server.rs 101 KB
Newer Older
1
/// HTTP Server logic
OlivierDehaene's avatar
OlivierDehaene committed
2
use crate::config::Config;
Nicolas Patry's avatar
Nicolas Patry committed
3
4
use crate::infer::tool_grammar::ToolGrammar;
use crate::infer::{Backend, Infer, InferError, InferResponse, InferStreamResponse};
5
6
7
8
9
#[cfg(feature = "kserve")]
use crate::kserve::{
    kerve_server_metadata, kserve_health_live, kserve_health_ready, kserve_model_infer,
    kserve_model_metadata, kserve_model_metadata_ready,
};
10
11
12
13
use crate::sagemaker::{
    sagemaker_compatibility, SagemakerRequest, SagemakerResponse, SagemakerStreamResponse,
    __path_sagemaker_compatibility,
};
14
use crate::validation::ValidationError;
Nicolas Patry's avatar
Nicolas Patry committed
15
16
use crate::vertex::vertex_compatibility;
use crate::ChatTokenizeResponse;
17
use crate::{
18
19
20
    usage_stats, BestOfSequence, Details, ErrorResponse, FinishReason, FunctionName,
    GenerateParameters, GenerateRequest, GenerateResponse, GrammarType, HubModelInfo,
    HubProcessorConfig, HubTokenizerConfig, Info, Message, MessageChunk, MessageContent,
Nicolas Patry's avatar
Nicolas Patry committed
21
22
    OutputMessage, PrefillToken, SimpleToken, StreamDetails, StreamOptions, StreamResponse,
    TextMessage, Token, TokenizeResponse, ToolCallDelta, ToolCallMessage, Url, Usage, Validation,
23
24
25
26
};
use crate::{
    ChatCompletion, ChatCompletionChoice, ChatCompletionChunk, ChatCompletionComplete,
    ChatCompletionDelta, ChatCompletionLogprob, ChatCompletionLogprobs, ChatCompletionTopLogprob,
27
    ChatRequest, Chunk, CompatGenerateRequest, Completion, CompletionComplete, CompletionFinal,
Nicolas Patry's avatar
Nicolas Patry committed
28
    CompletionRequest, CompletionType, DeltaToolCall, Function, Prompt, Tool,
29
};
drbh's avatar
drbh committed
30
use crate::{FunctionDefinition, HubPreprocessorConfig, ToolCall, ToolChoice, ToolType};
drbh's avatar
drbh committed
31
use crate::{ModelInfo, ModelsInfo};
32
use async_stream::__private::AsyncStream;
Olivier Dehaene's avatar
Olivier Dehaene committed
33
use axum::extract::Extension;
Nicolas Patry's avatar
Nicolas Patry committed
34
use axum::http::{HeaderMap, HeaderValue, Method, StatusCode};
35
use axum::response::sse::{Event, KeepAlive, Sse};
36
use axum::response::{IntoResponse, Response};
Olivier Dehaene's avatar
Olivier Dehaene committed
37
use axum::routing::{get, post};
38
use axum::{http, Json, Router};
Nicolas Patry's avatar
Nicolas Patry committed
39
use axum_tracing_opentelemetry::middleware::OtelAxumLayer;
40
use futures::stream::StreamExt;
41
use futures::stream::{FuturesOrdered, FuturesUnordered};
42
use futures::Stream;
drbh's avatar
drbh committed
43
use futures::TryStreamExt;
Nicolas Patry's avatar
Nicolas Patry committed
44
45
use hf_hub::api::tokio::{Api, ApiBuilder, ApiRepo};
use hf_hub::{Cache, Repo, RepoType};
Erik Kaunismäki's avatar
Erik Kaunismäki committed
46
use http::header::AUTHORIZATION;
47
use metrics_exporter_prometheus::{Matcher, PrometheusBuilder, PrometheusHandle};
Nicolas Patry's avatar
Nicolas Patry committed
48
use pyo3::types::IntoPyDict;
49
use regex::Regex;
drbh's avatar
drbh committed
50
use serde_json::Value;
51
use std::convert::Infallible;
Nicolas Patry's avatar
Nicolas Patry committed
52
53
54
55
use std::fs::File;
use std::io::BufReader;
use std::net::{IpAddr, Ipv4Addr, SocketAddr};
use std::path::{Path, PathBuf};
OlivierDehaene's avatar
OlivierDehaene committed
56
use thiserror::Error;
Olivier Dehaene's avatar
Olivier Dehaene committed
57
use tokenizers::Tokenizer;
58
use tokio::select;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
59
use tokio::signal;
60
use tokio::sync::oneshot;
Olivier Dehaene's avatar
Olivier Dehaene committed
61
use tokio::time::Instant;
62
use tower_http::cors::{AllowOrigin, CorsLayer};
63
use tracing::{info_span, instrument, Instrument};
64
65
use utoipa::OpenApi;
use utoipa_swagger_ui::SwaggerUi;
Olivier Dehaene's avatar
Olivier Dehaene committed
66

67
68
/// Generate tokens if `stream == false` or a stream of token if `stream == true`
#[utoipa::path(
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
post,
tag = "Text Generation Inference",
path = "/",
request_body = CompatGenerateRequest,
responses(
(status = 200, description = "Generated Text",
content(
("application/json" = GenerateResponse),
("text/event-stream" = StreamResponse),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
88
)]
89
#[instrument(skip(infer, req))]
90
pub(crate) async fn compat_generate(
91
    Extension(default_return_full_text): Extension<bool>,
92
    infer: Extension<Infer>,
93
    compute_type: Extension<ComputeType>,
94
    Json(mut req): Json<CompatGenerateRequest>,
95
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
96
97
    // default return_full_text given the pipeline_tag
    if req.parameters.return_full_text.is_none() {
98
        req.parameters.return_full_text = Some(default_return_full_text)
99
100
    }

101
102
    // switch on stream
    if req.stream {
103
        Ok(generate_stream(infer, compute_type, Json(req.into()))
104
105
106
            .await
            .into_response())
    } else {
107
        let (headers, Json(generation)) = generate(infer, compute_type, Json(req.into())).await?;
108
        // wrap generation inside a Vec to match api-inference
109
        Ok((headers, Json(vec![generation])).into_response())
110
111
112
    }
}

113
114
/// Text Generation Inference endpoint info
#[utoipa::path(
115
116
117
118
get,
tag = "Text Generation Inference",
path = "/info",
responses((status = 200, description = "Served model info", body = Info))
119
120
)]
#[instrument]
121
122
async fn get_model_info(info: Extension<Info>) -> Json<Info> {
    Json(info.0)
123
124
}

drbh's avatar
drbh committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
#[utoipa::path(
get,
tag = "Text Generation Inference",
path = "/v1/models",
responses(
(status = 200, description = "Served model info", body = ModelInfo),
(status = 404, description = "Model not found", body = ErrorResponse),
)
)]
#[instrument(skip(info))]
/// Get model info
async fn openai_get_model_info(info: Extension<Info>) -> Json<ModelsInfo> {
    Json(ModelsInfo {
        data: vec![ModelInfo {
            id: info.0.model_id.clone(),
            object: "model".to_string(),
            created: 0, // TODO: determine how to get this
            owned_by: info.0.model_id.clone(),
        }],
        ..Default::default()
    })
}

148
149
150
151
152
153
154
155
156
#[utoipa::path(
    post,
    tag = "Text Generation Inference",
    path = "/chat_tokenize",
    request_body = ChatRequest,
    responses((status = 200, description = "Templated and tokenized ChatRequest", body = ChatTokenizeResponse))
)]
async fn get_chat_tokenize(
    Extension(infer): Extension<Infer>,
Nicolas Patry's avatar
Nicolas Patry committed
157
    Json(chat): Json<ChatRequest>,
158
159
160
) -> Result<(HeaderMap, Json<ChatTokenizeResponse>), (StatusCode, Json<ErrorResponse>)> {
    metrics::counter!("tgi_request_count").increment(1);

Nicolas Patry's avatar
Nicolas Patry committed
161
    let generate_request: GenerateRequest = chat.try_into_generate(&infer)?.0;
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
    let input = generate_request.inputs.clone();
    let encoding = infer.tokenize(generate_request).await?;
    if let Some(encoding) = encoding {
        let tokens: Vec<SimpleToken> = encoding
            .get_ids()
            .iter()
            .zip(encoding.get_offsets())
            .map(|(&id, &(start, stop))| {
                let text = input
                    .chars()
                    .skip(start)
                    .take(stop - start)
                    .collect::<String>();
                SimpleToken {
                    id,
                    text,
                    start,
                    stop,
                }
            })
            .collect();

        let resp = ChatTokenizeResponse {
            tokenize_response: TokenizeResponse(tokens),
            templated_text: input,
        };
        Ok((HeaderMap::new(), Json(resp)))
    } else {
        Err((
            StatusCode::NOT_FOUND,
            Json(ErrorResponse {
                error: "No fast tokenizer or tokenizer.json for this model".to_string(),
                error_type: "no fast tokenizer".to_string(),
            }),
        ))
    }
}

200
#[utoipa::path(
201
202
203
204
205
206
207
208
get,
tag = "Text Generation Inference",
path = "/health",
responses(
(status = 200, description = "Everything is working fine"),
(status = 503, description = "Text generation inference is down", body = ErrorResponse,
example = json ! ({"error": "unhealthy", "error_type": "healthcheck"})),
)
209
)]
Nicolas Patry's avatar
Nicolas Patry committed
210
#[instrument(skip(infer))]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
211
/// Health check method
Nicolas Patry's avatar
Nicolas Patry committed
212
213
async fn health(infer: Extension<Infer>) -> Result<(), (StatusCode, Json<ErrorResponse>)> {
    match infer.health().await {
214
215
216
217
218
219
220
221
222
        true => Ok(()),
        false => Err((
            StatusCode::SERVICE_UNAVAILABLE,
            Json(ErrorResponse {
                error: "unhealthy".to_string(),
                error_type: "healthcheck".to_string(),
            }),
        )),
    }
Olivier Dehaene's avatar
Olivier Dehaene committed
223
224
}

225
226
/// Generate tokens
#[utoipa::path(
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
post,
tag = "Text Generation Inference",
path = "/generate",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = GenerateResponse),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
242
)]
243
#[instrument(
244
245
skip_all,
fields(
246
parameters = ? req.parameters,
247
248
249
250
251
252
253
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
254
)]
Olivier Dehaene's avatar
Olivier Dehaene committed
255
async fn generate(
256
    infer: Extension<Infer>,
257
    Extension(ComputeType(compute_type)): Extension<ComputeType>,
258
    Json(req): Json<GenerateRequest>,
259
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
260
    let span = tracing::Span::current();
261
262
263
    generate_internal(infer, ComputeType(compute_type), Json(req), span).await
}

264
pub(crate) async fn generate_internal(
265
266
267
268
269
    infer: Extension<Infer>,
    ComputeType(compute_type): ComputeType,
    Json(req): Json<GenerateRequest>,
    span: tracing::Span,
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
270
    let start_time = Instant::now();
271
    metrics::counter!("tgi_request_count").increment(1);
272

273
    // Do not long ultra long inputs, like image payloads.
274
275
276
277
    tracing::debug!(
        "Input: {}",
        &req.inputs.chars().take(1000).collect::<String>()
    );
278

279
    let compute_characters = req.inputs.chars().count();
280
    let mut add_prompt = None;
281
282
    if req.parameters.return_full_text.unwrap_or(false) {
        add_prompt = Some(req.inputs.clone());
283
284
    }

Nicolas Patry's avatar
Nicolas Patry committed
285
    let details: bool = req.parameters.details || req.parameters.decoder_input_details;
286
287

    // Inference
288
    let (response, best_of_responses) = match req.parameters.best_of {
289
        Some(best_of) if best_of > 1 => {
290
            let (response, best_of_responses) = infer.generate_best_of(req, best_of).await?;
291
292
            (response, Some(best_of_responses))
        }
293
        _ => (infer.generate(req).await?, None),
294
    };
Olivier Dehaene's avatar
Olivier Dehaene committed
295

