed,
                        }
                    })
                    .collect()
            });

            Some(Details {
OlivierDehaene's avatar
OlivierDehaene committed
338
                finish_reason: response.generated_text.finish_reason,
339
340
341
342
343
                generated_tokens: response.generated_text.generated_tokens,
                prefill: response.prefill,
                tokens: response.tokens,
                seed: response.generated_text.seed,
                best_of_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
344
                top_tokens: response.top_tokens,
345
346
            })
        }
OlivierDehaene's avatar
OlivierDehaene committed
347
348
349
        false => None,
    };

350
351
352
353
    // Timings
    let total_time = start_time.elapsed();
    let validation_time = response.queued - start_time;
    let queue_time = response.start - response.queued;
354
355
    let inference_time = Instant::now() - response.start;
    let time_per_token = inference_time / response.generated_text.generated_tokens;
356

357
358
359
360
361
362
363
364
    // Tracing metadata
    span.record("total_time", format!("{total_time:?}"));
    span.record("validation_time", format!("{validation_time:?}"));
    span.record("queue_time", format!("{queue_time:?}"));
    span.record("inference_time", format!("{inference_time:?}"));
    span.record("time_per_token", format!("{time_per_token:?}"));
    span.record("seed", format!("{:?}", response.generated_text.seed));

365
366
    // Headers
    let mut headers = HeaderMap::new();
367
    headers.insert("x-compute-type", compute_type.parse().unwrap());
368
369
    headers.insert(
        "x-compute-time",
Nicolas Patry's avatar
Nicolas Patry committed
370
        total_time.as_secs_f64().to_string().parse().unwrap(),
371
372
373
374
375
    );
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
376
377
378
379
380
381
382
383
384
385
386
    headers.insert(
        "x-total-time",
        total_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-validation-time",
        validation_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-queue-time",
        queue_time.as_millis().to_string().parse().unwrap(),
Olivier Dehaene's avatar
Olivier Dehaene committed
387
    );
388
389
390
391
392
393
394
395
    headers.insert(
        "x-inference-time",
        inference_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-time-per-token",
        time_per_token.as_millis().to_string().parse().unwrap(),
    );
396
397
398
399
400
    headers.insert("x-prompt-tokens", input_length.into());
    headers.insert(
        "x-generated-tokens",
        response.generated_text.generated_tokens.into(),
    );
401

402
    // Metrics
403
404
405
406
407
408
409
410
411
    metrics::counter!("tgi_request_success").increment(1);
    metrics::histogram!("tgi_request_duration").record(total_time.as_secs_f64());
    metrics::histogram!("tgi_request_validation_duration").record(validation_time.as_secs_f64());
    metrics::histogram!("tgi_request_queue_duration").record(queue_time.as_secs_f64());
    metrics::histogram!("tgi_request_inference_duration").record(inference_time.as_secs_f64());
    metrics::histogram!("tgi_request_mean_time_per_token_duration")
        .record(time_per_token.as_secs_f64());
    metrics::histogram!("tgi_request_generated_tokens")
        .record(response.generated_text.generated_tokens as f64);
412

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
413
    // Send response
414
415
416
417
418
    let mut output_text = response.generated_text.text;
    if let Some(prompt) = add_prompt {
        output_text = prompt + &output_text;
    }

419
420
    tracing::debug!("Output: {}", output_text);
    tracing::info!("Success");
421

422
    let response = GenerateResponse {
423
        generated_text: output_text,
OlivierDehaene's avatar
OlivierDehaene committed
424
        details,
425
    };
426
    Ok((headers, Json(response)))
Olivier Dehaene's avatar
Olivier Dehaene committed
427
428
}

Yannic Kilcher's avatar
Yannic Kilcher committed
429
/// Generate a stream of token using Server-Sent Events
430
#[utoipa::path(
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
post,
tag = "Text Generation Inference",
path = "/generate_stream",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = StreamResponse,
content_type = "text/event-stream"),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"}),
content_type = "text/event-stream"),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"}),
content_type = "text/event-stream"),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"}),
content_type = "text/event-stream"),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"}),
content_type = "text/event-stream"),
)
451
)]
452
#[instrument(
453
454
skip_all,
fields(
455
parameters = ? req.parameters,
456
457
458
459
460
461
462
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
463
464
)]
async fn generate_stream(
465
    Extension(infer): Extension<Infer>,
466
    Extension(compute_type): Extension<ComputeType>,
467
    Json(req): Json<GenerateRequest>,
468
469
470
471
) -> (
    HeaderMap,
    Sse<impl Stream<Item = Result<Event, Infallible>>>,
) {
472
    let span = tracing::Span::current();
473
    let (headers, response_stream) =
474
475
476
477
478
479
480
481
482
483
484
485
486
        generate_stream_internal(infer, compute_type, Json(req), span).await;

    let response_stream = async_stream::stream! {
        let mut response_stream = Box::pin(response_stream);
        while let Some(raw_event) = response_stream.next().await {
            yield Ok(raw_event.map_or_else(Event::from, |token| {
                Event::default()
                    .json_data(token)
                    .unwrap_or_else(|e| InferError::StreamSerializationError(e.to_string()).into())
            }));
        }
    };

487
488
489
490
491
492
    let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
    (headers, sse)
}

async fn generate_stream_internal(
    infer: Infer,
493
    ComputeType(compute_type): ComputeType,
494
    Json(req): Json<GenerateRequest>,
495
    span: tracing::Span,
496
497
498
499
) -> (
    HeaderMap,
    impl Stream<Item = Result<StreamResponse, InferError>>,
) {
500
    let start_time = Instant::now();
501
    metrics::counter!("tgi_request_count").increment(1);
502

503
    tracing::debug!("Input: {}", req.inputs);
504

505
    let compute_characters = req.inputs.chars().count();
506
507

    let mut headers = HeaderMap::new();
508
    headers.insert("x-compute-type", compute_type.parse().unwrap());
509
510
511
512
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
513
    headers.insert("X-Accel-Buffering", "no".parse().unwrap());
514

515
516
517
518
    let stream = async_stream::stream! {
        // Inference
        let mut end_reached = false;
        let mut error = false;
519
520

        let mut add_prompt = None;
521
522
        if req.parameters.return_full_text.unwrap_or(false) {
            add_prompt = Some(req.inputs.clone());
523
        }
524
        let details = req.parameters.details;
525

526
        let best_of = req.parameters.best_of.unwrap_or(1);
527
528
        if best_of != 1 {
            let err = InferError::from(ValidationError::BestOfStream);
529
            metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
530
            tracing::error!("{err}");
531
            yield Err(err);
532
        } else if req.parameters.decoder_input_details {
533
            let err = InferError::from(ValidationError::PrefillDetailsStream);
534
            metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
535
            tracing::error!("{err}");
536
            yield Err(err);
537
        } else {
538
            match infer.generate_stream(req).instrument(info_span!(parent: &span, "async_stream")).await {
539
                // Keep permit as long as generate_stream lives
540
                Ok((_permit, input_length, response_stream)) => {
541
                    let mut index = 0;
Nicolas Patry's avatar
Nicolas Patry committed
542
                    let mut response_stream = Box::pin(response_stream);
543
544
                    // Server-Sent Event stream
                    while let Some(response) = response_stream.next().await {
545
                        index += 1;
546
547
548
549
550
551
                        match response {
                            Ok(response) => {
                                match response {
                                    // Prefill is ignored
                                    InferStreamResponse::Prefill(_) => {}
                                    // Yield event for every new token
Nicolas Patry's avatar
Nicolas Patry committed
552
553
554
555
                                    InferStreamResponse::Intermediate{
                                        token,
                                        top_tokens,
                                    } => {
556
557
                                        tracing::debug!(parent: &span, "Token: {:?}", token);

558
559
                                        // StreamResponse
                                        let stream_token = StreamResponse {
560
                                            index,
561
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
562
                                            top_tokens,
563
564
565
                                            generated_text: None,
                                            details: None,
                                        };
566
                                        yield Ok(stream_token);
567
                                    }
568
569
                                    // Yield event for last token and compute timings
                                    InferStreamResponse::End {
570
                                        token,
571
572
573
                                        generated_text,
                                        start,
                                        queued,
Nicolas Patry's avatar
Nicolas Patry committed
574
                                        top_tokens,
575
576
577
578
                                    } => {
                                        // Token details
                                        let details = match details {
                                            true => Some(StreamDetails {
OlivierDehaene's avatar
OlivierDehaene committed
579
                                                finish_reason: generated_text.finish_reason,
580
581
                                                generated_tokens: generated_text.generated_tokens,
                                                seed: generated_text.seed,
582
                                                input_length,
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
                                            }),
                                            false => None,
                                        };

                                        // Timings
                                        let total_time = start_time.elapsed();
                                        let validation_time = queued - start_time;
                                        let queue_time = start - queued;
                                        let inference_time = Instant::now() - start;
                                        let time_per_token = inference_time / generated_text.generated_tokens;

                                        // Tracing metadata
                                        span.record("total_time", format!("{total_time:?}"));
                                        span.record("validation_time", format!("{validation_time:?}"));
                                        span.record("queue_time", format!("{queue_time:?}"));
                                        span.record("inference_time", format!("{inference_time:?}"));
                                        span.record("time_per_token", format!("{time_per_token:?}"));
                                        span.record("seed", format!("{:?}", generated_text.seed));

