server.rs 82.2 KB
Newer Older
1
/// HTTP Server logic
OlivierDehaene's avatar
OlivierDehaene committed
2
use crate::config::Config;
Nicolas Patry's avatar
Nicolas Patry committed
3
4
use crate::infer::tool_grammar::ToolGrammar;
use crate::infer::{Backend, Infer, InferError, InferResponse, InferStreamResponse};
5
6
7
8
9
#[cfg(feature = "kserve")]
use crate::kserve::{
    kerve_server_metadata, kserve_health_live, kserve_health_ready, kserve_model_infer,
    kserve_model_metadata, kserve_model_metadata_ready,
};
10
use crate::validation::ValidationError;
11
use crate::{
12
13
14
15
16
    usage_stats, BestOfSequence, Details, ErrorResponse, FinishReason, FunctionName,
    GenerateParameters, GenerateRequest, GenerateResponse, GrammarType, HubModelInfo,
    HubProcessorConfig, HubTokenizerConfig, Info, Message, MessageChunk, MessageContent,
    OutputMessage, PrefillToken, SimpleToken, StreamDetails, StreamResponse, TextMessage, Token,
    TokenizeResponse, ToolCallDelta, ToolCallMessage, Url, Usage, Validation,
17
18
19
20
};
use crate::{
    ChatCompletion, ChatCompletionChoice, ChatCompletionChunk, ChatCompletionComplete,
    ChatCompletionDelta, ChatCompletionLogprob, ChatCompletionLogprobs, ChatCompletionTopLogprob,
21
22
    ChatRequest, Chunk, CompatGenerateRequest, Completion, CompletionComplete, CompletionFinal,
    CompletionRequest, CompletionType, DeltaToolCall, Function, Prompt, Tool, VertexRequest,
23
    VertexResponse,
24
};
drbh's avatar
drbh committed
25
use crate::{FunctionDefinition, HubPreprocessorConfig, ToolCall, ToolChoice, ToolType};
26
use async_stream::__private::AsyncStream;
Olivier Dehaene's avatar
Olivier Dehaene committed
27
use axum::extract::Extension;
Nicolas Patry's avatar
Nicolas Patry committed
28
use axum::http::{HeaderMap, HeaderValue, Method, StatusCode};
29
use axum::response::sse::{Event, KeepAlive, Sse};
30
use axum::response::{IntoResponse, Response};
Olivier Dehaene's avatar
Olivier Dehaene committed
31
use axum::routing::{get, post};
32
use axum::{http, Json, Router};
Nicolas Patry's avatar
Nicolas Patry committed
33
use axum_tracing_opentelemetry::middleware::OtelAxumLayer;
34
use futures::stream::StreamExt;
35
use futures::stream::{FuturesOrdered, FuturesUnordered};
36
use futures::Stream;
drbh's avatar
drbh committed
37
use futures::TryStreamExt;
Nicolas Patry's avatar
Nicolas Patry committed
38
39
use hf_hub::api::tokio::{Api, ApiBuilder, ApiRepo};
use hf_hub::{Cache, Repo, RepoType};
Erik Kaunismäki's avatar
Erik Kaunismäki committed
40
use http::header::AUTHORIZATION;
41
use metrics_exporter_prometheus::{Matcher, PrometheusBuilder, PrometheusHandle};
drbh's avatar
drbh committed
42
use serde_json::Value;
43
use std::convert::Infallible;
Nicolas Patry's avatar
Nicolas Patry committed
44
45
46
47
use std::fs::File;
use std::io::BufReader;
use std::net::{IpAddr, Ipv4Addr, SocketAddr};
use std::path::{Path, PathBuf};
OlivierDehaene's avatar
OlivierDehaene committed
48
use thiserror::Error;
Nicolas Patry's avatar
Nicolas Patry committed
49
use tokenizers::processors::template::TemplateProcessing;
Olivier Dehaene's avatar
Olivier Dehaene committed
50
use tokenizers::Tokenizer;
51
use tokio::select;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
52
use tokio::signal;
53
use tokio::sync::oneshot;
Olivier Dehaene's avatar
Olivier Dehaene committed
54
use tokio::time::Instant;
55
use tower_http::cors::{AllowOrigin, CorsLayer};
56
use tracing::{info_span, instrument, Instrument};
57
58
use utoipa::OpenApi;
use utoipa_swagger_ui::SwaggerUi;
Olivier Dehaene's avatar
Olivier Dehaene committed
59