OlivierDehaene's avatar
OlivierDehaene committed
296
    // Token details
297
    let input_length = response._input_length;
OlivierDehaene's avatar
OlivierDehaene committed
298
    let details = match details {
299
300
301
302
303
304
305
306
307
308
309
310
311
312
        true => {
            // convert best_of_responses
            let best_of_sequences = best_of_responses.map(|responses: Vec<InferResponse>| {
                responses
                    .into_iter()
                    .map(|response: InferResponse| {
                        // Add prompt if return_full_text
                        let mut output_text = response.generated_text.text;
                        if let Some(prompt) = &add_prompt {
                            output_text = prompt.clone() + &output_text;
                        }

                        BestOfSequence {
                            generated_text: output_text,
OlivierDehaene's avatar
OlivierDehaene committed
313
                            finish_reason: response.generated_text.finish_reason,
314
315
316
                            generated_tokens: response.generated_text.generated_tokens,
                            prefill: response.prefill,
                            tokens: response.tokens,
Nicolas Patry's avatar
Nicolas Patry committed
317
                            top_tokens: response.top_tokens,
318
319
320
321
322
323
324
                            seed: response.generated_text.seed,
                        }
                    })
                    .collect()
            });

            Some(Details {
OlivierDehaene's avatar
OlivierDehaene committed
325
                finish_reason: response.generated_text.finish_reason,
326
327
328
329
330
                generated_tokens: response.generated_text.generated_tokens,
                prefill: response.prefill,
                tokens: response.tokens,
                seed: response.generated_text.seed,
                best_of_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
331
                top_tokens: response.top_tokens,
332
333
            })
        }
OlivierDehaene's avatar
OlivierDehaene committed
334
335
336
        false => None,
    };

337
338
339
340
    // Timings
    let total_time = start_time.elapsed();
    let validation_time = response.queued - start_time;
    let queue_time = response.start - response.queued;
341
342
    let inference_time = Instant::now() - response.start;
    let time_per_token = inference_time / response.generated_text.generated_tokens;
343

344
345
346
347
348
349
350
351
    // Tracing metadata
    span.record("total_time", format!("{total_time:?}"));
    span.record("validation_time", format!("{validation_time:?}"));
    span.record("queue_time", format!("{queue_time:?}"));
    span.record("inference_time", format!("{inference_time:?}"));
    span.record("time_per_token", format!("{time_per_token:?}"));
    span.record("seed", format!("{:?}", response.generated_text.seed));

352
353
    // Headers
    let mut headers = HeaderMap::new();
354
    headers.insert("x-compute-type", compute_type.parse().unwrap());
355
356
    headers.insert(
        "x-compute-time",
Nicolas Patry's avatar
Nicolas Patry committed
357
        total_time.as_secs_f64().to_string().parse().unwrap(),
358
359
360
361
362
    );
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
363
364
365
366
367
368
369
370
371
372
373
    headers.insert(
        "x-total-time",
        total_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-validation-time",
        validation_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-queue-time",
        queue_time.as_millis().to_string().parse().unwrap(),
Olivier Dehaene's avatar
Olivier Dehaene committed
374
    );
375
376
377
378
379
380
381
382
    headers.insert(
        "x-inference-time",
        inference_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-time-per-token",
        time_per_token.as_millis().to_string().parse().unwrap(),
    );
383
384
385
386
387
    headers.insert("x-prompt-tokens", input_length.into());
    headers.insert(
        "x-generated-tokens",
        response.generated_text.generated_tokens.into(),
    );
388

389
    // Metrics
390
391
392
393
394
395
396
397
398
    metrics::counter!("tgi_request_success").increment(1);
    metrics::histogram!("tgi_request_duration").record(total_time.as_secs_f64());
    metrics::histogram!("tgi_request_validation_duration").record(validation_time.as_secs_f64());
    metrics::histogram!("tgi_request_queue_duration").record(queue_time.as_secs_f64());
    metrics::histogram!("tgi_request_inference_duration").record(inference_time.as_secs_f64());
    metrics::histogram!("tgi_request_mean_time_per_token_duration")
        .record(time_per_token.as_secs_f64());
    metrics::histogram!("tgi_request_generated_tokens")
        .record(response.generated_text.generated_tokens as f64);
399

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
400
    // Send response
401
402
403
404
405
    let mut output_text = response.generated_text.text;
    if let Some(prompt) = add_prompt {
        output_text = prompt + &output_text;
    }

406
407
    tracing::debug!("Output: {}", output_text);
    tracing::info!("Success");
408

409
    let response = GenerateResponse {
410
        generated_text: output_text,
OlivierDehaene's avatar
OlivierDehaene committed
411
        details,
412
    };
413
    Ok((headers, Json(response)))
Olivier Dehaene's avatar
Olivier Dehaene committed
414
415
}

Yannic Kilcher's avatar
Yannic Kilcher committed
416
/// Generate a stream of token using Server-Sent Events
417
#[utoipa::path(
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
post,
tag = "Text Generation Inference",
path = "/generate_stream",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = StreamResponse,
content_type = "text/event-stream"),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"}),
content_type = "text/event-stream"),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"}),
content_type = "text/event-stream"),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"}),
content_type = "text/event-stream"),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"}),
content_type = "text/event-stream"),
)
438
)]
439
#[instrument(
440
441
skip_all,
fields(
442
parameters = ? req.parameters,
443
444
445
446
447
448
449
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
450
451
)]
async fn generate_stream(
452
    Extension(infer): Extension<Infer>,
453
    Extension(compute_type): Extension<ComputeType>,
454
    Json(req): Json<GenerateRequest>,
455
456
457
458
) -> (
    HeaderMap,
    Sse<impl Stream<Item = Result<Event, Infallible>>>,
) {
459
    let span = tracing::Span::current();
460
    let (headers, response_stream) =
461
462
463
464
465
466
467
468
469
470
471
472
473
        generate_stream_internal(infer, compute_type, Json(req), span).await;

    let response_stream = async_stream::stream! {
        let mut response_stream = Box::pin(response_stream);
        while let Some(raw_event) = response_stream.next().await {
            yield Ok(raw_event.map_or_else(Event::from, |token| {
                Event::default()
                    .json_data(token)
                    .unwrap_or_else(|e| InferError::StreamSerializationError(e.to_string()).into())
            }));
        }
    };

474
475
476
477
478
479
    let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
    (headers, sse)
}

async fn generate_stream_internal(
    infer: Infer,
480
    ComputeType(compute_type): ComputeType,
481
    Json(req): Json<GenerateRequest>,
482
    span: tracing::Span,
483
484
485
486
) -> (
    HeaderMap,
    impl Stream<Item = Result<StreamResponse, InferError>>,
) {
487
    let start_time = Instant::now();
488
    metrics::counter!("tgi_request_count").increment(1);
489

490
    tracing::debug!("Input: {}", req.inputs);
491

492
    let compute_characters = req.inputs.chars().count();
493
494

    let mut headers = HeaderMap::new();
495
    headers.insert("x-compute-type", compute_type.parse().unwrap());
496
497
498
499
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
500
    headers.insert("X-Accel-Buffering", "no".parse().unwrap());
501

502
503
504
505
    let stream = async_stream::stream! {
        // Inference
        let mut end_reached = false;
        let mut error = false;
506
507

        let mut add_prompt = None;
508
509
        if req.parameters.return_full_text.unwrap_or(false) {
            add_prompt = Some(req.inputs.clone());
510
        }
511
        let details = req.parameters.details;
512

513
        let best_of = req.parameters.best_of.unwrap_or(1);
514
515
        if best_of != 1 {
            let err = InferError::from(ValidationError::BestOfStream);
516
            metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
517
            tracing::error!("{err}");
518
            yield Err(err);
519
        } else if req.parameters.decoder_input_details {
520
            let err = InferError::from(ValidationError::PrefillDetailsStream);
521
            metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
522
            tracing::error!("{err}");
523
            yield Err(err);
524
        } else {
525
            match infer.generate_stream(req).instrument(info_span!(parent: &span, "async_stream")).await {
526
                // Keep permit as long as generate_stream lives
527
                Ok((_permit, input_length, response_stream)) => {
528
                    let mut index = 0;
Nicolas Patry's avatar
Nicolas Patry committed
529
                    let mut response_stream = Box::pin(response_stream);
530
531
                    // Server-Sent Event stream
                    while let Some(response) = response_stream.next().await {
532
                        index += 1;
533
534
535
536
537
538
                        match response {
                            Ok(response) => {
                                match response {
                                    // Prefill is ignored
                                    InferStreamResponse::Prefill(_) => {}
                                    // Yield event for every new token
Nicolas Patry's avatar
Nicolas Patry committed
539
540
541
542
                                    InferStreamResponse::Intermediate{
                                        token,
                                        top_tokens,
                                    } => {
543
544
                                        tracing::debug!(parent: &span, "Token: {:?}", token);

545
546
                                        // StreamResponse
                                        let stream_token = StreamResponse {
547
                                            index,
548
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
549
                                            top_tokens,
550
551
552
                                            generated_text: None,
                                            details: None,
                                        };
553
                                        yield Ok(stream_token);
554
                                    }
555
556
                                    // Yield event for last token and compute timings
                                    InferStreamResponse::End {
557
                                        token,
558
559
560
                                        generated_text,
                                        start,
                                        queued,
Nicolas Patry's avatar
Nicolas Patry committed
561
                                        top_tokens,
562
563
564
565
                                    } => {
                                        // Token details
                                        let details = match details {
                                            true => Some(StreamDetails {
OlivierDehaene's avatar
OlivierDehaene committed
566
                                                finish_reason: generated_text.finish_reason,
567
568
                                                generated_tokens: generated_text.generated_tokens,
                                                seed: generated_text.seed,
569
                                                input_length,
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
                                            }),
                                            false => None,
                                        };

                                        // Timings
                                        let total_time = start_time.elapsed();
                                        let validation_time = queued - start_time;
                                        let queue_time = start - queued;
                                        let inference_time = Instant::now() - start;
                                        let time_per_token = inference_time / generated_text.generated_tokens;

                                        // Tracing metadata
                                        span.record("total_time", format!("{total_time:?}"));
                                        span.record("validation_time", format!("{validation_time:?}"));
                                        span.record("queue_time", format!("{queue_time:?}"));
                                        span.record("inference_time", format!("{inference_time:?}"));
                                        span.record("time_per_token", format!("{time_per_token:?}"));
                                        span.record("seed", format!("{:?}", generated_text.seed));

                                        // Metrics
590
591
592
593
594
595
596
                                        metrics::counter!("tgi_request_success").increment(1);
                                        metrics::histogram!("tgi_request_duration").record(total_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_validation_duration").record(validation_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_queue_duration").record(queue_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_inference_duration").record(inference_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_mean_time_per_token_duration").record(time_per_token.as_secs_f64());
                                        metrics::histogram!("tgi_request_generated_tokens").record(generated_text.generated_tokens as f64);
597
598
599
600
601
602
603
604
605

                                        // StreamResponse
                                        end_reached = true;

                                        let mut output_text = generated_text.text;
                                        if let Some(prompt) = add_prompt {
                                            output_text = prompt + &output_text;
                                        }

606
607
                                        tracing::debug!(parent: &span, "Output: {}", output_text);
                                        tracing::info!(parent: &span, "Success");
608

609
                                        let stream_token = StreamResponse {
610
                                            index,
611
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
612
                                            top_tokens,
613
614
615
616
                                            generated_text: Some(output_text),
                                            details
                                        };

617
                                        yield Ok(stream_token);
618
619
                                        break;
                                    }
620
621
                                }
                            }
622
623
624
                            // yield error
                            Err(err) => {
                                error = true;
625
                                yield Err(err);
626
627
                                break;
                            }
628
629
                        }
                    }
630
631
632
633
                },
                // yield error
                Err(err) => {
                    error = true;
634
                    yield Err(err);
635
                }
636
637
638
639
            }
            // Check if generation reached the end
            // Skip if we already sent an error
            if !end_reached && !error {
640
                let err = InferError::IncompleteGenerationStream;
641
                metrics::counter!("tgi_request_failure", "err" => "incomplete").increment(1);
642
                tracing::error!("{err}");
643
                yield Err(err);
644
645
646
647
            }
        }
    };