                                        // Metrics
603
604
605
606
607
608
609
                                        metrics::counter!("tgi_request_success").increment(1);
                                        metrics::histogram!("tgi_request_duration").record(total_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_validation_duration").record(validation_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_queue_duration").record(queue_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_inference_duration").record(inference_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_mean_time_per_token_duration").record(time_per_token.as_secs_f64());
                                        metrics::histogram!("tgi_request_generated_tokens").record(generated_text.generated_tokens as f64);
610
611
612
613
614
615
616
617
618

                                        // StreamResponse
                                        end_reached = true;

                                        let mut output_text = generated_text.text;
                                        if let Some(prompt) = add_prompt {
                                            output_text = prompt + &output_text;
                                        }

619
620
                                        tracing::debug!(parent: &span, "Output: {}", output_text);
                                        tracing::info!(parent: &span, "Success");
621

622
                                        let stream_token = StreamResponse {
623
                                            index,
624
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
625
                                            top_tokens,
626
627
628
629
                                            generated_text: Some(output_text),
                                            details
                                        };

630
                                        yield Ok(stream_token);
631
632
                                        break;
                                    }
633
634
                                }
                            }
635
636
637
                            // yield error
                            Err(err) => {
                                error = true;
638
                                yield Err(err);
639
640
                                break;
                            }
641
642
                        }
                    }
643
644
645
646
                },
                // yield error
                Err(err) => {
                    error = true;
647
                    yield Err(err);
648
                }
649
650
651
652
            }
            // Check if generation reached the end
            // Skip if we already sent an error
            if !end_reached && !error {
653
                let err = InferError::IncompleteGenerationStream;
654
                metrics::counter!("tgi_request_failure", "err" => "incomplete").increment(1);
655
                tracing::error!("{err}");
656
                yield Err(err);
657
658
659
660
            }
        }
    };

661
662
663
    (headers, stream)
}

664
665
/// Generate tokens
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
666
667
668
669
670
671
672
post,
tag = "Text Generation Inference",
path = "/v1/completions",
request_body = CompletionRequest,
responses(
(status = 200, description = "Generated Chat Completion",
content(
673
674
("application/json" = CompletionFinal),
("text/event-stream" = Chunk),
OlivierDehaene's avatar
OlivierDehaene committed
675
676
677
678
679
680
681
682
683
684
685
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
686
#[instrument(
OlivierDehaene's avatar
OlivierDehaene committed
687
688
689
690
691
692
693
694
695
696
697
skip_all,
fields(
// parameters = ? req.parameters,
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
)]
698
pub(crate) async fn completions(
699
700
701
702
703
    Extension(infer): Extension<Infer>,
    Extension(compute_type): Extension<ComputeType>,
    Extension(info): Extension<Info>,
    Json(req): Json<CompletionRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
704
    let span = tracing::Span::current();
705
    metrics::counter!("tgi_request_count").increment(1);
706

707
    let CompletionRequest {
708
        model,
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
        max_tokens,
        seed,
        stop,
        stream,
        temperature,
        ..
    } = req;

    let max_new_tokens = max_tokens.or(Some(100));
    let stop = stop.unwrap_or_default();
    // enable greedy only when temperature is 0
    let (do_sample, temperature) = match temperature {
        Some(temperature) if temperature == 0.0 => (false, None),
        other => (true, other),
    };
724
725
726

    // if suffix is present throw an error
    if req.suffix.is_some() {
727
        metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
728
729
730
731
732
733
734
735
736
737
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: "Suffix is not supported and can be achieved by preprocessing the prompt."
                    .to_string(),
                error_type: "suffix not supported".to_string(),
            }),
        ));
    }

738
    if req.prompt.0.len() > info.max_client_batch_size {
739
        metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
740
741
742
743
744
745
746
747
748
749
750
751
752
753
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: format!(
                    "Number of prompts exceeds the maximum allowed batch size of {}",
                    info.max_client_batch_size
                ),
                error_type: "batch size exceeded".to_string(),
            }),
        ));
    }

    let generate_requests: Vec<GenerateRequest> = req
        .prompt
754
        .0
755
756
757
        .iter()
        .map(|prompt| GenerateRequest {
            inputs: prompt.to_string(),
758
            add_special_tokens: true,
759
760
            parameters: GenerateParameters {
                best_of: None,
761
                temperature,
762
763
764
765
766
                repetition_penalty: req.repetition_penalty,
                frequency_penalty: req.frequency_penalty,
                top_k: None,
                top_p: req.top_p,
                typical_p: None,
767
                do_sample,
768
769
                max_new_tokens,
                return_full_text: None,
770
                stop: stop.clone(),
771
772
773
774
775
776
777
                truncate: None,
                watermark: false,
                details: true,
                decoder_input_details: !stream,
                seed,
                top_n_tokens: None,
                grammar: None,
778
                adapter_id: model.as_ref().filter(|m| *m != "tgi").map(String::from),
779
780
781
782
783
784
785
            },
        })
        .collect();

    let mut x_compute_type = None;
    let mut x_compute_characters = 0u32;
    let mut x_accel_buffering = None;
786
787

    if stream {
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
        let mut response_streams = FuturesOrdered::new();
        for (index, generate_request) in generate_requests.into_iter().enumerate() {
            let model_id = info.model_id.clone();
            let system_fingerprint =
                format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));
            let infer_clone = infer.clone();
            let compute_type_clone = compute_type.clone();
            let span_clone = span.clone();

            // Create a future for each generate_stream_internal call.
            let generate_future = async move {
                let (header_tx, header_rx) = oneshot::channel();
                let (sse_tx, sse_rx) = tokio::sync::mpsc::unbounded_channel();

                tokio::spawn(async move {
803
                    let (headers, response_stream) = generate_stream_internal(
804
805
806
807
808
809
                        infer_clone.clone(),
                        compute_type_clone.clone(),
                        Json(generate_request),
                        span_clone.clone(),
                    )
                    .await;
810

811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
                    let response_stream = async_stream::stream! {
                        let mut response_stream = Box::pin(response_stream);

                        while let Some(stream_token) = response_stream.next().await {
                            match stream_token {
                                Ok(stream_token) => {
                                    let event = Event::default();

                                    let current_time = std::time::SystemTime::now()
                                        .duration_since(std::time::UNIX_EPOCH)
                                        .unwrap_or_else(|_| std::time::Duration::from_secs(0))
                                        .as_secs();

                                    let message = match stream_token.details {
                                        Some(details) => {
                                            let completion_tokens = details.generated_tokens;
                                            let prompt_tokens = details.input_length;
                                            let total_tokens = prompt_tokens + completion_tokens;

                                            Completion::Final(CompletionFinal {
                                                id: String::new(),
                                                created: current_time,
                                                model: model_id.clone(),
                                                system_fingerprint: system_fingerprint.clone(),
                                                choices: vec![CompletionComplete {
                                                    finish_reason: details.finish_reason.to_string(),
                                                    index: index as u32,
                                                    logprobs: None,
                                                    text: stream_token.token.text,
                                                }],
                                                usage: Usage {
                                                    prompt_tokens,
                                                    completion_tokens,
                                                    total_tokens,
                                                },
                                            })
                                        }
                                        None => Completion::Chunk(Chunk {
                                            id: String::new(),
                                            created: current_time,
                                            choices: vec![CompletionComplete {
                                                finish_reason: String::new(),
                                                index: index as u32,
                                                logprobs: None,
                                                text: stream_token.token.text,
                                            }],
                                            model: model_id.clone(),
                                            system_fingerprint: system_fingerprint.clone(),
                                        }),
                                    };

                                    let event = event
                                        .json_data(message)
                                        .unwrap_or_else(|_e| Event::default());

                                    yield Ok(event);
                                }
868
                                Err(err) => yield Ok(err.into_openai_event()),
869
870
871
872
                            }
                        }
                    };

873
                    // send and dont wait for response
874
                    let _ = header_tx.send(headers);
875

876
                    // pin an emit messages to the sse_tx
877
                    let mut sse = Box::pin(response_stream);
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
                    while let Some(event) = sse.next().await {
                        if sse_tx.send(event).is_err() {
                            tracing::error!("Failed to send event. Receiver dropped.");
                            break;
                        }
                    }
                });

                (header_rx, sse_rx)
            };
            response_streams.push_back(generate_future);
        }

        let mut all_rxs = vec![];

        while let Some((header_rx, sse_rx)) = response_streams.next().await {
            all_rxs.push(sse_rx);

            // get the headers from the first response of each stream
            let headers = header_rx.await.map_err(|e| {
                tracing::error!("Failed to get headers: {:?}", e);
                (
                    StatusCode::INTERNAL_SERVER_ERROR,
                    Json(ErrorResponse {
                        error: "Failed to get headers".to_string(),
                        error_type: "headers".to_string(),
                    }),
905
                )
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
            })?;
            if x_compute_type.is_none() {
                x_compute_type = headers
                    .get("x-compute-type")
                    .and_then(|v| v.to_str().ok())
                    .map(|v| v.to_string());

                x_accel_buffering = headers
                    .get("x-accel-buffering")
                    .and_then(|v| v.to_str().ok())
                    .map(|v| v.to_string());
            }
            x_compute_characters += headers
                .get("x-compute-characters")
                .and_then(|v| v.to_str().ok())
                .and_then(|v| v.parse().ok())
                .unwrap_or(0);
        }
924

925
926
927
928
929
930
931
932
        let mut headers = HeaderMap::new();
        if let Some(x_compute_type) = x_compute_type {
            headers.insert("x-compute-type", x_compute_type.parse().unwrap());
        }
        headers.insert("x-compute-characters", x_compute_characters.into());
        if let Some(x_accel_buffering) = x_accel_buffering {
            headers.insert("x-accel-buffering", x_accel_buffering.parse().unwrap());
        }
933

934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
        // now sink the sse streams into a single stream and remove the ones that are done
        let stream: AsyncStream<Result<Event, Infallible>, _> = async_stream::stream! {
            loop {
                let mut i = 0;
                while i < all_rxs.len() {
                    let rx = &mut all_rxs[i];
                    select! {
                        Some(event) = rx.recv() => {
                            yield event;
                        }
                        else => {
                            all_rxs.remove(i);
                            continue; // skip the increment to handle the next element at the same index
                        }
                    }
                    i += 1; // only increment when no element was removed
                }

                if all_rxs.is_empty() {
                    break;
                }
            }
        };

958
959
960
961
        let stream = stream.chain(futures::stream::once(async {
            Ok(Event::default().data("[DONE]"))
        }));

962
        let sse = Sse::new(stream).keep_alive(KeepAlive::default());
963
964
965
966
967
968
969
        Ok((headers, sse).into_response())
    } else {
        let current_time = std::time::SystemTime::now()
            .duration_since(std::time::UNIX_EPOCH)
            .unwrap_or_else(|_| std::time::Duration::from_secs(0))
            .as_secs();

970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
        let responses = FuturesUnordered::new();
        for (index, generate_request) in generate_requests.into_iter().enumerate() {
            let infer_clone = infer.clone();
            let compute_type_clone = compute_type.clone();
            let span_clone = span.clone();
            let response_future = async move {
                let result = generate_internal(
                    Extension(infer_clone),
                    compute_type_clone,
                    Json(generate_request),
                    span_clone,
                )
                .await;
                result.map(|(headers, generation)| (index, headers, generation))
            };
            responses.push(response_future);
        }
        let generate_responses = responses.try_collect::<Vec<_>>().await?;

        let mut prompt_tokens = 0u32;
        let mut completion_tokens = 0u32;
        let mut total_tokens = 0u32;

        let mut x_compute_time = 0u32;
        let mut x_total_time = 0u32;
        let mut x_validation_time = 0u32;
        let mut x_queue_time = 0u32;
        let mut x_inference_time = 0u32;
        let mut x_time_per_token = 0u32;
        let mut x_prompt_tokens = 0u32;
        let mut x_generated_tokens = 0u32;

        let choices = generate_responses
            .into_iter()
            .map(|(index, headers, Json(generation))| {
                let details = generation.details.ok_or((
                    // this should never happen but handle if details are missing unexpectedly
                    StatusCode::INTERNAL_SERVER_ERROR,
                    Json(ErrorResponse {
                        error: "No details in generation".to_string(),
                        error_type: "no details".to_string(),
                    }),
                ))?;

                if x_compute_type.is_none() {
                    x_compute_type = headers
                        .get("x-compute-type")
                        .and_then(|v| v.to_str().ok())
                        .map(|v| v.to_string());
                }

                // accumulate headers and usage from each response
                x_compute_time += headers
                    .get("x-compute-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_compute_characters += headers
                    .get("x-compute-characters")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_total_time += headers
                    .get("x-total-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_validation_time += headers
                    .get("x-validation-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_queue_time += headers
                    .get("x-queue-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_inference_time += headers
                    .get("x-inference-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_time_per_token += headers
                    .get("x-time-per-token")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_prompt_tokens += headers
                    .get("x-prompt-tokens")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_generated_tokens += headers
                    .get("x-generated-tokens")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);

                prompt_tokens += details.prefill.len() as u32;
                completion_tokens += details.generated_tokens;
                total_tokens += details.prefill.len() as u32 + details.generated_tokens;

                Ok(CompletionComplete {
1064
                    finish_reason: details.finish_reason.format(true),
1065
1066
1067
1068
1069
1070
1071
                    index: index as u32,
                    logprobs: None,
                    text: generation.generated_text,
                })
            })
            .collect::<Result<Vec<_>, _>>()
            .map_err(|(status, Json(err))| (status, Json(err)))?;
1072

1073
        let response = Completion::Final(CompletionFinal {
1074
1075
1076
1077
1078
1079
1080
1081
            id: "".to_string(),
            created: current_time,
            model: info.model_id.clone(),
            system_fingerprint: format!(
                "{}-{}",
                info.version,
                info.docker_label.unwrap_or("native")
            ),
1082
            choices,
1083
            usage: Usage {
1084
1085
1086
                prompt_tokens,
                completion_tokens,
                total_tokens,
1087
            },
1088
        });
1089

1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
        // headers similar to `generate` but aggregated
        let mut headers = HeaderMap::new();
        if let Some(x_compute_type) = x_compute_type {
            headers.insert("x-compute-type", x_compute_type.parse().unwrap());
        }
        headers.insert("x-compute-characters", x_compute_characters.into());
        headers.insert("x-total-time", x_total_time.into());
        headers.insert("x-validation-time", x_validation_time.into());
        headers.insert("x-queue-time", x_queue_time.into());
        headers.insert("x-inference-time", x_inference_time.into());
        headers.insert("x-time-per-token", x_time_per_token.into());
        headers.insert("x-prompt-tokens", x_prompt_tokens.into());
        headers.insert("x-generated-tokens", x_generated_tokens.into());
        if let Some(x_accel_buffering) = x_accel_buffering {
            headers.insert("x-accel-buffering", x_accel_buffering.parse().unwrap());
        }
1106
1107
1108
1109
        Ok((headers, Json(response)).into_response())
    }
}

1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
enum StreamState {
    Buffering,
    BufferTrailing,
    Content { skip_close_quote: bool },
}

/// Convert a StreamResponse into an Event to be sent over SSE
fn create_event_from_stream_token(
    stream_token: &StreamResponse,
    logprobs: bool,
    stream_options: Option<StreamOptions>,
    inner_using_tools: bool,
    system_fingerprint: String,
    model_id: String,
) -> Event {
    let event = Event::default();
    let current_time = std::time::SystemTime::now()
        .duration_since(std::time::UNIX_EPOCH)
        .unwrap_or_else(|_| std::time::Duration::from_secs(0))
        .as_secs();

    let logprobs = logprobs.then(|| {
        ChatCompletionLogprobs::from((stream_token.token.clone(), stream_token.top_tokens.clone()))
    });

    // replace the content with the tool calls if grammar is present
    let (content, tool_calls) = if inner_using_tools {
        (None, Some(vec![stream_token.token.text.clone()]))
    } else {
        let content = if !stream_token.token.special {
            Some(stream_token.token.text.clone())
        } else {
            None
        };

        (content, None)
    };

    let (usage, finish_reason) = match &stream_token.details {
        Some(details) => {
            let usage = if stream_options
                .as_ref()
                .map(|s| s.include_usage)
                .unwrap_or(false)
            {
                let completion_tokens = details.generated_tokens;
                let prompt_tokens = details.input_length;
                let total_tokens = prompt_tokens + completion_tokens;
                Some(Usage {
                    completion_tokens,
                    prompt_tokens,
                    total_tokens,
                })
            } else {
                None
            };
            (usage, Some(details.finish_reason.format(true)))
        }
        None => (None, None),
    };

    let chat_complete = CompletionType::ChatCompletionChunk(ChatCompletionChunk::new(
        model_id.clone(),
        system_fingerprint.clone(),
        content,
        tool_calls,
        current_time,
        logprobs,
        finish_reason,
        usage,
    ));

    event.json_data(chat_complete).unwrap_or_else(|e| {
        println!("Failed to serialize ChatCompletionChunk: {:?}", e);
        Event::default()
    })
}

1188
1189
/// Generate tokens
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
post,
tag = "Text Generation Inference",
path = "/v1/chat/completions",
request_body = ChatRequest,
responses(
(status = 200, description = "Generated Chat Completion",
content(
("application/json" = ChatCompletion),
("text/event-stream" = ChatCompletionChunk),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
1210
#[instrument(
OlivierDehaene's avatar
OlivierDehaene committed
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
skip_all,
fields(
// parameters = ? req.parameters,
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
)]
1222
pub(crate) async fn chat_completions(
1223
    Extension(infer): Extension<Infer>,
1224
    Extension(compute_type): Extension<ComputeType>,
1225
    Extension(info): Extension<Info>,
Nicolas Patry's avatar
Nicolas Patry committed
1226
    Json(chat): Json<ChatRequest>,
1227
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
1228
    let span = tracing::Span::current();
1229
    metrics::counter!("tgi_request_count").increment(1);
1230
1231
    let ChatRequest {
        stream,
Nicolas Patry's avatar
Nicolas Patry committed
1232
        stream_options,
Nicolas Patry's avatar
Nicolas Patry committed
1233
        logprobs,
1234
        ..
Nicolas Patry's avatar
Nicolas Patry committed
1235
1236
1237
    } = chat.clone();
    let (generate_request, using_tools): (GenerateRequest, bool) =
        chat.try_into_generate(&infer)?;
1238

Nicolas Patry's avatar
Nicolas Patry committed
1239
    let logprobs = logprobs.unwrap_or_default();
1240
1241
1242
1243
1244
1245

    // static values that will be returned in all cases
    let model_id = info.model_id.clone();
    let system_fingerprint = format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));
    // switch on stream
    if stream {
1246
1247
        let (headers, response_stream) =
            generate_stream_internal(infer, compute_type, Json(generate_request), span).await;
1248