648
649
650
    (headers, stream)
}

651
652
/// Generate tokens
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
653
654
655
656
657
658
659
post,
tag = "Text Generation Inference",
path = "/v1/completions",
request_body = CompletionRequest,
responses(
(status = 200, description = "Generated Chat Completion",
content(
660
661
("application/json" = CompletionFinal),
("text/event-stream" = Chunk),
OlivierDehaene's avatar
OlivierDehaene committed
662
663
664
665
666
667
668
669
670
671
672
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
673
#[instrument(
OlivierDehaene's avatar
OlivierDehaene committed
674
675
676
677
678
679
680
681
682
683
684
skip_all,
fields(
// parameters = ? req.parameters,
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
)]
685
pub(crate) async fn completions(
686
687
688
689
690
    Extension(infer): Extension<Infer>,
    Extension(compute_type): Extension<ComputeType>,
    Extension(info): Extension<Info>,
    Json(req): Json<CompletionRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
691
    let span = tracing::Span::current();
692
    metrics::counter!("tgi_request_count").increment(1);
693

694
    let CompletionRequest {
695
        model,
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
        max_tokens,
        seed,
        stop,
        stream,
        temperature,
        ..
    } = req;

    let max_new_tokens = max_tokens.or(Some(100));
    let stop = stop.unwrap_or_default();
    // enable greedy only when temperature is 0
    let (do_sample, temperature) = match temperature {
        Some(temperature) if temperature == 0.0 => (false, None),
        other => (true, other),
    };
711
712
713

    // if suffix is present throw an error
    if req.suffix.is_some() {
714
        metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
715
716
717
718
719
720
721
722
723
724
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: "Suffix is not supported and can be achieved by preprocessing the prompt."
                    .to_string(),
                error_type: "suffix not supported".to_string(),
            }),
        ));
    }

725
    if req.prompt.0.len() > info.max_client_batch_size {
726
        metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
727
728
729
730
731
732
733
734
735
736
737
738
739
740
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: format!(
                    "Number of prompts exceeds the maximum allowed batch size of {}",
                    info.max_client_batch_size
                ),
                error_type: "batch size exceeded".to_string(),
            }),
        ));
    }

    let generate_requests: Vec<GenerateRequest> = req
        .prompt
741
        .0
742
743
744
        .iter()
        .map(|prompt| GenerateRequest {
            inputs: prompt.to_string(),
745
            add_special_tokens: true,
746
747
            parameters: GenerateParameters {
                best_of: None,
748
                temperature,
749
750
751
752
753
                repetition_penalty: req.repetition_penalty,
                frequency_penalty: req.frequency_penalty,
                top_k: None,
                top_p: req.top_p,
                typical_p: None,
754
                do_sample,
755
756
                max_new_tokens,
                return_full_text: None,
757
                stop: stop.clone(),
758
759
760
761
762
763
764
                truncate: None,
                watermark: false,
                details: true,
                decoder_input_details: !stream,
                seed,
                top_n_tokens: None,
                grammar: None,
765
                adapter_id: model.as_ref().filter(|m| *m != "tgi").map(String::from),
766
767
768
769
770
771
772
            },
        })
        .collect();

    let mut x_compute_type = None;
    let mut x_compute_characters = 0u32;
    let mut x_accel_buffering = None;
773
774

    if stream {
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
        let mut response_streams = FuturesOrdered::new();
        for (index, generate_request) in generate_requests.into_iter().enumerate() {
            let model_id = info.model_id.clone();
            let system_fingerprint =
                format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));
            let infer_clone = infer.clone();
            let compute_type_clone = compute_type.clone();
            let span_clone = span.clone();

            // Create a future for each generate_stream_internal call.
            let generate_future = async move {
                let (header_tx, header_rx) = oneshot::channel();
                let (sse_tx, sse_rx) = tokio::sync::mpsc::unbounded_channel();

                tokio::spawn(async move {
790
                    let (headers, response_stream) = generate_stream_internal(
791
792
793
794
795
796
                        infer_clone.clone(),
                        compute_type_clone.clone(),
                        Json(generate_request),
                        span_clone.clone(),
                    )
                    .await;
797

798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
                    let response_stream = async_stream::stream! {
                        let mut response_stream = Box::pin(response_stream);

                        while let Some(stream_token) = response_stream.next().await {
                            match stream_token {
                                Ok(stream_token) => {
                                    let event = Event::default();

                                    let current_time = std::time::SystemTime::now()
                                        .duration_since(std::time::UNIX_EPOCH)
                                        .unwrap_or_else(|_| std::time::Duration::from_secs(0))
                                        .as_secs();

                                    let message = match stream_token.details {
                                        Some(details) => {
                                            let completion_tokens = details.generated_tokens;
                                            let prompt_tokens = details.input_length;
                                            let total_tokens = prompt_tokens + completion_tokens;

                                            Completion::Final(CompletionFinal {
                                                id: String::new(),
                                                created: current_time,
                                                model: model_id.clone(),
                                                system_fingerprint: system_fingerprint.clone(),
                                                choices: vec![CompletionComplete {
                                                    finish_reason: details.finish_reason.to_string(),
                                                    index: index as u32,
                                                    logprobs: None,
                                                    text: stream_token.token.text,
                                                }],
                                                usage: Usage {
                                                    prompt_tokens,
                                                    completion_tokens,
                                                    total_tokens,
                                                },
                                            })
                                        }
                                        None => Completion::Chunk(Chunk {
                                            id: String::new(),
                                            created: current_time,
                                            choices: vec![CompletionComplete {
                                                finish_reason: String::new(),
                                                index: index as u32,
                                                logprobs: None,
                                                text: stream_token.token.text,
                                            }],
                                            model: model_id.clone(),
                                            system_fingerprint: system_fingerprint.clone(),
                                        }),
                                    };

                                    let event = event
                                        .json_data(message)
                                        .unwrap_or_else(|_e| Event::default());

                                    yield Ok(event);
                                }
                                Err(err) => yield Ok(Event::from(err)),
                            }
                        }
                    };

860
                    // send and dont wait for response
861
                    let _ = header_tx.send(headers);
862

863
                    // pin an emit messages to the sse_tx
864
                    let mut sse = Box::pin(response_stream);
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
                    while let Some(event) = sse.next().await {
                        if sse_tx.send(event).is_err() {
                            tracing::error!("Failed to send event. Receiver dropped.");
                            break;
                        }
                    }
                });

                (header_rx, sse_rx)
            };
            response_streams.push_back(generate_future);
        }

        let mut all_rxs = vec![];

        while let Some((header_rx, sse_rx)) = response_streams.next().await {
            all_rxs.push(sse_rx);

            // get the headers from the first response of each stream
            let headers = header_rx.await.map_err(|e| {
                tracing::error!("Failed to get headers: {:?}", e);
                (
                    StatusCode::INTERNAL_SERVER_ERROR,
                    Json(ErrorResponse {
                        error: "Failed to get headers".to_string(),
                        error_type: "headers".to_string(),
                    }),
892
                )
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
            })?;
            if x_compute_type.is_none() {
                x_compute_type = headers
                    .get("x-compute-type")
                    .and_then(|v| v.to_str().ok())
                    .map(|v| v.to_string());

                x_accel_buffering = headers
                    .get("x-accel-buffering")
                    .and_then(|v| v.to_str().ok())
                    .map(|v| v.to_string());
            }
            x_compute_characters += headers
                .get("x-compute-characters")
                .and_then(|v| v.to_str().ok())
                .and_then(|v| v.parse().ok())
                .unwrap_or(0);
        }
911

912
913
914
915
916
917
918
919
        let mut headers = HeaderMap::new();
        if let Some(x_compute_type) = x_compute_type {
            headers.insert("x-compute-type", x_compute_type.parse().unwrap());
        }
        headers.insert("x-compute-characters", x_compute_characters.into());
        if let Some(x_accel_buffering) = x_accel_buffering {
            headers.insert("x-accel-buffering", x_accel_buffering.parse().unwrap());
        }
920

921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
        // now sink the sse streams into a single stream and remove the ones that are done
        let stream: AsyncStream<Result<Event, Infallible>, _> = async_stream::stream! {
            loop {
                let mut i = 0;
                while i < all_rxs.len() {
                    let rx = &mut all_rxs[i];
                    select! {
                        Some(event) = rx.recv() => {
                            yield event;
                        }
                        else => {
                            all_rxs.remove(i);
                            continue; // skip the increment to handle the next element at the same index
                        }
                    }
                    i += 1; // only increment when no element was removed
                }

                if all_rxs.is_empty() {
                    break;
                }
            }
        };

945
946
947
948
        let stream = stream.chain(futures::stream::once(async {
            Ok(Event::default().data("[DONE]"))
        }));

949
        let sse = Sse::new(stream).keep_alive(KeepAlive::default());
950
951
952
953
954
955
956
        Ok((headers, sse).into_response())
    } else {
        let current_time = std::time::SystemTime::now()
            .duration_since(std::time::UNIX_EPOCH)
            .unwrap_or_else(|_| std::time::Duration::from_secs(0))
            .as_secs();

957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
        let responses = FuturesUnordered::new();
        for (index, generate_request) in generate_requests.into_iter().enumerate() {
            let infer_clone = infer.clone();
            let compute_type_clone = compute_type.clone();
            let span_clone = span.clone();
            let response_future = async move {
                let result = generate_internal(
                    Extension(infer_clone),
                    compute_type_clone,
                    Json(generate_request),
                    span_clone,
                )
                .await;
                result.map(|(headers, generation)| (index, headers, generation))
            };
            responses.push(response_future);
        }
        let generate_responses = responses.try_collect::<Vec<_>>().await?;

        let mut prompt_tokens = 0u32;
        let mut completion_tokens = 0u32;
        let mut total_tokens = 0u32;

        let mut x_compute_time = 0u32;
        let mut x_total_time = 0u32;
        let mut x_validation_time = 0u32;
        let mut x_queue_time = 0u32;
        let mut x_inference_time = 0u32;
        let mut x_time_per_token = 0u32;
        let mut x_prompt_tokens = 0u32;
        let mut x_generated_tokens = 0u32;

        let choices = generate_responses
            .into_iter()
            .map(|(index, headers, Json(generation))| {
                let details = generation.details.ok_or((
                    // this should never happen but handle if details are missing unexpectedly
                    StatusCode::INTERNAL_SERVER_ERROR,
                    Json(ErrorResponse {
                        error: "No details in generation".to_string(),
                        error_type: "no details".to_string(),
                    }),
                ))?;

                if x_compute_type.is_none() {
                    x_compute_type = headers
                        .get("x-compute-type")
                        .and_then(|v| v.to_str().ok())
                        .map(|v| v.to_string());
                }

                // accumulate headers and usage from each response
                x_compute_time += headers
                    .get("x-compute-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_compute_characters += headers
                    .get("x-compute-characters")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_total_time += headers
                    .get("x-total-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_validation_time += headers
                    .get("x-validation-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_queue_time += headers
                    .get("x-queue-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_inference_time += headers
                    .get("x-inference-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_time_per_token += headers
                    .get("x-time-per-token")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_prompt_tokens += headers
                    .get("x-prompt-tokens")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_generated_tokens += headers
                    .get("x-generated-tokens")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);

                prompt_tokens += details.prefill.len() as u32;
                completion_tokens += details.generated_tokens;
                total_tokens += details.prefill.len() as u32 + details.generated_tokens;

                Ok(CompletionComplete {
1051
                    finish_reason: details.finish_reason.format(true),
1052
1053
1054
1055
1056
1057
1058
                    index: index as u32,
                    logprobs: None,
                    text: generation.generated_text,
                })
            })
            .collect::<Result<Vec<_>, _>>()
            .map_err(|(status, Json(err))| (status, Json(err)))?;
1059

1060
        let response = Completion::Final(CompletionFinal {
1061
1062
1063
1064
1065
1066
1067
1068
            id: "".to_string(),
            created: current_time,
            model: info.model_id.clone(),
            system_fingerprint: format!(
                "{}-{}",
                info.version,
                info.docker_label.unwrap_or("native")
            ),
1069
            choices,
1070
            usage: Usage {
1071
1072
1073
                prompt_tokens,
                completion_tokens,
                total_tokens,
1074
            },
1075
        });
1076