1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
        // regex to match any function name
        let function_regex = match Regex::new(r#"\{"function":\{"_name":"([^"]+)""#) {
            Ok(regex) => regex,
            Err(e) => {
                return Err((
                    StatusCode::INTERNAL_SERVER_ERROR,
                    Json(ErrorResponse {
                        error: format!("Failed to compile regex: {}", e),
                        error_type: "regex".to_string(),
                    }),
                ))
            }
        };
1262

1263
1264
1265
1266
1267
1268
        let response_stream = async_stream::stream! {
            let mut response_stream = Box::pin(response_stream);
            let mut buffer = Vec::new();
            let mut json_buffer = String::new();
            let mut state = if using_tools {
                StreamState::Buffering
drbh's avatar
drbh committed
1269
            } else {
1270
1271
1272
                StreamState::Content {
                    skip_close_quote: false,
                }
drbh's avatar
drbh committed
1273
            };
1274
1275
            let mut response_as_tool = using_tools;
            while let Some(result) = response_stream.next().await {
1276
1277
                match result{
                Ok(stream_token) => {
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
                    let token_text = &stream_token.token.text.clone();
                    match state {
                        StreamState::Buffering => {
                            json_buffer.push_str(&token_text.replace(" ", ""));
                            buffer.push(stream_token);
                            if let Some(captures) = function_regex.captures(&json_buffer) {
                                let function_name = captures[1].to_string();
                                if function_name == "no_tool" {
                                    state = StreamState::BufferTrailing;
                                    response_as_tool = false;
                                    buffer.clear();
                                    json_buffer.clear();
                                } else {
                                    state = StreamState::Content {
                                        skip_close_quote: false,
                                    };
                                    // send all the buffered messages
                                    for stream_token in &buffer {
                                        let event = create_event_from_stream_token(
                                            stream_token,
                                            logprobs,
                                            stream_options.clone(),
                                            response_as_tool,
                                            system_fingerprint.clone(),
                                            model_id.clone(),
                                        );
                                        yield Ok::<Event, Infallible>(event);
                                    }
                                }
                            }
                        }
                        // if we skipped sending the buffer we need to avoid sending the following json key and quotes
                        StreamState::BufferTrailing => {
                            let infix_text = "\"content\":\"";
                            json_buffer.push_str(&token_text.replace(" ", ""));
                            // keep capturing until we find the infix text
                            match json_buffer.find(infix_text) {
                                Some(content_key_index) => {
                                    json_buffer =
                                        json_buffer[content_key_index + infix_text.len()..].to_string();
                                }
                                None => {
                                    continue;
                                }
                            }
                            // if there is leftover text after removing the infix text, we need to send it
                            if !json_buffer.is_empty() {
                                let event = Event::default();
                                let current_time = std::time::SystemTime::now()
                                    .duration_since(std::time::UNIX_EPOCH)
                                    .unwrap_or_else(|_| std::time::Duration::from_secs(0))
                                    .as_secs();
                                let chat_complete =
                                    CompletionType::ChatCompletionChunk(ChatCompletionChunk::new(
                                        model_id.clone(),
                                        system_fingerprint.clone(),
                                        Some(json_buffer.clone()),
                                        None,
                                        current_time,
                                        None,
                                        None,
                                        None,
                                    ));
                                yield Ok(event.json_data(chat_complete).unwrap_or_else(|e| {
                                    InferError::StreamSerializationError(e.to_string()).into()
                                }));
                            }
                            // cleanup the buffers
                            buffer.clear();
                            json_buffer.clear();
                            state = StreamState::Content {
                                skip_close_quote: true,
                            };
                        }
                        StreamState::Content { skip_close_quote } => {
                            if skip_close_quote && token_text.contains('"') {
                                break;
                            }
drbh's avatar
drbh committed
1356

1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
                            // send the content
                            let event = create_event_from_stream_token(
                                &stream_token,
                                logprobs,
                                stream_options.clone(),
                                response_as_tool,
                                system_fingerprint.clone(),
                                model_id.clone(),
                            );

                            yield Ok::<Event, Infallible>(event);
                        }
                    }
Nicolas Patry's avatar
Nicolas Patry committed
1370
                }
1371
1372
                Err(err) => yield Ok(err.into_openai_event())
                }
1373
1374
            }
            yield Ok::<Event, Infallible>(Event::default().data("[DONE]"));
1375
1376
1377
1378
1379
        };

        let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
        Ok((headers, sse).into_response())
    } else {
1380
1381
        let (headers, Json(generation)) =
            generate_internal(Extension(infer), compute_type, Json(generate_request), span).await?;
1382
1383
1384
1385
1386
1387

        let current_time = std::time::SystemTime::now()
            .duration_since(std::time::UNIX_EPOCH)
            .unwrap_or_else(|_| std::time::Duration::from_secs(0))
            .as_secs();

drbh's avatar
drbh committed
1388
        let (tool_calls, output) = if using_tools {
1389
1390
1391
1392
1393
1394
1395
            let gen_text_value: Value =
                serde_json::from_str(&generation.generated_text).map_err(|e| {
                    InferError::ToolError(format!(
                        "Failed to parse generated text: {} {:?}",
                        e, generation.generated_text
                    ))
                })?;
drbh's avatar
drbh committed
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
            let function = gen_text_value.get("function").ok_or(InferError::ToolError(
                "No function found in generated text".to_string(),
            ))?;

            let name = function
                .get("_name")
                .and_then(Value::as_str)
                .ok_or(InferError::ToolError(
                    "No _name found in generated text".to_string(),
                ))?
                .to_string();

            let mut arguments = function.clone();
            if let Value::Object(ref mut props) = arguments {
                props.remove("_name");
            }
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
            match name.as_str() {
                "no_tool" => {
                    // parse the content message
                    let content_message = arguments
                        .get("content")
                        .and_then(Value::as_str)
                        .ok_or_else(|| {
                            InferError::ToolError(
                                "No `content` found in generated text".to_string(),
                            )
                        })?
                        .to_string();
                    (None, Some(content_message))
                }
                _ => {
                    let tool_calls = vec![ToolCall {
                        id: "0".to_string(),
                        r#type: "function".to_string(),
                        function: FunctionDefinition {
                            description: None,
                            name,
                            arguments,
                        },
                    }];
                    (Some(tool_calls), None)
                }
            }
drbh's avatar
drbh committed
1439
1440
1441
        } else {
            (None, Some(generation.generated_text))
        };
1442
        // build the complete response object with the full text
1443
        let response = CompletionType::ChatCompletion(ChatCompletion::new(
1444
1445
            model_id,
            system_fingerprint,
drbh's avatar
drbh committed
1446
            output,
1447
1448
1449
            current_time,
            generation.details.unwrap(),
            logprobs,
drbh's avatar
drbh committed
1450
            tool_calls,
1451
        ));
1452
1453
1454
1455

        // wrap generation inside a Vec to match api-inference
        Ok((headers, Json(response)).into_response())
    }
1456
1457
}

1458
1459
/// Tokenize inputs
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
post,
tag = "Text Generation Inference",
path = "/tokenize",
request_body = GenerateRequest,
responses(
(status = 200, description = "Tokenized ids", body = TokenizeResponse),
(status = 404, description = "No tokenizer found", body = ErrorResponse,
example = json ! ({"error": "No fast tokenizer available"})),
)
)]
1470
1471
1472
1473
#[instrument(skip_all)]
async fn tokenize(
    Extension(infer): Extension<Infer>,
    Json(req): Json<GenerateRequest>,
1474
) -> Result<Json<TokenizeResponse>, (StatusCode, Json<ErrorResponse>)> {
1475
1476
    let input = req.inputs.clone();
    let encoding = infer.tokenize(req).await?;
1477
1478
    let tokens = encoding_to_tokens(&encoding, &input);
    Ok(Json(TokenizeResponse(tokens)))
1479
1480
}

1481
1482
/// Prometheus metrics scrape endpoint
#[utoipa::path(
1483
1484
1485
1486
    get,
    tag = "Text Generation Inference",
    path = "/metrics",
    responses((status = 200, description = "Prometheus Metrics", body = String))
1487
1488
1489
1490
1491
)]
async fn metrics(prom_handle: Extension<PrometheusHandle>) -> String {
    prom_handle.render()
}

1492
1493
1494
#[derive(Clone, Debug)]
pub(crate) struct ComputeType(String);

Nicolas Patry's avatar
Nicolas Patry committed
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
// OpenAPI documentation
#[derive(OpenApi)]
#[openapi(
paths(
health,
get_model_info,
compat_generate,
generate,
generate_stream,
chat_completions,
completions,
tokenize,
metrics,
drbh's avatar
drbh committed
1508
openai_get_model_info,
1509
sagemaker_compatibility,
1510
get_chat_tokenize,
Nicolas Patry's avatar
Nicolas Patry committed
1511
1512
1513
1514
1515
),
components(
schemas(
Info,
CompatGenerateRequest,
1516
SagemakerRequest,
Nicolas Patry's avatar
Nicolas Patry committed
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
GenerateRequest,
GrammarType,
ChatRequest,
Message,
MessageContent,
MessageChunk,
Url,
FunctionName,
OutputMessage,
TextMessage,
ToolCallMessage,
ToolCallDelta,
ChatCompletionComplete,
ChatCompletionChoice,
ChatCompletionDelta,
ChatCompletionChunk,
ChatCompletionLogprob,
ChatCompletionLogprobs,
ChatCompletionTopLogprob,
ChatCompletion,
CompletionRequest,
CompletionComplete,
1539
1540
SagemakerResponse,
SagemakerStreamResponse,
Nicolas Patry's avatar
Nicolas Patry committed
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
Chunk,
Completion,
CompletionFinal,
Prompt,
GenerateParameters,
PrefillToken,
Token,
GenerateResponse,
TokenizeResponse,
SimpleToken,
BestOfSequence,
Details,
FinishReason,
StreamResponse,
StreamDetails,
ErrorResponse,
GrammarType,
Usage,
Nicolas Patry's avatar
Nicolas Patry committed
1559
StreamOptions,
Nicolas Patry's avatar
Nicolas Patry committed
1560
1561
1562
1563
1564
1565
DeltaToolCall,
Tool,
ToolCall,
Function,
FunctionDefinition,
ToolChoice,
drbh's avatar
drbh committed
1566
ModelInfo,
1567
ChatTokenizeResponse,
Nicolas Patry's avatar
Nicolas Patry committed
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
)
),
tags(
(name = "Text Generation Inference", description = "Hugging Face Text Generation Inference API")
),
info(
title = "Text Generation Inference",
license(
name = "Apache 2.0",
url = "https://www.apache.org/licenses/LICENSE-2.0"
)
)
)]
pub struct ApiDoc;

pub fn schema() -> ApiDoc {
    ApiDoc
}

1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
fn py_resolve_tokenizer(
    py: pyo3::Python,
    tokenizer_name: &str,
    revision: Option<&str>,
    trust_remote_code: bool,
) -> pyo3::PyResult<()> {
    let transformers = py.import_bound("transformers")?;
    let auto = transformers.getattr("AutoTokenizer")?;
    let from_pretrained = auto.getattr("from_pretrained")?;
    let args = (tokenizer_name,);
    let kwargs = if let Some(rev) = &revision {
        [
            ("revision", rev.to_string().into_py(py)),
            ("trust_remote_code", trust_remote_code.into_py(py)),
        ]
        .into_py_dict_bound(py)
    } else {
        [("trust_remote_code", trust_remote_code.into_py(py))].into_py_dict_bound(py)
    };
    let tokenizer = from_pretrained.call(args, Some(&kwargs))?;
    let save = tokenizer.getattr("save_pretrained")?;
    let args = ("out".to_string(),);
    save.call1(args)?;
    Ok(())
}

fn legacy_tokenizer_handle(config_filename: Option<&PathBuf>) -> Option<()> {
    // XXX Legacy case for FasterDecoding/medusa-vicuna-7b-v1.3
    // and state-spaces/mamba-130m
    tracing::warn!("Odd tokenizer detected, falling back on legacy tokenization");

    #[derive(serde::Deserialize)]
    struct FallbackConfig {
        base_model_name_or_path: Option<String>,
        model_type: Option<String>,
        ssm_config: Option<serde_json::Value>,
    }
    config_filename.and_then(|filename| {
        std::fs::read_to_string(filename)
            .ok()
            .as_ref()
            .and_then(|c| {
                let config: Result<FallbackConfig, _> = serde_json::from_str(c);
                if let Ok(config) = config {
                    if config.model_type.is_none() {
                        if let Some(base) = config.base_model_name_or_path {
                            pyo3::Python::with_gil(|py| -> PyResult<()> {
                                py_resolve_tokenizer(py, &base, Some("main"), false)
                            })
                            .ok()?;
                        }
                    }
                    if config.ssm_config.is_some() {
                        // XXX Legacy mamba
                        pyo3::Python::with_gil(|py| -> PyResult<()> {
                            py_resolve_tokenizer(py, "EleutherAI/gpt-neox-20b", Some("main"), false)
                        })
                        .ok()?;
                    }
                }
                Some(())
            })
    })
}

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1652
1653
1654
/// Serving method
#[allow(clippy::too_many_arguments)]
pub async fn run(
Nicolas Patry's avatar
Nicolas Patry committed
1655
    backend: impl Backend + Send + Sync + 'static,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1656
    max_concurrent_requests: usize,
1657
    max_best_of: usize,
1658
    max_stop_sequences: usize,
Nicolas Patry's avatar
Nicolas Patry committed
1659
    max_top_n_tokens: u32,
OlivierDehaene's avatar
OlivierDehaene committed
1660
    max_input_tokens: usize,
1661
    max_total_tokens: usize,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1662
    validation_workers: usize,
Erik Kaunismäki's avatar
Erik Kaunismäki committed
1663
    api_key: Option<String>,
Nicolas Patry's avatar
Nicolas Patry committed
1664
1665
1666
    tokenizer_name: String,
    tokenizer_config_path: Option<String>,
    revision: Option<String>,
1667
    trust_remote_code: bool,
Nicolas Patry's avatar
Nicolas Patry committed
1668
1669
1670
    hostname: String,
    port: u16,
    cors_allow_origin: Option<Vec<String>>,
1671
    ngrok: bool,
1672
1673
    _ngrok_authtoken: Option<String>,
    _ngrok_edge: Option<String>,
Nicolas Patry's avatar
Nicolas Patry committed
1674
    disable_grammar_support: bool,
1675
    max_client_batch_size: usize,
1676
    usage_stats_level: usage_stats::UsageStatsLevel,
1677
    payload_limit: usize,
OlivierDehaene's avatar
OlivierDehaene committed
1678
) -> Result<(), WebServerError> {
Nicolas Patry's avatar
Nicolas Patry committed
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
    // CORS allowed origins
    // map to go inside the option and then map to parse from String to HeaderValue
    // Finally, convert to AllowOrigin
    let allow_origin: Option<AllowOrigin> = cors_allow_origin.map(|cors_allow_origin| {
        AllowOrigin::list(
            cors_allow_origin
                .iter()
                .map(|origin| origin.parse::<HeaderValue>().unwrap()),
        )
    });
1689

Nicolas Patry's avatar
Nicolas Patry committed
1690
1691
1692
1693
    // Parse Huggingface hub token
    let authorization_token = std::env::var("HF_TOKEN")
        .or_else(|_| std::env::var("HUGGING_FACE_HUB_TOKEN"))
        .ok();
OlivierDehaene's avatar
OlivierDehaene committed
1694

Nicolas Patry's avatar
Nicolas Patry committed
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
    // Tokenizer instance
    // This will only be used to validate payloads
    let local_path = Path::new(&tokenizer_name);

    // Shared API builder initialization
    let api_builder = || {
        let mut builder = ApiBuilder::new()
            .with_progress(false)
            .with_token(authorization_token);

        if let Ok(cache_dir) = std::env::var("HUGGINGFACE_HUB_CACHE") {
            builder = builder.with_cache_dir(cache_dir.into());
        }

        builder
    };

    // Decide if we need to use the API based on the revision and local path
    let use_api = revision.is_some() || !local_path.exists() || !local_path.is_dir();

    // Initialize API if needed
    #[derive(Clone)]
    enum Type {
        Api(Api),
        Cache(Cache),
        None,
    }
    let api = if use_api {
        if std::env::var("HF_HUB_OFFLINE") == Ok("1".to_string()) {
            let cache = std::env::var("HUGGINGFACE_HUB_CACHE")
                .map_err(|_| ())
                .map(|cache_dir| Cache::new(cache_dir.into()))
                .unwrap_or_else(|_| Cache::default());
            tracing::warn!("Offline mode active using cache defaults");
            Type::Cache(cache)
        } else {
            tracing::info!("Using the Hugging Face API");
            match api_builder().build() {
                Ok(api) => Type::Api(api),
                Err(_) => {
                    tracing::warn!("Unable to build the Hugging Face API");
                    Type::None
OlivierDehaene's avatar
OlivierDehaene committed
1737
                }
Nicolas Patry's avatar
Nicolas Patry committed
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
            }
        }
    } else {
        Type::None
    };

    // Load tokenizer and model info
    let (
        config_filename,
        tokenizer_config_filename,
        preprocessor_config_filename,
        processor_config_filename,
        model_info,
    ) = match api {
        Type::None => (
            Some(local_path.join("config.json")),
            Some(local_path.join("tokenizer_config.json")),
            Some(local_path.join("preprocessor_config.json")),
            Some(local_path.join("processor_config.json")),
            None,
        ),
        Type::Api(api) => {
            let api_repo = api.repo(Repo::with_revision(
                tokenizer_name.to_string(),
                RepoType::Model,
                revision.clone().unwrap_or_else(|| "main".to_string()),
            ));

            let config_filename = api_repo.get("config.json").await.ok();
            let tokenizer_config_filename = api_repo.get("tokenizer_config.json").await.ok();
            let preprocessor_config_filename = api_repo.get("preprocessor_config.json").await.ok();
            let processor_config_filename = api_repo.get("processor_config.json").await.ok();
OlivierDehaene's avatar
OlivierDehaene committed
1770

Nicolas Patry's avatar
Nicolas Patry committed
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
            let model_info = if let Some(model_info) = get_hub_model_info(&api_repo).await {
                Some(model_info)
            } else {
                tracing::warn!("Could not retrieve model info from the Hugging Face hub.");
                None
            };
            (
                config_filename,
                tokenizer_config_filename,
                preprocessor_config_filename,
                processor_config_filename,
                model_info,
            )
        }
        Type::Cache(cache) => {
            let repo = cache.repo(Repo::with_revision(
                tokenizer_name.to_string(),
                RepoType::Model,
                revision.clone().unwrap_or_else(|| "main".to_string()),
            ));
            (
                repo.get("config.json"),
                repo.get("tokenizer_config.json"),
                repo.get("preprocessor_config.json"),
                repo.get("processor_config.json"),
                None,
            )
        }
    };