1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
        // headers similar to `generate` but aggregated
        let mut headers = HeaderMap::new();
        if let Some(x_compute_type) = x_compute_type {
            headers.insert("x-compute-type", x_compute_type.parse().unwrap());
        }
        headers.insert("x-compute-characters", x_compute_characters.into());
        headers.insert("x-total-time", x_total_time.into());
        headers.insert("x-validation-time", x_validation_time.into());
        headers.insert("x-queue-time", x_queue_time.into());
        headers.insert("x-inference-time", x_inference_time.into());
        headers.insert("x-time-per-token", x_time_per_token.into());
        headers.insert("x-prompt-tokens", x_prompt_tokens.into());
        headers.insert("x-generated-tokens", x_generated_tokens.into());
        if let Some(x_accel_buffering) = x_accel_buffering {
            headers.insert("x-accel-buffering", x_accel_buffering.parse().unwrap());
        }
1093
1094
1095
1096
        Ok((headers, Json(response)).into_response())
    }
}

1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
enum StreamState {
    Buffering,
    BufferTrailing,
    Content { skip_close_quote: bool },
}

/// Convert a StreamResponse into an Event to be sent over SSE
fn create_event_from_stream_token(
    stream_token: &StreamResponse,
    logprobs: bool,
    stream_options: Option<StreamOptions>,
    inner_using_tools: bool,
    system_fingerprint: String,
    model_id: String,
) -> Event {
    let event = Event::default();
    let current_time = std::time::SystemTime::now()
        .duration_since(std::time::UNIX_EPOCH)
        .unwrap_or_else(|_| std::time::Duration::from_secs(0))
        .as_secs();

    let logprobs = logprobs.then(|| {
        ChatCompletionLogprobs::from((stream_token.token.clone(), stream_token.top_tokens.clone()))
    });

    // replace the content with the tool calls if grammar is present
    let (content, tool_calls) = if inner_using_tools {
        (None, Some(vec![stream_token.token.text.clone()]))
    } else {
        let content = if !stream_token.token.special {
            Some(stream_token.token.text.clone())
        } else {
            None
        };

        (content, None)
    };

    let (usage, finish_reason) = match &stream_token.details {
        Some(details) => {
            let usage = if stream_options
                .as_ref()
                .map(|s| s.include_usage)
                .unwrap_or(false)
            {
                let completion_tokens = details.generated_tokens;
                let prompt_tokens = details.input_length;
                let total_tokens = prompt_tokens + completion_tokens;
                Some(Usage {
                    completion_tokens,
                    prompt_tokens,
                    total_tokens,
                })
            } else {
                None
            };
            (usage, Some(details.finish_reason.format(true)))
        }
        None => (None, None),
    };

    let chat_complete = CompletionType::ChatCompletionChunk(ChatCompletionChunk::new(
        model_id.clone(),
        system_fingerprint.clone(),
        content,
        tool_calls,
        current_time,
        logprobs,
        finish_reason,
        usage,
    ));

    event.json_data(chat_complete).unwrap_or_else(|e| {
        println!("Failed to serialize ChatCompletionChunk: {:?}", e);
        Event::default()
    })
}

1175
1176
/// Generate tokens
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
post,
tag = "Text Generation Inference",
path = "/v1/chat/completions",
request_body = ChatRequest,
responses(
(status = 200, description = "Generated Chat Completion",
content(
("application/json" = ChatCompletion),
("text/event-stream" = ChatCompletionChunk),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
1197
#[instrument(
OlivierDehaene's avatar
OlivierDehaene committed
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
skip_all,
fields(
// parameters = ? req.parameters,
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
)]
1209
pub(crate) async fn chat_completions(
1210
    Extension(infer): Extension<Infer>,
1211
    Extension(compute_type): Extension<ComputeType>,
1212
    Extension(info): Extension<Info>,
Nicolas Patry's avatar
Nicolas Patry committed
1213
    Json(chat): Json<ChatRequest>,
1214
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
1215
    let span = tracing::Span::current();
1216
    metrics::counter!("tgi_request_count").increment(1);
1217
1218
    let ChatRequest {
        stream,
Nicolas Patry's avatar
Nicolas Patry committed
1219
        stream_options,
Nicolas Patry's avatar
Nicolas Patry committed
1220
        logprobs,
1221
        ..
Nicolas Patry's avatar
Nicolas Patry committed
1222
1223
1224
    } = chat.clone();
    let (generate_request, using_tools): (GenerateRequest, bool) =
        chat.try_into_generate(&infer)?;
1225

Nicolas Patry's avatar
Nicolas Patry committed
1226
    let logprobs = logprobs.unwrap_or_default();
1227
1228
1229
1230
1231
1232

    // static values that will be returned in all cases
    let model_id = info.model_id.clone();
    let system_fingerprint = format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));
    // switch on stream
    if stream {
1233
1234
        let (headers, response_stream) =
            generate_stream_internal(infer, compute_type, Json(generate_request), span).await;
1235

1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
        // regex to match any function name
        let function_regex = match Regex::new(r#"\{"function":\{"_name":"([^"]+)""#) {
            Ok(regex) => regex,
            Err(e) => {
                return Err((
                    StatusCode::INTERNAL_SERVER_ERROR,
                    Json(ErrorResponse {
                        error: format!("Failed to compile regex: {}", e),
                        error_type: "regex".to_string(),
                    }),
                ))
            }
        };
1249

1250
1251
1252
1253
1254
1255
        let response_stream = async_stream::stream! {
            let mut response_stream = Box::pin(response_stream);
            let mut buffer = Vec::new();
            let mut json_buffer = String::new();
            let mut state = if using_tools {
                StreamState::Buffering
drbh's avatar
drbh committed
1256
            } else {
1257
1258
1259
                StreamState::Content {
                    skip_close_quote: false,
                }
drbh's avatar
drbh committed
1260
            };
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
            let mut response_as_tool = using_tools;
            while let Some(result) = response_stream.next().await {
                if let Ok(stream_token) = result {
                    let token_text = &stream_token.token.text.clone();
                    match state {
                        StreamState::Buffering => {
                            json_buffer.push_str(&token_text.replace(" ", ""));
                            buffer.push(stream_token);
                            if let Some(captures) = function_regex.captures(&json_buffer) {
                                let function_name = captures[1].to_string();
                                if function_name == "no_tool" {
                                    state = StreamState::BufferTrailing;
                                    response_as_tool = false;
                                    buffer.clear();
                                    json_buffer.clear();
                                } else {
                                    state = StreamState::Content {
                                        skip_close_quote: false,
                                    };
                                    // send all the buffered messages
                                    for stream_token in &buffer {
                                        let event = create_event_from_stream_token(
                                            stream_token,
                                            logprobs,
                                            stream_options.clone(),
                                            response_as_tool,
                                            system_fingerprint.clone(),
                                            model_id.clone(),
                                        );
                                        yield Ok::<Event, Infallible>(event);
                                    }
                                }
                            }
                        }
                        // if we skipped sending the buffer we need to avoid sending the following json key and quotes
                        StreamState::BufferTrailing => {
                            let infix_text = "\"content\":\"";
                            json_buffer.push_str(&token_text.replace(" ", ""));
                            // keep capturing until we find the infix text
                            match json_buffer.find(infix_text) {
                                Some(content_key_index) => {
                                    json_buffer =
                                        json_buffer[content_key_index + infix_text.len()..].to_string();
                                }
                                None => {
                                    continue;
                                }
                            }
                            // if there is leftover text after removing the infix text, we need to send it
                            if !json_buffer.is_empty() {
                                let event = Event::default();
                                let current_time = std::time::SystemTime::now()
                                    .duration_since(std::time::UNIX_EPOCH)
                                    .unwrap_or_else(|_| std::time::Duration::from_secs(0))
                                    .as_secs();
                                let chat_complete =
                                    CompletionType::ChatCompletionChunk(ChatCompletionChunk::new(
                                        model_id.clone(),
                                        system_fingerprint.clone(),
                                        Some(json_buffer.clone()),
                                        None,
                                        current_time,
                                        None,
                                        None,
                                        None,
                                    ));
                                yield Ok(event.json_data(chat_complete).unwrap_or_else(|e| {
                                    InferError::StreamSerializationError(e.to_string()).into()
                                }));
                            }
                            // cleanup the buffers
                            buffer.clear();
                            json_buffer.clear();
                            state = StreamState::Content {
                                skip_close_quote: true,
                            };
                        }
                        StreamState::Content { skip_close_quote } => {
                            if skip_close_quote && token_text.contains('"') {
                                break;
                            }
drbh's avatar
drbh committed
1342

1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
                            // send the content
                            let event = create_event_from_stream_token(
                                &stream_token,
                                logprobs,
                                stream_options.clone(),
                                response_as_tool,
                                system_fingerprint.clone(),
                                model_id.clone(),
                            );

                            yield Ok::<Event, Infallible>(event);
                        }
                    }
Nicolas Patry's avatar
Nicolas Patry committed
1356
                }
1357
1358
            }
            yield Ok::<Event, Infallible>(Event::default().data("[DONE]"));
1359
1360
1361
1362
1363
        };

        let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
        Ok((headers, sse).into_response())
    } else {
1364
1365
        let (headers, Json(generation)) =
            generate_internal(Extension(infer), compute_type, Json(generate_request), span).await?;
1366
1367
1368
1369
1370
1371

        let current_time = std::time::SystemTime::now()
            .duration_since(std::time::UNIX_EPOCH)
            .unwrap_or_else(|_| std::time::Duration::from_secs(0))
            .as_secs();

drbh's avatar
drbh committed
1372
        let (tool_calls, output) = if using_tools {
1373
1374
1375
1376
1377
1378
1379
            let gen_text_value: Value =
                serde_json::from_str(&generation.generated_text).map_err(|e| {
                    InferError::ToolError(format!(
                        "Failed to parse generated text: {} {:?}",
                        e, generation.generated_text
                    ))
                })?;
drbh's avatar
drbh committed
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
            let function = gen_text_value.get("function").ok_or(InferError::ToolError(
                "No function found in generated text".to_string(),
            ))?;

            let name = function
                .get("_name")
                .and_then(Value::as_str)
                .ok_or(InferError::ToolError(
                    "No _name found in generated text".to_string(),
                ))?
                .to_string();

            let mut arguments = function.clone();
            if let Value::Object(ref mut props) = arguments {
                props.remove("_name");
            }
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
            match name.as_str() {
                "no_tool" => {
                    // parse the content message
                    let content_message = arguments
                        .get("content")
                        .and_then(Value::as_str)
                        .ok_or_else(|| {
                            InferError::ToolError(
                                "No `content` found in generated text".to_string(),
                            )
                        })?
                        .to_string();
                    (None, Some(content_message))
                }
                _ => {
                    let tool_calls = vec![ToolCall {
                        id: "0".to_string(),
                        r#type: "function".to_string(),
                        function: FunctionDefinition {
                            description: None,
                            name,
                            arguments,
                        },
                    }];
                    (Some(tool_calls), None)
                }
            }
drbh's avatar
drbh committed
1423
1424
1425
        } else {
            (None, Some(generation.generated_text))
        };
1426
        // build the complete response object with the full text
1427
        let response = CompletionType::ChatCompletion(ChatCompletion::new(
1428
1429
            model_id,
            system_fingerprint,
drbh's avatar
drbh committed
1430
            output,
1431
1432
1433
            current_time,
            generation.details.unwrap(),
            logprobs,
drbh's avatar
drbh committed
1434
            tool_calls,
1435
        ));
1436
1437
1438
1439

        // wrap generation inside a Vec to match api-inference
        Ok((headers, Json(response)).into_response())
    }
1440
1441
}