    // Read the JSON contents of the file as an instance of 'HubTokenizerConfig'.
    let tokenizer_config: Option<HubTokenizerConfig> = if let Some(filename) = tokenizer_config_path
    {
        HubTokenizerConfig::from_file(filename)
    } else {
        tokenizer_config_filename.and_then(HubTokenizerConfig::from_file)
    };
    let tokenizer_config = tokenizer_config.unwrap_or_else(|| {
        tracing::warn!("Could not find tokenizer config locally and no API specified");
        HubTokenizerConfig::default()
    });

1813
    let tokenizer: Tokenizer = {
Nicolas Patry's avatar
Nicolas Patry committed
1814
        use pyo3::prelude::*;
1815
1816
        pyo3::Python::with_gil(|py| -> PyResult<()> {
            py_resolve_tokenizer(py, &tokenizer_name, revision.as_deref(), trust_remote_code)?;
Nicolas Patry's avatar
Nicolas Patry committed
1817
1818
1819
1820
            Ok(())
        })
        .inspect_err(|err| {
            tracing::error!("Failed to import python tokenizer {err}");
1821
1822
1823
1824
1825
1826
1827
1828
1829
        })
        .or_else(|err| {
            let out = legacy_tokenizer_handle(config_filename.as_ref());
            out.ok_or(err)
        })
        .expect("We cannot load a tokenizer");
        let filename = "out/tokenizer.json";
        if let Ok(tok) = tokenizers::Tokenizer::from_file(filename) {
            Tokenizer::Rust(tok)
Nicolas Patry's avatar
Nicolas Patry committed
1830
        } else {
1831
1832
1833
            Tokenizer::Python {
                tokenizer_name: tokenizer_name.clone(),
                revision: revision.clone(),
1834
                trust_remote_code,
1835
1836
1837
            }
        }
    };
Nicolas Patry's avatar
Nicolas Patry committed
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864

    let config: Option<Config> = config_filename.and_then(|filename| {
        std::fs::read_to_string(filename)
            .ok()
            .as_ref()
            .and_then(|c| {
                let config: Result<Config, _> = serde_json::from_str(c);
                if let Err(err) = &config {
                    tracing::warn!("Could not parse config {err:?}");
                }
                config.ok()
            })
    });
    let model_info = model_info.unwrap_or_else(|| HubModelInfo {
        model_id: tokenizer_name.to_string(),
        sha: None,
        pipeline_tag: None,
    });

    let processor_config = processor_config_filename
        .and_then(HubProcessorConfig::from_file)
        .unwrap_or_default();

    let preprocessor_config: Option<HubPreprocessorConfig> =
        preprocessor_config_filename.and_then(HubPreprocessorConfig::from_file);

    tracing::info!("Using config {config:?}");
OlivierDehaene's avatar
OlivierDehaene committed
1865

Nicolas Patry's avatar
Nicolas Patry committed
1866
1867
    // Only send usage stats when TGI is run in container and the function returns Some
    let is_container = matches!(usage_stats::is_container(), Ok(true));
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
    let user_agent = match (usage_stats_level, is_container) {
        (usage_stats::UsageStatsLevel::On | usage_stats::UsageStatsLevel::NoStack, true) => {
            let reduced_args = usage_stats::Args::new(
                config.clone(),
                tokenizer_config.tokenizer_class.clone(),
                max_concurrent_requests,
                max_best_of,
                max_stop_sequences,
                max_top_n_tokens,
                max_input_tokens,
                max_total_tokens,
                // waiting_served_ratio,
                // max_batch_prefill_tokens,
                // max_batch_total_tokens,
                // max_waiting_tokens,
                // max_batch_size,
                revision.clone(),
                validation_workers,
                disable_grammar_support,
                max_client_batch_size,
                usage_stats_level,
            );
            Some(usage_stats::UserAgent::new(reduced_args))
        }
        _ => None,
Nicolas Patry's avatar
Nicolas Patry committed
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
    };

    if let Some(ref ua) = user_agent {
        let start_event =
            usage_stats::UsageStatsEvent::new(ua.clone(), usage_stats::EventType::Start, None);
        tokio::spawn(async move {
            start_event.send().await;
        });
    };
    let compat_return_full_text = match &model_info.pipeline_tag {
        None => {
            tracing::warn!("no pipeline tag found for model {tokenizer_name}");
            true
        }
        Some(pipeline_tag) => pipeline_tag.as_str() == "text-generation",
    };
    let result = start(
        backend,
        max_concurrent_requests,
        max_best_of,
        max_stop_sequences,
        max_top_n_tokens,
        max_input_tokens,
        max_total_tokens,
        validation_workers,
        api_key,
        config,
        (tokenizer, tokenizer_config),
        (preprocessor_config, processor_config),
        hostname,
        port,
        ngrok,
        _ngrok_authtoken,
        _ngrok_edge,
        disable_grammar_support,
        max_client_batch_size,
        model_info,
        compat_return_full_text,
        allow_origin,
1932
        payload_limit,
Nicolas Patry's avatar
Nicolas Patry committed
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
    )
    .await;

    if let Some(ua) = user_agent {
        match result {
            Ok(_) => {
                let stop_event = usage_stats::UsageStatsEvent::new(
                    ua.clone(),
                    usage_stats::EventType::Stop,
                    None,
                );
                stop_event.send().await;
                Ok(())
OlivierDehaene's avatar
OlivierDehaene committed
1946
            }
Nicolas Patry's avatar
Nicolas Patry committed
1947
            Err(e) => {
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
                let description = match usage_stats_level {
                    usage_stats::UsageStatsLevel::On => Some(e.to_string()),
                    usage_stats::UsageStatsLevel::NoStack => Some("unknow_error".to_string()),
                    _ => None,
                };
                let event = usage_stats::UsageStatsEvent::new(
                    ua.clone(),
                    usage_stats::EventType::Error,
                    description,
                );
                event.send().await;

Nicolas Patry's avatar
Nicolas Patry committed
1960
                Err(e)
OlivierDehaene's avatar
OlivierDehaene committed
1961
1962
            }
        }
Nicolas Patry's avatar
Nicolas Patry committed
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
    } else {
        result
    }
}

#[allow(clippy::too_many_arguments)]
async fn start(
    backend: impl Backend + Send + Sync + 'static,
    max_concurrent_requests: usize,
    max_best_of: usize,
    max_stop_sequences: usize,
    max_top_n_tokens: u32,
    max_input_tokens: usize,
    max_total_tokens: usize,
    validation_workers: usize,
    api_key: Option<String>,
    config: Option<Config>,
1980
    (tokenizer, tokenizer_config): (Tokenizer, HubTokenizerConfig),
Nicolas Patry's avatar
Nicolas Patry committed
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
    (preprocessor_config, processor_config): (Option<HubPreprocessorConfig>, HubProcessorConfig),
    hostname: String,
    port: u16,
    ngrok: bool,
    _ngrok_authtoken: Option<String>,
    _ngrok_edge: Option<String>,
    disable_grammar_support: bool,
    max_client_batch_size: usize,
    model_info: HubModelInfo,
    compat_return_full_text: bool,
    allow_origin: Option<AllowOrigin>,
1992
    payload_limit: usize,
Nicolas Patry's avatar
Nicolas Patry committed
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
) -> Result<(), WebServerError> {
    // Determine the server port based on the feature and environment variable.
    let port = if cfg!(feature = "google") {
        std::env::var("AIP_HTTP_PORT")
            .map(|aip_http_port| aip_http_port.parse::<u16>().unwrap_or(port))
            .unwrap_or(port)
    } else {
        port
    };

    let addr = match hostname.parse() {
        Ok(ip) => SocketAddr::new(ip, port),
        Err(_) => {
            tracing::warn!("Invalid hostname, defaulting to 0.0.0.0");
            SocketAddr::new(IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)), port)
        }
OlivierDehaene's avatar
OlivierDehaene committed
2009
2010
    };

Nicolas Patry's avatar
Nicolas Patry committed
2011
    // Create state
2012
2013
2014
    let validation = Validation::new(
        validation_workers,
        tokenizer,
2015
        config,
2016
        preprocessor_config,
2017
        max_best_of,
2018
        max_stop_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
2019
        max_top_n_tokens,
OlivierDehaene's avatar
OlivierDehaene committed
2020
        max_input_tokens,
2021
        max_total_tokens,
Nicolas Patry's avatar
Nicolas Patry committed
2022
        disable_grammar_support,
2023
    );
OlivierDehaene's avatar
OlivierDehaene committed
2024

2025
    let infer = Infer::new(
Nicolas Patry's avatar
Nicolas Patry committed
2026
        backend,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
2027
        validation,
2028
        max_concurrent_requests,
2029
        tokenizer_config,
drbh's avatar
drbh committed
2030
        processor_config,
2031
    );
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
2032