1442
1443
/// Tokenize inputs
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
post,
tag = "Text Generation Inference",
path = "/tokenize",
request_body = GenerateRequest,
responses(
(status = 200, description = "Tokenized ids", body = TokenizeResponse),
(status = 404, description = "No tokenizer found", body = ErrorResponse,
example = json ! ({"error": "No fast tokenizer available"})),
)
)]
1454
1455
1456
1457
#[instrument(skip_all)]
async fn tokenize(
    Extension(infer): Extension<Infer>,
    Json(req): Json<GenerateRequest>,
1458
) -> Result<Json<TokenizeResponse>, (StatusCode, Json<ErrorResponse>)> {
1459
1460
1461
1462
1463
1464
1465
1466
    let input = req.inputs.clone();
    let encoding = infer.tokenize(req).await?;
    if let Some(encoding) = encoding {
        let tokens: Vec<SimpleToken> = encoding
            .get_ids()
            .iter()
            .zip(encoding.get_offsets())
            .map(|(&id, &(start, stop))| {
1467
1468
1469
1470
1471
                let text = input
                    .chars()
                    .skip(start)
                    .take(stop - start)
                    .collect::<String>();
1472
1473
1474
1475
1476
1477
1478
1479
                SimpleToken {
                    id,
                    text,
                    start,
                    stop,
                }
            })
            .collect();
1480
        Ok(Json(TokenizeResponse(tokens)))
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
    } else {
        Err((
            StatusCode::NOT_FOUND,
            Json(ErrorResponse {
                error: "No fast tokenizer or tokenizer.json for this model".to_string(),
                error_type: "no fast tokenizer".to_string(),
            }),
        ))
    }
}

1492
1493
/// Prometheus metrics scrape endpoint
#[utoipa::path(
1494
1495
1496
1497
    get,
    tag = "Text Generation Inference",
    path = "/metrics",
    responses((status = 200, description = "Prometheus Metrics", body = String))
1498
1499
1500
1501
1502
)]
async fn metrics(prom_handle: Extension<PrometheusHandle>) -> String {
    prom_handle.render()
}

1503
1504
1505
#[derive(Clone, Debug)]
pub(crate) struct ComputeType(String);

Nicolas Patry's avatar
Nicolas Patry committed
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
// OpenAPI documentation
#[derive(OpenApi)]
#[openapi(
paths(
health,
get_model_info,
compat_generate,
generate,
generate_stream,
chat_completions,
completions,
tokenize,
metrics,
drbh's avatar
drbh committed
1519
openai_get_model_info,
1520
sagemaker_compatibility,
Nicolas Patry's avatar
Nicolas Patry committed
1521
1522
1523
1524
1525
),
components(
schemas(
Info,
CompatGenerateRequest,
1526
SagemakerRequest,
Nicolas Patry's avatar
Nicolas Patry committed
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
GenerateRequest,
GrammarType,
ChatRequest,
Message,
MessageContent,
MessageChunk,
Url,
FunctionName,
OutputMessage,
TextMessage,
ToolCallMessage,
ToolCallDelta,
ChatCompletionComplete,
ChatCompletionChoice,
ChatCompletionDelta,
ChatCompletionChunk,
ChatCompletionLogprob,
ChatCompletionLogprobs,
ChatCompletionTopLogprob,
ChatCompletion,
CompletionRequest,
CompletionComplete,
1549
1550
SagemakerResponse,
SagemakerStreamResponse,
Nicolas Patry's avatar
Nicolas Patry committed
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
Chunk,
Completion,
CompletionFinal,
Prompt,
GenerateParameters,
PrefillToken,
Token,
GenerateResponse,
TokenizeResponse,
SimpleToken,
BestOfSequence,
Details,
FinishReason,
StreamResponse,
StreamDetails,
ErrorResponse,
GrammarType,
Usage,
Nicolas Patry's avatar
Nicolas Patry committed
1569
StreamOptions,
Nicolas Patry's avatar
Nicolas Patry committed
1570
1571
1572
1573
1574
1575
1576
DeltaToolCall,
ToolType,
Tool,
ToolCall,
Function,
FunctionDefinition,
ToolChoice,
drbh's avatar
drbh committed
1577
ModelInfo,
Nicolas Patry's avatar
Nicolas Patry committed
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
)
),
tags(
(name = "Text Generation Inference", description = "Hugging Face Text Generation Inference API")
),
info(
title = "Text Generation Inference",
license(
name = "Apache 2.0",
url = "https://www.apache.org/licenses/LICENSE-2.0"
)
)
)]
pub struct ApiDoc;

pub fn schema() -> ApiDoc {
    ApiDoc
}

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1597
1598
1599
/// Serving method
#[allow(clippy::too_many_arguments)]
pub async fn run(
Nicolas Patry's avatar
Nicolas Patry committed
1600
    backend: impl Backend + Send + Sync + 'static,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1601
    max_concurrent_requests: usize,
1602
    max_best_of: usize,
1603
    max_stop_sequences: usize,
Nicolas Patry's avatar
Nicolas Patry committed
1604
    max_top_n_tokens: u32,
OlivierDehaene's avatar
OlivierDehaene committed
1605
    max_input_tokens: usize,
1606
    max_total_tokens: usize,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1607
    validation_workers: usize,
Erik Kaunismäki's avatar
Erik Kaunismäki committed
1608
    api_key: Option<String>,
Nicolas Patry's avatar
Nicolas Patry committed
1609
1610
1611
1612
1613
1614
    tokenizer_name: String,
    tokenizer_config_path: Option<String>,
    revision: Option<String>,
    hostname: String,
    port: u16,
    cors_allow_origin: Option<Vec<String>>,
1615
    ngrok: bool,
1616
1617
    _ngrok_authtoken: Option<String>,
    _ngrok_edge: Option<String>,
Nicolas Patry's avatar
Nicolas Patry committed
1618
    disable_grammar_support: bool,
1619
    max_client_batch_size: usize,
1620
    usage_stats_level: usage_stats::UsageStatsLevel,
OlivierDehaene's avatar
OlivierDehaene committed
1621
) -> Result<(), WebServerError> {
Nicolas Patry's avatar
Nicolas Patry committed
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
    // CORS allowed origins
    // map to go inside the option and then map to parse from String to HeaderValue
    // Finally, convert to AllowOrigin
    let allow_origin: Option<AllowOrigin> = cors_allow_origin.map(|cors_allow_origin| {
        AllowOrigin::list(
            cors_allow_origin
                .iter()
                .map(|origin| origin.parse::<HeaderValue>().unwrap()),
        )
    });
1632

Nicolas Patry's avatar
Nicolas Patry committed
1633
1634
1635
1636
    // Parse Huggingface hub token
    let authorization_token = std::env::var("HF_TOKEN")
        .or_else(|_| std::env::var("HUGGING_FACE_HUB_TOKEN"))
        .ok();
OlivierDehaene's avatar
OlivierDehaene committed
1637

Nicolas Patry's avatar
Nicolas Patry committed
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
    // Tokenizer instance
    // This will only be used to validate payloads
    let local_path = Path::new(&tokenizer_name);

    // Shared API builder initialization
    let api_builder = || {
        let mut builder = ApiBuilder::new()
            .with_progress(false)
            .with_token(authorization_token);

        if let Ok(cache_dir) = std::env::var("HUGGINGFACE_HUB_CACHE") {
            builder = builder.with_cache_dir(cache_dir.into());
        }

        builder
    };

    // Decide if we need to use the API based on the revision and local path
    let use_api = revision.is_some() || !local_path.exists() || !local_path.is_dir();

    // Initialize API if needed
    #[derive(Clone)]
    enum Type {
        Api(Api),
        Cache(Cache),
        None,
    }
    let api = if use_api {
        if std::env::var("HF_HUB_OFFLINE") == Ok("1".to_string()) {
            let cache = std::env::var("HUGGINGFACE_HUB_CACHE")
                .map_err(|_| ())
                .map(|cache_dir| Cache::new(cache_dir.into()))
                .unwrap_or_else(|_| Cache::default());
            tracing::warn!("Offline mode active using cache defaults");
            Type::Cache(cache)
        } else {
            tracing::info!("Using the Hugging Face API");
            match api_builder().build() {
                Ok(api) => Type::Api(api),
                Err(_) => {
                    tracing::warn!("Unable to build the Hugging Face API");
                    Type::None
OlivierDehaene's avatar
OlivierDehaene committed
1680
                }
Nicolas Patry's avatar
Nicolas Patry committed
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
            }
        }
    } else {
        Type::None
    };

    // Load tokenizer and model info
    let (
        tokenizer_filename,
        config_filename,
        tokenizer_config_filename,
        preprocessor_config_filename,
        processor_config_filename,
        model_info,
    ) = match api {
        Type::None => (
            Some(local_path.join("tokenizer.json")),
            Some(local_path.join("config.json")),
            Some(local_path.join("tokenizer_config.json")),
            Some(local_path.join("preprocessor_config.json")),
            Some(local_path.join("processor_config.json")),
            None,
        ),
        Type::Api(api) => {
            let api_repo = api.repo(Repo::with_revision(
                tokenizer_name.to_string(),
                RepoType::Model,
                revision.clone().unwrap_or_else(|| "main".to_string()),
            ));

            let tokenizer_filename = match api_repo.get("tokenizer.json").await {
                Ok(tokenizer_filename) => Some(tokenizer_filename),
                Err(_) => get_base_tokenizer(&api, &api_repo).await,
            };
            let config_filename = api_repo.get("config.json").await.ok();
            let tokenizer_config_filename = api_repo.get("tokenizer_config.json").await.ok();
            let preprocessor_config_filename = api_repo.get("preprocessor_config.json").await.ok();
            let processor_config_filename = api_repo.get("processor_config.json").await.ok();
OlivierDehaene's avatar
OlivierDehaene committed
1719

Nicolas Patry's avatar
Nicolas Patry committed
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
            let model_info = if let Some(model_info) = get_hub_model_info(&api_repo).await {
                Some(model_info)
            } else {
                tracing::warn!("Could not retrieve model info from the Hugging Face hub.");
                None
            };
            (
                tokenizer_filename,
                config_filename,
                tokenizer_config_filename,
                preprocessor_config_filename,
                processor_config_filename,
                model_info,
            )
        }
        Type::Cache(cache) => {
            let repo = cache.repo(Repo::with_revision(
                tokenizer_name.to_string(),
                RepoType::Model,
                revision.clone().unwrap_or_else(|| "main".to_string()),
            ));
            (
                repo.get("tokenizer.json"),
                repo.get("config.json"),
                repo.get("tokenizer_config.json"),
                repo.get("preprocessor_config.json"),
                repo.get("processor_config.json"),
                None,
            )
        }
    };

    // Read the JSON contents of the file as an instance of 'HubTokenizerConfig'.
    let tokenizer_config: Option<HubTokenizerConfig> = if let Some(filename) = tokenizer_config_path
    {
        HubTokenizerConfig::from_file(filename)
    } else {
        tokenizer_config_filename.and_then(HubTokenizerConfig::from_file)
    };
    let tokenizer_config = tokenizer_config.unwrap_or_else(|| {
        tracing::warn!("Could not find tokenizer config locally and no API specified");
        HubTokenizerConfig::default()
    });

    let tokenizer: Option<Tokenizer> = tokenizer_filename.and_then(|filename| {
Nicolas Patry's avatar
Nicolas Patry committed
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
        use pyo3::prelude::*;
        let convert = pyo3::Python::with_gil(|py| -> PyResult<()> {
            let transformers = py.import_bound("transformers")?;
            let auto = transformers.getattr("AutoTokenizer")?;
            let from_pretrained = auto.getattr("from_pretrained")?;
            let args = (tokenizer_name.to_string(),);
            let kwargs = [(
                "revision",
                revision.clone().unwrap_or_else(|| "main".to_string()),
            )]
            .into_py_dict_bound(py);
            let tokenizer = from_pretrained.call(args, Some(&kwargs))?;
            let save = tokenizer.getattr("save_pretrained")?;
            let args = ("out".to_string(),);
            save.call1(args)?;
            Ok(())
        })
        .inspect_err(|err| {
            tracing::error!("Failed to import python tokenizer {err}");
        });
        let filename = if convert.is_ok() {
            // If we have correctly loaded and resaved with transformers
            // We might have modified the tokenizer.json according to transformers
            "out/tokenizer.json".into()
        } else {
            filename
        };
        Tokenizer::from_file(filename).ok()
Nicolas Patry's avatar
Nicolas Patry committed
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
    });

    let config: Option<Config> = config_filename.and_then(|filename| {
        std::fs::read_to_string(filename)
            .ok()
            .as_ref()
            .and_then(|c| {
                let config: Result<Config, _> = serde_json::from_str(c);
                if let Err(err) = &config {
                    tracing::warn!("Could not parse config {err:?}");
                }
                config.ok()
            })
    });
    let model_info = model_info.unwrap_or_else(|| HubModelInfo {
        model_id: tokenizer_name.to_string(),
        sha: None,
        pipeline_tag: None,
    });

    let processor_config = processor_config_filename
        .and_then(HubProcessorConfig::from_file)
        .unwrap_or_default();

    let preprocessor_config: Option<HubPreprocessorConfig> =
        preprocessor_config_filename.and_then(HubPreprocessorConfig::from_file);

    tracing::info!("Using config {config:?}");
    if tokenizer.is_none() {
        tracing::warn!("Could not find a fast tokenizer implementation for {tokenizer_name}");
        tracing::warn!("Rust input length validation and truncation is disabled");
    }
OlivierDehaene's avatar
OlivierDehaene committed
1825

Nicolas Patry's avatar
Nicolas Patry committed
1826
1827
    // Only send usage stats when TGI is run in container and the function returns Some
    let is_container = matches!(usage_stats::is_container(), Ok(true));
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
    let user_agent = match (usage_stats_level, is_container) {
        (usage_stats::UsageStatsLevel::On | usage_stats::UsageStatsLevel::NoStack, true) => {
            let reduced_args = usage_stats::Args::new(
                config.clone(),
                tokenizer_config.tokenizer_class.clone(),
                max_concurrent_requests,
                max_best_of,
                max_stop_sequences,
                max_top_n_tokens,
                max_input_tokens,
                max_total_tokens,
                // waiting_served_ratio,
                // max_batch_prefill_tokens,
                // max_batch_total_tokens,
                // max_waiting_tokens,
                // max_batch_size,
                revision.clone(),
                validation_workers,
                disable_grammar_support,
                max_client_batch_size,
                usage_stats_level,
            );
            Some(usage_stats::UserAgent::new(reduced_args))
        }
        _ => None,
Nicolas Patry's avatar
Nicolas Patry committed
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
    };

    if let Some(ref ua) = user_agent {
        let start_event =
            usage_stats::UsageStatsEvent::new(ua.clone(), usage_stats::EventType::Start, None);
        tokio::spawn(async move {
            start_event.send().await;
        });
    };
    let compat_return_full_text = match &model_info.pipeline_tag {
        None => {
            tracing::warn!("no pipeline tag found for model {tokenizer_name}");
            true
        }
        Some(pipeline_tag) => pipeline_tag.as_str() == "text-generation",
    };
    let result = start(
        backend,
        max_concurrent_requests,
        max_best_of,
        max_stop_sequences,
        max_top_n_tokens,
        max_input_tokens,
        max_total_tokens,
        validation_workers,
        api_key,
        config,
        (tokenizer, tokenizer_config),
        (preprocessor_config, processor_config),
        hostname,
        port,
        ngrok,
        _ngrok_authtoken,
        _ngrok_edge,
        disable_grammar_support,
        max_client_batch_size,
        model_info,
        compat_return_full_text,
        allow_origin,
    )
    .await;

    if let Some(ua) = user_agent {
        match result {
            Ok(_) => {
                let stop_event = usage_stats::UsageStatsEvent::new(
                    ua.clone(),
                    usage_stats::EventType::Stop,
                    None,
                );
                stop_event.send().await;
                Ok(())
OlivierDehaene's avatar
OlivierDehaene committed
1905
            }
Nicolas Patry's avatar
Nicolas Patry committed
1906
            Err(e) => {
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
                let description = match usage_stats_level {
                    usage_stats::UsageStatsLevel::On => Some(e.to_string()),
                    usage_stats::UsageStatsLevel::NoStack => Some("unknow_error".to_string()),
                    _ => None,
                };
                let event = usage_stats::UsageStatsEvent::new(
                    ua.clone(),
                    usage_stats::EventType::Error,
                    description,
                );
                event.send().await;

Nicolas Patry's avatar
Nicolas Patry committed
1919
                Err(e)
OlivierDehaene's avatar
OlivierDehaene committed
1920
1921
            }
        }
Nicolas Patry's avatar
Nicolas Patry committed
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
    } else {
        result
    }
}

#[allow(clippy::too_many_arguments)]
async fn start(
    backend: impl Backend + Send + Sync + 'static,
    max_concurrent_requests: usize,
    max_best_of: usize,
    max_stop_sequences: usize,
    max_top_n_tokens: u32,
    max_input_tokens: usize,
    max_total_tokens: usize,
    validation_workers: usize,
    api_key: Option<String>,
    config: Option<Config>,
    (tokenizer, tokenizer_config): (Option<Tokenizer>, HubTokenizerConfig),
    (preprocessor_config, processor_config): (Option<HubPreprocessorConfig>, HubProcessorConfig),
    hostname: String,
    port: u16,
    ngrok: bool,
    _ngrok_authtoken: Option<String>,
    _ngrok_edge: Option<String>,
    disable_grammar_support: bool,
    max_client_batch_size: usize,
    model_info: HubModelInfo,
    compat_return_full_text: bool,
    allow_origin: Option<AllowOrigin>,
) -> Result<(), WebServerError> {
    // Determine the server port based on the feature and environment variable.
    let port = if cfg!(feature = "google") {
        std::env::var("AIP_HTTP_PORT")
            .map(|aip_http_port| aip_http_port.parse::<u16>().unwrap_or(port))
            .unwrap_or(port)
    } else {
        port
    };

    let addr = match hostname.parse() {
        Ok(ip) => SocketAddr::new(ip, port),
        Err(_) => {
            tracing::warn!("Invalid hostname, defaulting to 0.0.0.0");
            SocketAddr::new(IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)), port)
        }
OlivierDehaene's avatar
OlivierDehaene committed
1967
1968
    };

Nicolas Patry's avatar
Nicolas Patry committed
1969
    // Create state
1970
1971
1972
    let validation = Validation::new(
        validation_workers,
        tokenizer,
1973
        config,
1974
        preprocessor_config,
1975
        max_best_of,
1976
        max_stop_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
1977
        max_top_n_tokens,
OlivierDehaene's avatar
OlivierDehaene committed
1978
        max_input_tokens,
1979
        max_total_tokens,
Nicolas Patry's avatar
Nicolas Patry committed
1980
        disable_grammar_support,
1981
    );
OlivierDehaene's avatar
OlivierDehaene committed
1982

1983
    let infer = Infer::new(
Nicolas Patry's avatar
Nicolas Patry committed
1984
        backend,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1985
        validation,
1986
        max_concurrent_requests,
1987
        tokenizer_config,
drbh's avatar
drbh committed
1988
        processor_config,
1989
    );
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1990

1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
    // Duration buckets
    let duration_matcher = Matcher::Suffix(String::from("duration"));
    let n_duration_buckets = 35;
    let mut duration_buckets = Vec::with_capacity(n_duration_buckets);
    // Minimum duration in seconds
    let mut value = 0.0001;
    for _ in 0..n_duration_buckets {
        // geometric sequence
        value *= 1.5;
        duration_buckets.push(value);
    }
    // Input Length buckets
    let input_length_matcher = Matcher::Full(String::from("tgi_request_input_length"));
    let input_length_buckets: Vec<f64> = (0..100)
OlivierDehaene's avatar
OlivierDehaene committed
2005
        .map(|x| (max_input_tokens as f64 / 100.0) * (x + 1) as f64)
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
        .collect();
    // Generated tokens buckets
    let generated_tokens_matcher = Matcher::Full(String::from("tgi_request_generated_tokens"));
    let generated_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Input Length buckets
    let max_new_tokens_matcher = Matcher::Full(String::from("tgi_request_max_new_tokens"));
    let max_new_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Batch size buckets
    let batch_size_matcher = Matcher::Full(String::from("tgi_batch_next_size"));
2019
    let batch_size_buckets: Vec<f64> = (0..1024).map(|x| (x + 1) as f64).collect();
OlivierDehaene's avatar
OlivierDehaene committed
2020
    // Speculated tokens buckets
Nicolas Patry's avatar
Nicolas Patry committed
2021
2022
    // let skipped_matcher = Matcher::Full(String::from("tgi_request_skipped_tokens"));
    // let skipped_buckets: Vec<f64> = (0..shard_info.speculate + 1).map(|x| x as f64).collect();
2023

2024
    // Prometheus handler
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
    let builder = PrometheusBuilder::new()
        .set_buckets_for_metric(duration_matcher, &duration_buckets)
        .unwrap()
        .set_buckets_for_metric(input_length_matcher, &input_length_buckets)
        .unwrap()
        .set_buckets_for_metric(generated_tokens_matcher, &generated_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(max_new_tokens_matcher, &max_new_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(batch_size_matcher, &batch_size_buckets)
        .unwrap();
Nicolas Patry's avatar
Nicolas Patry committed
2036
2037
    // .set_buckets_for_metric(skipped_matcher, &skipped_buckets)
    // .unwrap();
2038
2039
2040
2041
2042
2043
    // See: https://github.com/metrics-rs/metrics/issues/467#issuecomment-2022755151
    let (recorder, _) = builder
        .build()
        .expect("failed to build prometheus recorder");
    let prom_handle = recorder.handle();
    metrics::set_global_recorder(recorder).expect("Failed to set global recorder");
2044

2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
    // Metrics descriptions
    metrics::describe_counter!("tgi_request_success", "Number of successful requests");
    metrics::describe_histogram!(
        "tgi_request_duration",
        metrics::Unit::Seconds,
        "Request duration"
    );
    metrics::describe_histogram!(
        "tgi_request_validation_duration",
        metrics::Unit::Seconds,
        "Request validation duration"
    );
    metrics::describe_histogram!(
        "tgi_request_queue_duration",
        metrics::Unit::Seconds,
        "Request queue duration"
    );
    metrics::describe_histogram!(
        "tgi_request_inference_duration",
        metrics::Unit::Seconds,
        "Request inference duration"
    );
    metrics::describe_histogram!(
        "tgi_request_mean_time_per_token_duration",
        metrics::Unit::Seconds,
        "Mean time per token per request"
    );
    metrics::describe_histogram!(
        "tgi_request_generated_tokens",
        metrics::Unit::Count,
        "Generated tokens per request"
    );
    metrics::describe_counter!(
        "tgi_batch_inference_count",
        metrics::Unit::Count,
        "Inference calls per method (prefill or decode)"
    );
    metrics::describe_counter!(
        "tgi_request_count",
        metrics::Unit::Count,
        "Total number of requests"
    );
    metrics::describe_counter!(
        "tgi_batch_inference_success",
        metrics::Unit::Count,
        "Number of successful inference calls per method (prefill or decode)"
    );
    metrics::describe_gauge!(
        "tgi_batch_current_size",
        metrics::Unit::Count,
        "Current batch size"
    );
    metrics::describe_gauge!("tgi_queue_size", metrics::Unit::Count, "Current queue size");
    metrics::describe_gauge!(
        "tgi_batch_current_max_tokens",
        metrics::Unit::Count,
        "Maximum tokens for the current batch"
    );
2103
2104
2105
2106
2107
    metrics::describe_gauge!(
        "tgi_batch_total_tokens",
        metrics::Unit::Count,
        "Maximum amount of tokens in total."
    );
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
    metrics::describe_histogram!(
        "tgi_request_max_new_tokens",
        metrics::Unit::Count,
        "Maximum new tokens per request"
    );
    metrics::describe_histogram!(
        "tgi_batch_inference_duration",
        metrics::Unit::Seconds,
        "Batch inference duration"
    );
    metrics::describe_histogram!(
        "tgi_batch_forward_duration",
        metrics::Unit::Seconds,
        "Batch forward duration per method (prefill or decode)"
    );
    metrics::describe_histogram!(
        "tgi_request_skipped_tokens",
        metrics::Unit::Count,
        "Speculated tokens per request"
    );
    metrics::describe_histogram!(
        "tgi_batch_filter_duration",
        metrics::Unit::Seconds,
        "Time spent filtering batches and sending generated tokens per method (prefill or decode)"
    );
    metrics::describe_histogram!(
        "tgi_request_queue_duration",
        metrics::Unit::Seconds,
        "Time spent in the queue per request"
    );
    metrics::describe_histogram!(
        "tgi_request_validation_duration",
        metrics::Unit::Seconds,
        "Time spent validating the request"
    );
    metrics::describe_histogram!(
        "tgi_request_duration",
        metrics::Unit::Seconds,
        "Total time spent processing the request"
    );
    metrics::describe_histogram!(
        "tgi_batch_decode_duration",
        metrics::Unit::Seconds,
        "Time spent decoding a batch per method (prefill or decode)"
    );
    metrics::describe_histogram!(
        "tgi_request_input_length",
        metrics::Unit::Count,
        "Input token length per request"
    );
    metrics::describe_histogram!(
        "tgi_batch_next_size",
        metrics::Unit::Count,
        "Batch size of the next batch"
    );