2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
    // Duration buckets
    let duration_matcher = Matcher::Suffix(String::from("duration"));
    let n_duration_buckets = 35;
    let mut duration_buckets = Vec::with_capacity(n_duration_buckets);
    // Minimum duration in seconds
    let mut value = 0.0001;
    for _ in 0..n_duration_buckets {
        // geometric sequence
        value *= 1.5;
        duration_buckets.push(value);
    }
    // Input Length buckets
    let input_length_matcher = Matcher::Full(String::from("tgi_request_input_length"));
    let input_length_buckets: Vec<f64> = (0..100)
OlivierDehaene's avatar
OlivierDehaene committed
2047
        .map(|x| (max_input_tokens as f64 / 100.0) * (x + 1) as f64)
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
        .collect();
    // Generated tokens buckets
    let generated_tokens_matcher = Matcher::Full(String::from("tgi_request_generated_tokens"));
    let generated_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Input Length buckets
    let max_new_tokens_matcher = Matcher::Full(String::from("tgi_request_max_new_tokens"));
    let max_new_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Batch size buckets
    let batch_size_matcher = Matcher::Full(String::from("tgi_batch_next_size"));
2061
    let batch_size_buckets: Vec<f64> = (0..1024).map(|x| (x + 1) as f64).collect();
OlivierDehaene's avatar
OlivierDehaene committed
2062
    // Speculated tokens buckets
Nicolas Patry's avatar
Nicolas Patry committed
2063
2064
    // let skipped_matcher = Matcher::Full(String::from("tgi_request_skipped_tokens"));
    // let skipped_buckets: Vec<f64> = (0..shard_info.speculate + 1).map(|x| x as f64).collect();
2065

2066
    // Prometheus handler
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
    let builder = PrometheusBuilder::new()
        .set_buckets_for_metric(duration_matcher, &duration_buckets)
        .unwrap()
        .set_buckets_for_metric(input_length_matcher, &input_length_buckets)
        .unwrap()
        .set_buckets_for_metric(generated_tokens_matcher, &generated_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(max_new_tokens_matcher, &max_new_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(batch_size_matcher, &batch_size_buckets)
        .unwrap();
Nicolas Patry's avatar
Nicolas Patry committed
2078
2079
    // .set_buckets_for_metric(skipped_matcher, &skipped_buckets)
    // .unwrap();
2080
2081
2082
2083
2084
2085
    // See: https://github.com/metrics-rs/metrics/issues/467#issuecomment-2022755151
    let (recorder, _) = builder
        .build()
        .expect("failed to build prometheus recorder");
    let prom_handle = recorder.handle();
    metrics::set_global_recorder(recorder).expect("Failed to set global recorder");
2086

2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
    // Metrics descriptions
    metrics::describe_counter!("tgi_request_success", "Number of successful requests");
    metrics::describe_histogram!(
        "tgi_request_duration",
        metrics::Unit::Seconds,
        "Request duration"
    );
    metrics::describe_histogram!(
        "tgi_request_validation_duration",
        metrics::Unit::Seconds,
        "Request validation duration"
    );
    metrics::describe_histogram!(
        "tgi_request_queue_duration",
        metrics::Unit::Seconds,
        "Request queue duration"
    );
    metrics::describe_histogram!(
        "tgi_request_inference_duration",
        metrics::Unit::Seconds,
        "Request inference duration"
    );
    metrics::describe_histogram!(
        "tgi_request_mean_time_per_token_duration",
        metrics::Unit::Seconds,
        "Mean time per token per request"
    );
    metrics::describe_histogram!(
        "tgi_request_generated_tokens",
        metrics::Unit::Count,
        "Generated tokens per request"
    );
    metrics::describe_counter!(
        "tgi_batch_inference_count",
        metrics::Unit::Count,
        "Inference calls per method (prefill or decode)"
    );
    metrics::describe_counter!(
        "tgi_request_count",
        metrics::Unit::Count,
        "Total number of requests"
    );
    metrics::describe_counter!(
        "tgi_batch_inference_success",
        metrics::Unit::Count,
        "Number of successful inference calls per method (prefill or decode)"
    );
    metrics::describe_gauge!(
        "tgi_batch_current_size",
        metrics::Unit::Count,
        "Current batch size"
    );
    metrics::describe_gauge!("tgi_queue_size", metrics::Unit::Count, "Current queue size");
    metrics::describe_gauge!(
        "tgi_batch_current_max_tokens",
        metrics::Unit::Count,
        "Maximum tokens for the current batch"
    );
2145
2146
2147
2148
2149
    metrics::describe_gauge!(
        "tgi_batch_total_tokens",
        metrics::Unit::Count,
        "Maximum amount of tokens in total."
    );
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
    metrics::describe_histogram!(
        "tgi_request_max_new_tokens",
        metrics::Unit::Count,
        "Maximum new tokens per request"
    );
    metrics::describe_histogram!(
        "tgi_batch_inference_duration",
        metrics::Unit::Seconds,
        "Batch inference duration"
    );
    metrics::describe_histogram!(
        "tgi_batch_forward_duration",
        metrics::Unit::Seconds,
        "Batch forward duration per method (prefill or decode)"
    );
    metrics::describe_histogram!(
        "tgi_request_skipped_tokens",
        metrics::Unit::Count,
        "Speculated tokens per request"
    );
    metrics::describe_histogram!(
        "tgi_batch_filter_duration",
        metrics::Unit::Seconds,
        "Time spent filtering batches and sending generated tokens per method (prefill or decode)"
    );
    metrics::describe_histogram!(
        "tgi_request_queue_duration",
        metrics::Unit::Seconds,
        "Time spent in the queue per request"
    );
    metrics::describe_histogram!(
        "tgi_request_validation_duration",
        metrics::Unit::Seconds,
        "Time spent validating the request"
    );
    metrics::describe_histogram!(
        "tgi_request_duration",
        metrics::Unit::Seconds,
        "Total time spent processing the request"
    );
    metrics::describe_histogram!(
        "tgi_batch_decode_duration",
        metrics::Unit::Seconds,
        "Time spent decoding a batch per method (prefill or decode)"
    );
    metrics::describe_histogram!(
        "tgi_request_input_length",
        metrics::Unit::Count,
        "Input token length per request"
    );
    metrics::describe_histogram!(
        "tgi_batch_next_size",
        metrics::Unit::Count,
        "Batch size of the next batch"
    );

2206
2207
2208
2209
2210
2211
2212
    // CORS layer
    let allow_origin = allow_origin.unwrap_or(AllowOrigin::any());
    let cors_layer = CorsLayer::new()
        .allow_methods([Method::GET, Method::POST])
        .allow_headers([http::header::CONTENT_TYPE])
        .allow_origin(allow_origin);

2213
2214
2215
2216
    // Endpoint info
    let info = Info {
        model_id: model_info.model_id,
        model_sha: model_info.sha,
Nicolas Patry's avatar
Nicolas Patry committed
2217
2218
        // model_dtype: shard_info.dtype,
        // model_device_type: shard_info.device_type,
2219
2220
2221
2222
        model_pipeline_tag: model_info.pipeline_tag,
        max_concurrent_requests,
        max_best_of,
        max_stop_sequences,
OlivierDehaene's avatar
OlivierDehaene committed
2223
        max_input_tokens,
2224
        max_total_tokens,
Nicolas Patry's avatar
Nicolas Patry committed
2225
2226
2227
2228
        // waiting_served_ratio,
        // max_batch_total_tokens,
        // max_waiting_tokens,
        // max_batch_size,
2229
        validation_workers,
2230
        max_client_batch_size,
2231
        router: env!("CARGO_PKG_NAME"),
2232
2233
        version: env!("CARGO_PKG_VERSION"),
        sha: option_env!("VERGEN_GIT_SHA"),
2234
        docker_label: option_env!("DOCKER_LABEL"),
2235
2236
    };

2237
2238
2239
2240
2241
    #[allow(unused_mut)] // mut is needed for conditional compilation
    let mut doc = ApiDoc::openapi();

    #[cfg(feature = "google")]
    {
2242
2243
        use crate::vertex::__path_vertex_compatibility;
        use crate::vertex::{VertexInstance, VertexRequest, VertexResponse};
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274

        #[derive(OpenApi)]
        #[openapi(
            paths(vertex_compatibility),
            components(schemas(VertexInstance, VertexRequest, VertexResponse))
        )]
        struct VertexApiDoc;

        doc.merge(VertexApiDoc::openapi());
    }

    #[cfg(feature = "kserve")]
    {
        use crate::kserve::{
            InferenceOutput, InferenceRequest, LiveResponse, MetadataServerResponse, OutputChunk,
            ReadyResponse,
        };
        use crate::kserve::{
            __path_kerve_server_metadata, __path_kserve_health_live, __path_kserve_health_ready,
            __path_kserve_model_infer, __path_kserve_model_metadata,
            __path_kserve_model_metadata_ready,
        };

        #[derive(OpenApi)]
        #[openapi(
            paths(
                kserve_health_live,
                kserve_health_ready,
                kerve_server_metadata,
                kserve_model_metadata,
                kserve_model_metadata_ready,
2275
                kserve_model_infer,
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
            ),
            components(schemas(
                InferenceOutput,
                InferenceRequest,
                LiveResponse,
                MetadataServerResponse,
                OutputChunk,
                ReadyResponse,
            ))
        )]
        struct KServeApiDoc;

        doc.merge(KServeApiDoc::openapi());
    }
drbh's avatar
drbh committed
2290

2291
    // Configure Swagger UI
drbh's avatar
drbh committed
2292
    let swagger_ui = SwaggerUi::new("/docs").url("/api-doc/openapi.json", doc);
2293
2294