2164
2165
2166
2167
2168
2169
2170
    // CORS layer
    let allow_origin = allow_origin.unwrap_or(AllowOrigin::any());
    let cors_layer = CorsLayer::new()
        .allow_methods([Method::GET, Method::POST])
        .allow_headers([http::header::CONTENT_TYPE])
        .allow_origin(allow_origin);

2171
2172
2173
2174
    // Endpoint info
    let info = Info {
        model_id: model_info.model_id,
        model_sha: model_info.sha,
Nicolas Patry's avatar
Nicolas Patry committed
2175
2176
        // model_dtype: shard_info.dtype,
        // model_device_type: shard_info.device_type,
2177
2178
2179
2180
        model_pipeline_tag: model_info.pipeline_tag,
        max_concurrent_requests,
        max_best_of,
        max_stop_sequences,
OlivierDehaene's avatar
OlivierDehaene committed
2181
        max_input_tokens,
2182
        max_total_tokens,
Nicolas Patry's avatar
Nicolas Patry committed
2183
2184
2185
2186
        // waiting_served_ratio,
        // max_batch_total_tokens,
        // max_waiting_tokens,
        // max_batch_size,
2187
        validation_workers,
2188
        max_client_batch_size,
2189
        router: env!("CARGO_PKG_NAME"),
2190
2191
        version: env!("CARGO_PKG_VERSION"),
        sha: option_env!("VERGEN_GIT_SHA"),
2192
        docker_label: option_env!("DOCKER_LABEL"),
2193
2194
    };

2195
2196
2197
2198
2199
    #[allow(unused_mut)] // mut is needed for conditional compilation
    let mut doc = ApiDoc::openapi();

    #[cfg(feature = "google")]
    {
2200
2201
        use crate::vertex::__path_vertex_compatibility;
        use crate::vertex::{VertexInstance, VertexRequest, VertexResponse};
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232

        #[derive(OpenApi)]
        #[openapi(
            paths(vertex_compatibility),
            components(schemas(VertexInstance, VertexRequest, VertexResponse))
        )]
        struct VertexApiDoc;

        doc.merge(VertexApiDoc::openapi());
    }

    #[cfg(feature = "kserve")]
    {
        use crate::kserve::{
            InferenceOutput, InferenceRequest, LiveResponse, MetadataServerResponse, OutputChunk,
            ReadyResponse,
        };
        use crate::kserve::{
            __path_kerve_server_metadata, __path_kserve_health_live, __path_kserve_health_ready,
            __path_kserve_model_infer, __path_kserve_model_metadata,
            __path_kserve_model_metadata_ready,
        };

        #[derive(OpenApi)]
        #[openapi(
            paths(
                kserve_health_live,
                kserve_health_ready,
                kerve_server_metadata,
                kserve_model_metadata,
                kserve_model_metadata_ready,
2233
                kserve_model_infer,
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
            ),
            components(schemas(
                InferenceOutput,
                InferenceRequest,
                LiveResponse,
                MetadataServerResponse,
                OutputChunk,
                ReadyResponse,
            ))
        )]
        struct KServeApiDoc;

        doc.merge(KServeApiDoc::openapi());
    }
drbh's avatar
drbh committed
2248

2249
    // Configure Swagger UI
drbh's avatar
drbh committed
2250
    let swagger_ui = SwaggerUi::new("/docs").url("/api-doc/openapi.json", doc);
2251
2252

    // Define base and health routes
Erik Kaunismäki's avatar
Erik Kaunismäki committed
2253
    let mut base_routes = Router::new()
2254
        .route("/", post(compat_generate))
Olivier Dehaene's avatar
Olivier Dehaene committed
2255
        .route("/generate", post(generate))
2256
        .route("/generate_stream", post(generate_stream))
2257
        .route("/v1/chat/completions", post(chat_completions))
2258
        .route("/v1/completions", post(completions))
drbh's avatar
drbh committed
2259
        .route("/vertex", post(vertex_compatibility))
2260
        .route("/invocations", post(sagemaker_compatibility))
Erik Kaunismäki's avatar
Erik Kaunismäki committed
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
        .route("/tokenize", post(tokenize));

    if let Some(api_key) = api_key {
        let mut prefix = "Bearer ".to_string();
        prefix.push_str(&api_key);

        // Leak to allow FnMut
        let api_key: &'static str = prefix.leak();

        let auth = move |headers: HeaderMap,
                         request: axum::extract::Request,
                         next: axum::middleware::Next| async move {
            match headers.get(AUTHORIZATION) {
                Some(token) => match token.to_str() {
                    Ok(token_str) if token_str.to_lowercase() == api_key.to_lowercase() => {
                        let response = next.run(request).await;
                        Ok(response)
                    }
                    _ => Err(StatusCode::UNAUTHORIZED),
                },
                None => Err(StatusCode::UNAUTHORIZED),
            }
        };

        base_routes = base_routes.layer(axum::middleware::from_fn(auth))
    }
    let info_routes = Router::new()
        .route("/", get(health))
2289
        .route("/chat_tokenize", post(get_chat_tokenize))
Erik Kaunismäki's avatar
Erik Kaunismäki committed
2290
        .route("/info", get(get_model_info))
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
2291
        .route("/health", get(health))
2292
        .route("/ping", get(health))
drbh's avatar
drbh committed
2293
2294
        .route("/metrics", get(metrics))
        .route("/v1/models", get(openai_get_model_info));
2295

2296
2297
    let compute_type =
        ComputeType(std::env::var("COMPUTE_TYPE").unwrap_or("gpu+optimized".to_string()));
2298

2299
    // Combine routes and layers
drbh's avatar
drbh committed
2300
    let mut app = Router::new()
2301
2302
        .merge(swagger_ui)
        .merge(base_routes)
2303
        .merge(info_routes);
drbh's avatar
drbh committed
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318

    #[cfg(feature = "google")]
    {
        tracing::info!("Built with `google` feature");
        tracing::info!(
            "Environment variables `AIP_PREDICT_ROUTE` and `AIP_HEALTH_ROUTE` will be respected."
        );
        if let Ok(env_predict_route) = std::env::var("AIP_PREDICT_ROUTE") {
            app = app.route(&env_predict_route, post(vertex_compatibility));
        }
        if let Ok(env_health_route) = std::env::var("AIP_HEALTH_ROUTE") {
            app = app.route(&env_health_route, get(health));
        }
    }

2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
    #[cfg(feature = "kserve")]
    {
        tracing::info!("Built with `kserve` feature");
        app = app
            .route(
                "/v2/models/:model_name/versions/:model_version/infer",
                post(kserve_model_infer),
            )
            .route(
                "/v2/models/:model_name/versions/:model_version",
                get(kserve_model_metadata),
            )
            .route("/v2/health/ready", get(kserve_health_ready))
            .route("/v2/health/live", get(kserve_health_live))
            .route("/v2", get(kerve_server_metadata))
            .route(
                "/v2/models/:model_name/versions/:model_version/ready",
                get(kserve_model_metadata_ready),
            );
    }

drbh's avatar
drbh committed
2340
2341
    // add layers after routes
    app = app
2342
        .layer(Extension(info))
2343
2344
        .layer(Extension(compat_return_full_text))
        .layer(Extension(infer))
2345
        .layer(Extension(compute_type))
2346
        .layer(Extension(prom_handle.clone()))
Nicolas Patry's avatar
Nicolas Patry committed
2347
        .layer(OtelAxumLayer::default())
2348
        .layer(cors_layer);
Olivier Dehaene's avatar
Olivier Dehaene committed
2349

OlivierDehaene's avatar
OlivierDehaene committed
2350
2351
    tracing::info!("Connected");

2352
2353
2354
    if ngrok {
        #[cfg(feature = "ngrok")]
        {
2355
            panic!("ngrok feature is not functional with axum=0.7 and hyper=1, waiting on https://github.com/ngrok/ngrok-rust/pull/137/files to re-enable.");
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369

            // Run server
        }
        #[cfg(not(feature = "ngrok"))]
        {
            let _ngrok_authtoken = ngrok_authtoken;
            let _ngrok_domain = ngrok_domain;
            let _ngrok_username = ngrok_username;
            let _ngrok_password = ngrok_password;

            panic!("`text-generation-router` was compiled without the `ngrok` feature");
        }
    } else {
        // Run server
2370
2371
2372

        let listener = tokio::net::TcpListener::bind(&addr).await.unwrap();
        axum::serve(listener, app)
2373
            .with_graceful_shutdown(shutdown_signal())
OlivierDehaene's avatar
OlivierDehaene committed
2374
2375
            .await
            .map_err(|err| WebServerError::Axum(Box::new(err)))?;
2376
    }
2377
    Ok(())
Olivier Dehaene's avatar
Olivier Dehaene committed
2378
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
2379

Nicolas Patry's avatar
Nicolas Patry committed
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
/// get model info from the Huggingface Hub
pub async fn get_hub_model_info(api: &ApiRepo) -> Option<HubModelInfo> {
    let response = api.info_request().send().await.ok()?;

    if response.status().is_success() {
        let hub_model_info: HubModelInfo =
            serde_json::from_str(&response.text().await.ok()?).ok()?;
        if let Some(sha) = &hub_model_info.sha {
            tracing::info!(
                "Serving revision {sha} of model {}",
                hub_model_info.model_id
            );
        }
        Some(hub_model_info)
    } else {
        None
    }
}

/// get base tokenizer
pub async fn get_base_tokenizer(api: &Api, api_repo: &ApiRepo) -> Option<PathBuf> {
    let config_filename = api_repo.get("config.json").await.ok()?;

    // Open the file in read-only mode with buffer.
    let file = File::open(config_filename).ok()?;
    let reader = BufReader::new(file);

    // Read the JSON contents of the file as an instance of `User`.
    let config: serde_json::Value = serde_json::from_reader(reader).ok()?;

    if let Some(serde_json::Value::String(base_model_id)) = config.get("base_model_name_or_path") {
        let api_base_repo = api.repo(Repo::with_revision(
            base_model_id.to_string(),
            RepoType::Model,
            "main".to_string(),
        ));

        api_base_repo.get("tokenizer.json").await.ok()
    } else {
        None
    }
}

/// get tokenizer_config from the Huggingface Hub
pub async fn get_tokenizer_config(api_repo: &ApiRepo) -> Option<HubTokenizerConfig> {
    let tokenizer_config_filename = api_repo.get("tokenizer_config.json").await.ok()?;

    // Open the file in read-only mode with buffer.
    let file = File::open(tokenizer_config_filename).ok()?;
    let reader = BufReader::new(file);

    // Read the JSON contents of the file as an instance of 'HubTokenizerConfig'.
    let tokenizer_config: HubTokenizerConfig = serde_json::from_reader(reader)
        .map_err(|e| {
            tracing::warn!("Unable to parse tokenizer config: {}", e);
            e
        })
        .ok()?;

    Some(tokenizer_config)
}

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
/// Shutdown signal handler
async fn shutdown_signal() {
    let ctrl_c = async {
        signal::ctrl_c()
            .await
            .expect("failed to install Ctrl+C handler");
    };

    #[cfg(unix)]
    let terminate = async {
        signal::unix::signal(signal::unix::SignalKind::terminate())
            .expect("failed to install signal handler")
            .recv()
            .await;
    };

    #[cfg(not(unix))]
    let terminate = std::future::pending::<()>();

    tokio::select! {
        _ = ctrl_c => {},
        _ = terminate => {},
    }

    tracing::info!("signal received, starting graceful shutdown");
2467
    opentelemetry::global::shutdown_tracer_provider();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
2468
}
2469
2470
2471
2472
2473
2474
2475
2476
2477

/// Convert to Axum supported formats
impl From<InferError> for (StatusCode, Json<ErrorResponse>) {
    fn from(err: InferError) -> Self {
        let status_code = match err {
            InferError::GenerationError(_) => StatusCode::FAILED_DEPENDENCY,
            InferError::Overloaded(_) => StatusCode::TOO_MANY_REQUESTS,
            InferError::ValidationError(_) => StatusCode::UNPROCESSABLE_ENTITY,
            InferError::IncompleteGeneration => StatusCode::INTERNAL_SERVER_ERROR,
2478
            InferError::IncompleteGenerationStream => StatusCode::INTERNAL_SERVER_ERROR,
2479
            InferError::TemplateError(_) => StatusCode::UNPROCESSABLE_ENTITY,
2480
            InferError::MissingTemplateVariable(_) => StatusCode::UNPROCESSABLE_ENTITY,
2481
            InferError::ToolError(_) => StatusCode::UNPROCESSABLE_ENTITY,
2482
            InferError::StreamSerializationError(_) => StatusCode::INTERNAL_SERVER_ERROR,
2483
2484
2485
2486
2487
2488
        };

        (
            status_code,
            Json(ErrorResponse {
                error: err.to_string(),
2489
                error_type: err.error_type().to_string(),
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
            }),
        )
    }
}

impl From<InferError> for Event {
    fn from(err: InferError) -> Self {
        Event::default()
            .json_data(ErrorResponse {
                error: err.to_string(),
2500
                error_type: err.error_type().to_string(),
2501
2502
2503
2504
            })
            .unwrap()
    }
}
OlivierDehaene's avatar
OlivierDehaene committed
2505
2506
2507
2508
2509
2510

#[derive(Debug, Error)]
pub enum WebServerError {
    #[error("Axum error: {0}")]
    Axum(#[from] axum::BoxError),
}
Nicolas Patry's avatar
Nicolas Patry committed
2511

drbh's avatar
drbh committed
2512
type PreparedInput = (String, Option<GrammarType>, bool);
2513

Nicolas Patry's avatar
Nicolas Patry committed
2514
pub(crate) fn prepare_chat_input(
2515
2516
2517
2518
2519
    infer: &Infer,
    response_format: Option<GrammarType>,
    tools: Option<Vec<Tool>>,
    tool_choice: ToolChoice,
    tool_prompt: &str,
2520
    guideline: Option<String>,
2521
2522
2523
2524
2525
2526
2527
2528
    messages: Vec<Message>,
) -> Result<PreparedInput, InferError> {
    if response_format.is_some() && tools.is_some() {
        return Err(InferError::ToolError(
            "Grammar and tools are mutually exclusive".into(),
        ));
    }

drbh's avatar
drbh committed
2529
    // when response_format is set, tools are not included when applying the chat template to generate inputs
2530
    if let Some(format) = response_format {
2531
        let inputs = infer.apply_chat_template(guideline, messages, None)?;
drbh's avatar
drbh committed
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
        return Ok((inputs, Some(format), false));
    }

    // when no response_format is set and tools are included, apply the chat template with the tools
    // to generate inputs
    if let Some(tools) = tools {
        let (updated_tools, tool_schema) = ToolGrammar::apply(tools, tool_choice)?;

        let grammar = tool_schema
            .as_ref()
            .map(|t| GrammarType::Json(serde_json::json!(t)));

        let inputs: String = infer.apply_chat_template(
            guideline,
            messages,
            Some((updated_tools, tool_prompt.into())),
        )?;
        return Ok((inputs, grammar, tool_schema.is_some()));
2550
2551
    }

drbh's avatar
drbh committed
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
    // if no response_format or tools are set simply apply the chat template to generate inputs
    let inputs = infer.apply_chat_template(guideline, messages, None)?;
    Ok((inputs, None, false))
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::ChatTemplateVersions;
    use crate::HubTokenizerConfig;
    use crate::TokenizerConfigToken;
    use crate::Tool;

    use serde_json::json;

    #[test]
    fn test_prepare_chat_input() {
        // Mock Backend to avoid network requests
        struct MockBackend;

        impl Backend for MockBackend {
            fn schedule(
                &self,
                _request: crate::validation::ValidGenerateRequest,
            ) -> Result<
                tokio_stream::wrappers::UnboundedReceiverStream<
                    Result<InferStreamResponse, InferError>,
                >,
                InferError,
            > {
                unimplemented!("Never called in this test");
            }
            fn health<'a, 'async_trait>(
                &'a self,
                _current_health: bool,
            ) -> core::pin::Pin<
                Box<dyn core::future::Future<Output = bool> + core::marker::Send + 'async_trait>,
            >
            where
                'a: 'async_trait,
                Self: 'async_trait,
            {
                unimplemented!("Never called in this test");
            }
        }

        let backend = MockBackend {};

        let mut tokenizer_config = HubTokenizerConfig::default();

        // mock tokenizer config values
        tokenizer_config.bos_token = Some(TokenizerConfigToken::String("<s>".to_string()));
        tokenizer_config.eos_token = Some(TokenizerConfigToken::String("</s>".to_string()));
        tokenizer_config.chat_template = Some(
            ChatTemplateVersions::Single("{%- if messages[0][\"role\"] == \"system\" %}\n    {%- set system_message = messages[0][\"content\"] %}\n    {%- set loop_messages = messages[1:] %}\n{%- else %}\n    {%- set loop_messages = messages %}\n{%- endif %}\n{%- if not tools is defined %}\n    {%- set tools = none %}\n{%- endif %}\n{%- set user_messages = loop_messages | selectattr(\"role\", \"equalto\", \"user\") | list %}\n\n{#- This block checks for alternating user/assistant messages, skipping tool calling messages #}\n{%- set ns = namespace() %}\n{%- set ns.index = 0 %}\n{%- for message in loop_messages %}\n    {%- if not (message.role == \"tool\" or message.role == \"tool_results\" or (message.tool_calls is defined and message.tool_calls is not none)) %}\n        {%- if (message[\"role\"] == \"user\") != (ns.index % 2 == 0) %}\n            {{- raise_exception(\"After the optional system message, conversation roles must alternate user/assistant/user/assistant/...\") }}\n        {%- endif %}\n        {%- set ns.index = ns.index + 1 %}\n    {%- endif %}\n{%- endfor %}\n\n{{- bos_token }}\n{%- for message in loop_messages %}\n    {%- if message[\"role\"] == \"user\" %}\n        {%- if tools is not none and (message == user_messages[-1]) %}\n            {{- \"[AVAILABLE_TOOLS] [\" }}\n            {%- for tool in tools %}\n                {%- set tool = tool.function %}\n                {{- '{\"type\": \"function\", \"function\": {' }}\n                {%- for key, val in tool.items() if key != \"return\" %}\n                    {%- if val is string %}\n                        {{- '\"' + key + '\": \"' + val + '\"' }}\n                    {%- else %}\n                        {{- '\"' + key + '\": ' + val|tojson }}\n                    {%- endif %}\n                    {%- if not loop.last %}\n                        {{- \", \" }}\n                    {%- endif %}\n                {%- endfor %}\n                {{- \"}}\" }}\n                {%- if not loop.last %}\n                    {{- \", \" }}\n                {%- else %}\n                    {{- \"]\" }}\n                {%- endif %}\n            {%- endfor %}\n            {{- \"[/AVAILABLE_TOOLS]\" }}\n            {%- endif %}\n        {%- if loop.last and system_message is defined %}\n            {{- \"[INST] \" + system_message + \"\\n\\n\" + message[\"content\"] + \"[/INST]\" }}\n        {%- else %}\n            {{- \"[INST] \" + message[\"content\"] + \"[/INST]\" }}\n        {%- endif %}\n    {%- elif message.tool_calls is defined and message.tool_calls is not none %}\n        {{- \"[TOOL_CALLS] [\" }}\n        {%- for tool_call in message.tool_calls %}\n            {%- set out = tool_call.function|tojson %}\n            {{- out[:-1] }}\n            {%- if not tool_call.id is defined or tool_call.id|length != 9 %}\n                {{- raise_exception(\"Tool call IDs should be alphanumeric strings with length 9!\") }}\n            {%- endif %}\n            {{- ', \"id\": \"' + tool_call.id + '\"}' }}\n            {%- if not loop.last %}\n                {{- \", \" }}\n            {%- else %}\n                {{- \"]\" + eos_token }}\n            {%- endif %}\n        {%- endfor %}\n    {%- elif message[\"role\"] == \"assistant\" %}\n        {{- \" \" + message[\"content\"]|trim + eos_token}}\n    {%- elif message[\"role\"] == \"tool_results\" or message[\"role\"] == \"tool\" %}\n        {%- if message.content is defined and message.content.content is defined %}\n            {%- set content = message.content.content %}\n        {%- else %}\n            {%- set content = message.content %}\n        {%- endif %}\n        {{- '[TOOL_RESULTS] {\"content\": ' + content|string + \", \" }}\n        {%- if not message.tool_call_id is defined or message.tool_call_id|length != 9 %}\n            {{- raise_exception(\"Tool call IDs should be alphanumeric strings with length 9!\") }}\n        {%- endif %}\n        {{- '\"call_id\": \"' + message.tool_call_id + '\"}[/TOOL_RESULTS]' }}\n    {%- else %}\n        {{- raise_exception(\"Only user and assistant roles are supported, with the exception of an initial optional system message!\") }}\n    {%- endif %}\n{%- endfor %}\n".to_string())
        );

        let infer = Infer::new(
            backend,
            Validation::new(1, None, None, None, 1, 1, 1, 1, 1, false),
            1,
            tokenizer_config,
            HubProcessorConfig::default(),
        );
        let response_format = None;
        let tools = Some(vec![Tool {
            r#type: "function".to_string(),
            function: FunctionDefinition {
                name: "get_current_weather".to_string(),
                description: Some("Get the current weather".to_string()),
                arguments: json!({
                    "type": "object",
                    "properties": {
                        "location": {
                            "type": "string",
                            "description": "The city and state, e.g. San Francisco, CA"
                        },
                        "format": {
                            "type": "string",
                            "enum": ["celsius", "fahrenheit"],
                            "description": "The temperature unit to use. Infer this from the users location."
                        }
                    },
                    "required": ["location", "format"]
                }),
            },
        }]);
        let tool_prompt = "Given the functions available, please respond with a JSON for a function call with its proper arguments that best answers the given prompt. Respond in the format {name: function name, parameters: dictionary of argument name and its value}.Do not use variables.";
        let guideline = None;
        let messages = vec![Message {
            name: None,
            role: "user".to_string(),
            content: MessageContent::SingleText(
                "What is the weather like in New York?".to_string(),
            ),
        }];

        let result = prepare_chat_input(
            &infer,
            response_format,
            tools,
            ToolChoice(None),
            tool_prompt,
            guideline,
            messages,
        );

        assert!(result.is_ok());
2660
        let (inputs, _grammar, using_tools) = result.expect("Failed to prepare chat input");
drbh's avatar
drbh committed
2661
        assert_eq!(using_tools, true);
2662
        assert_eq!(inputs, "<s>[AVAILABLE_TOOLS] [{\"type\": \"function\", \"function\": {\"arguments\": {\"properties\":{\"format\":{\"description\":\"The temperature unit to use. Infer this from the users location.\",\"enum\":[\"celsius\",\"fahrenheit\"],\"type\":\"string\"},\"location\":{\"description\":\"The city and state, e.g. San Francisco, CA\",\"type\":\"string\"}},\"required\":[\"location\",\"format\"],\"type\":\"object\"}, \"description\": \"Get the current weather\", \"name\": \"get_current_weather\"}}, {\"type\": \"function\", \"function\": {\"arguments\": {\"properties\":{\"content\":{\"description\":\"The response content\",\"type\":\"string\"}},\"required\":[\"content\"],\"type\":\"object\"}, \"description\": \"Open ened response with no specific tool selected\", \"name\": \"no_tool\"}}][/AVAILABLE_TOOLS][INST] What is the weather like in New York?\n---\nGiven the functions available, please respond with a JSON for a function call with its proper arguments that best answers the given prompt. Respond in the format {name: function name, parameters: dictionary of argument name and its value}.Do not use variables.[/INST]".to_string());
drbh's avatar
drbh committed
2663
    }
2664
}