    // Define base and health routes
Erik Kaunismäki's avatar
Erik Kaunismäki committed
2295
    let mut base_routes = Router::new()
2296
        .route("/", post(compat_generate))
Olivier Dehaene's avatar
Olivier Dehaene committed
2297
        .route("/generate", post(generate))
2298
        .route("/generate_stream", post(generate_stream))
2299
        .route("/v1/chat/completions", post(chat_completions))
2300
        .route("/v1/completions", post(completions))
drbh's avatar
drbh committed
2301
        .route("/vertex", post(vertex_compatibility))
2302
        .route("/invocations", post(sagemaker_compatibility))
Erik Kaunismäki's avatar
Erik Kaunismäki committed
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
        .route("/tokenize", post(tokenize));

    if let Some(api_key) = api_key {
        let mut prefix = "Bearer ".to_string();
        prefix.push_str(&api_key);

        // Leak to allow FnMut
        let api_key: &'static str = prefix.leak();

        let auth = move |headers: HeaderMap,
                         request: axum::extract::Request,
                         next: axum::middleware::Next| async move {
            match headers.get(AUTHORIZATION) {
                Some(token) => match token.to_str() {
                    Ok(token_str) if token_str.to_lowercase() == api_key.to_lowercase() => {
                        let response = next.run(request).await;
                        Ok(response)
                    }
                    _ => Err(StatusCode::UNAUTHORIZED),
                },
                None => Err(StatusCode::UNAUTHORIZED),
            }
        };

        base_routes = base_routes.layer(axum::middleware::from_fn(auth))
    }
    let info_routes = Router::new()
        .route("/", get(health))
2331
        .route("/chat_tokenize", post(get_chat_tokenize))
Erik Kaunismäki's avatar
Erik Kaunismäki committed
2332
        .route("/info", get(get_model_info))
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
2333
        .route("/health", get(health))
2334
        .route("/ping", get(health))
drbh's avatar
drbh committed
2335
2336
        .route("/metrics", get(metrics))
        .route("/v1/models", get(openai_get_model_info));
2337

2338
2339
    let compute_type =
        ComputeType(std::env::var("COMPUTE_TYPE").unwrap_or("gpu+optimized".to_string()));
2340

2341
    // Combine routes and layers
drbh's avatar
drbh committed
2342
    let mut app = Router::new()
2343
2344
        .merge(swagger_ui)
        .merge(base_routes)
2345
        .merge(info_routes);
drbh's avatar
drbh committed
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360

    #[cfg(feature = "google")]
    {
        tracing::info!("Built with `google` feature");
        tracing::info!(
            "Environment variables `AIP_PREDICT_ROUTE` and `AIP_HEALTH_ROUTE` will be respected."
        );
        if let Ok(env_predict_route) = std::env::var("AIP_PREDICT_ROUTE") {
            app = app.route(&env_predict_route, post(vertex_compatibility));
        }
        if let Ok(env_health_route) = std::env::var("AIP_HEALTH_ROUTE") {
            app = app.route(&env_health_route, get(health));
        }
    }

2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
    #[cfg(feature = "kserve")]
    {
        tracing::info!("Built with `kserve` feature");
        app = app
            .route(
                "/v2/models/:model_name/versions/:model_version/infer",
                post(kserve_model_infer),
            )
            .route(
                "/v2/models/:model_name/versions/:model_version",
                get(kserve_model_metadata),
            )
            .route("/v2/health/ready", get(kserve_health_ready))
            .route("/v2/health/live", get(kserve_health_live))
            .route("/v2", get(kerve_server_metadata))
            .route(
                "/v2/models/:model_name/versions/:model_version/ready",
                get(kserve_model_metadata_ready),
            );
    }

drbh's avatar
drbh committed
2382
2383
    // add layers after routes
    app = app
2384
        .layer(Extension(info))
2385
2386
        .layer(Extension(compat_return_full_text))
        .layer(Extension(infer))
2387
        .layer(Extension(compute_type))
2388
        .layer(Extension(prom_handle.clone()))
Nicolas Patry's avatar
Nicolas Patry committed
2389
        .layer(OtelAxumLayer::default())
2390
        .layer(DefaultBodyLimit::max(payload_limit))
2391
        .layer(cors_layer);
Olivier Dehaene's avatar
Olivier Dehaene committed
2392

OlivierDehaene's avatar
OlivierDehaene committed
2393
2394
    tracing::info!("Connected");

2395
2396
2397
    if ngrok {
        #[cfg(feature = "ngrok")]
        {
2398
            panic!("ngrok feature is not functional with axum=0.7 and hyper=1, waiting on https://github.com/ngrok/ngrok-rust/pull/137/files to re-enable.");
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412

            // Run server
        }
        #[cfg(not(feature = "ngrok"))]
        {
            let _ngrok_authtoken = ngrok_authtoken;
            let _ngrok_domain = ngrok_domain;
            let _ngrok_username = ngrok_username;
            let _ngrok_password = ngrok_password;

            panic!("`text-generation-router` was compiled without the `ngrok` feature");
        }
    } else {
        // Run server
2413
2414
2415

        let listener = tokio::net::TcpListener::bind(&addr).await.unwrap();
        axum::serve(listener, app)
2416
            .with_graceful_shutdown(shutdown_signal())
OlivierDehaene's avatar
OlivierDehaene committed
2417
2418
            .await
            .map_err(|err| WebServerError::Axum(Box::new(err)))?;
2419
    }
2420
    Ok(())
Olivier Dehaene's avatar
Olivier Dehaene committed
2421
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
2422

Nicolas Patry's avatar
Nicolas Patry committed
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
/// get model info from the Huggingface Hub
pub async fn get_hub_model_info(api: &ApiRepo) -> Option<HubModelInfo> {
    let response = api.info_request().send().await.ok()?;

    if response.status().is_success() {
        let hub_model_info: HubModelInfo =
            serde_json::from_str(&response.text().await.ok()?).ok()?;
        if let Some(sha) = &hub_model_info.sha {
            tracing::info!(
                "Serving revision {sha} of model {}",
                hub_model_info.model_id
            );
        }
        Some(hub_model_info)
    } else {
        None
    }
}

/// get tokenizer_config from the Huggingface Hub
pub async fn get_tokenizer_config(api_repo: &ApiRepo) -> Option<HubTokenizerConfig> {
    let tokenizer_config_filename = api_repo.get("tokenizer_config.json").await.ok()?;

    // Open the file in read-only mode with buffer.
    let file = File::open(tokenizer_config_filename).ok()?;
    let reader = BufReader::new(file);

    // Read the JSON contents of the file as an instance of 'HubTokenizerConfig'.
    let tokenizer_config: HubTokenizerConfig = serde_json::from_reader(reader)
        .map_err(|e| {
            tracing::warn!("Unable to parse tokenizer config: {}", e);
            e
        })
        .ok()?;

    Some(tokenizer_config)
}

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
/// Shutdown signal handler
async fn shutdown_signal() {
    let ctrl_c = async {
        signal::ctrl_c()
            .await
            .expect("failed to install Ctrl+C handler");
    };

    #[cfg(unix)]
    let terminate = async {
        signal::unix::signal(signal::unix::SignalKind::terminate())
            .expect("failed to install signal handler")
            .recv()
            .await;
    };

    #[cfg(not(unix))]
    let terminate = std::future::pending::<()>();

    tokio::select! {
        _ = ctrl_c => {},
        _ = terminate => {},
    }

    tracing::info!("signal received, starting graceful shutdown");
2486
    opentelemetry::global::shutdown_tracer_provider();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
2487
}
2488
2489
2490
2491
2492
2493
2494
2495
2496

/// Convert to Axum supported formats
impl From<InferError> for (StatusCode, Json<ErrorResponse>) {
    fn from(err: InferError) -> Self {
        let status_code = match err {
            InferError::GenerationError(_) => StatusCode::FAILED_DEPENDENCY,
            InferError::Overloaded(_) => StatusCode::TOO_MANY_REQUESTS,
            InferError::ValidationError(_) => StatusCode::UNPROCESSABLE_ENTITY,
            InferError::IncompleteGeneration => StatusCode::INTERNAL_SERVER_ERROR,
2497
            InferError::IncompleteGenerationStream => StatusCode::INTERNAL_SERVER_ERROR,
2498
            InferError::TemplateError(_) => StatusCode::UNPROCESSABLE_ENTITY,
2499
            InferError::MissingTemplateVariable(_) => StatusCode::UNPROCESSABLE_ENTITY,
2500
            InferError::ToolError(_) => StatusCode::UNPROCESSABLE_ENTITY,
2501
            InferError::StreamSerializationError(_) => StatusCode::INTERNAL_SERVER_ERROR,
2502
2503
2504
2505
2506
2507
        };

        (
            status_code,
            Json(ErrorResponse {
                error: err.to_string(),
2508
                error_type: err.error_type().to_string(),
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
            }),
        )
    }
}

impl From<InferError> for Event {
    fn from(err: InferError) -> Self {
        Event::default()
            .json_data(ErrorResponse {
                error: err.to_string(),
2519
                error_type: err.error_type().to_string(),
2520
2521
2522
2523
            })
            .unwrap()
    }
}
OlivierDehaene's avatar
OlivierDehaene committed
2524
2525
2526
2527
2528
2529

#[derive(Debug, Error)]
pub enum WebServerError {
    #[error("Axum error: {0}")]
    Axum(#[from] axum::BoxError),
}