60
61
/// Generate tokens if `stream == false` or a stream of token if `stream == true`
#[utoipa::path(
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
post,
tag = "Text Generation Inference",
path = "/",
request_body = CompatGenerateRequest,
responses(
(status = 200, description = "Generated Text",
content(
("application/json" = GenerateResponse),
("text/event-stream" = StreamResponse),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
81
)]
82
#[instrument(skip(infer, req))]
83
async fn compat_generate(
84
    Extension(default_return_full_text): Extension<bool>,
85
    infer: Extension<Infer>,
86
    compute_type: Extension<ComputeType>,
87
    Json(mut req): Json<CompatGenerateRequest>,
88
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
89
90
    // default return_full_text given the pipeline_tag
    if req.parameters.return_full_text.is_none() {
91
        req.parameters.return_full_text = Some(default_return_full_text)
92
93
    }

94
95
    // switch on stream
    if req.stream {
96
        Ok(generate_stream(infer, compute_type, Json(req.into()))
97
98
99
            .await
            .into_response())
    } else {
100
        let (headers, Json(generation)) = generate(infer, compute_type, Json(req.into())).await?;
101
        // wrap generation inside a Vec to match api-inference
102
        Ok((headers, Json(vec![generation])).into_response())
103
104
105
    }
}

106
107
/// Text Generation Inference endpoint info
#[utoipa::path(
108
109
110
111
get,
tag = "Text Generation Inference",
path = "/info",
responses((status = 200, description = "Served model info", body = Info))
112
113
)]
#[instrument]
114
115
async fn get_model_info(info: Extension<Info>) -> Json<Info> {
    Json(info.0)
116
117
}

118
#[utoipa::path(
119
120
121
122
123
124
125
126
get,
tag = "Text Generation Inference",
path = "/health",
responses(
(status = 200, description = "Everything is working fine"),
(status = 503, description = "Text generation inference is down", body = ErrorResponse,
example = json ! ({"error": "unhealthy", "error_type": "healthcheck"})),
)
127
)]
Nicolas Patry's avatar
Nicolas Patry committed
128
#[instrument(skip(infer))]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
129
/// Health check method
Nicolas Patry's avatar
Nicolas Patry committed
130
131
async fn health(infer: Extension<Infer>) -> Result<(), (StatusCode, Json<ErrorResponse>)> {
    match infer.health().await {
132
133
134
135
136
137
138
139
140
        true => Ok(()),
        false => Err((
            StatusCode::SERVICE_UNAVAILABLE,
            Json(ErrorResponse {
                error: "unhealthy".to_string(),
                error_type: "healthcheck".to_string(),
            }),
        )),
    }
Olivier Dehaene's avatar
Olivier Dehaene committed
141
142
}

143
144
/// Generate tokens
#[utoipa::path(
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
post,
tag = "Text Generation Inference",
path = "/generate",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = GenerateResponse),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
160
)]
161
#[instrument(
162
163
skip_all,
fields(
164
parameters = ? req.parameters,
165
166
167
168
169
170
171
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
172
)]
Olivier Dehaene's avatar
Olivier Dehaene committed
173
async fn generate(
174
    infer: Extension<Infer>,
175
    Extension(ComputeType(compute_type)): Extension<ComputeType>,
176
    Json(req): Json<GenerateRequest>,
177
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
178
    let span = tracing::Span::current();
179
180
181
    generate_internal(infer, ComputeType(compute_type), Json(req), span).await
}

182
pub(crate) async fn generate_internal(
183
184
185
186
187
    infer: Extension<Infer>,
    ComputeType(compute_type): ComputeType,
    Json(req): Json<GenerateRequest>,
    span: tracing::Span,
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
188
    let start_time = Instant::now();
189
    metrics::counter!("tgi_request_count").increment(1);
190

191
192
    // Do not long ultra long inputs, like image payloads.
    tracing::debug!("Input: {}", &req.inputs[..1000.min(req.inputs.len())]);
193

194
    let compute_characters = req.inputs.chars().count();
195
    let mut add_prompt = None;
196
197
    if req.parameters.return_full_text.unwrap_or(false) {
        add_prompt = Some(req.inputs.clone());
198
199
    }

Nicolas Patry's avatar
Nicolas Patry committed
200
    let details: bool = req.parameters.details || req.parameters.decoder_input_details;
201
202

    // Inference
203
    let (response, best_of_responses) = match req.parameters.best_of {
204
        Some(best_of) if best_of > 1 => {
205
            let (response, best_of_responses) = infer.generate_best_of(req, best_of).await?;
206
207
            (response, Some(best_of_responses))
        }
208
        _ => (infer.generate(req).await?, None),
209
    };
Olivier Dehaene's avatar
Olivier Dehaene committed
210

OlivierDehaene's avatar
OlivierDehaene committed
211
    // Token details
212
    let input_length = response._input_length;
OlivierDehaene's avatar
OlivierDehaene committed
213
    let details = match details {
214
215
216
217
218
219
220
221
222
223
224
225
226
227
        true => {
            // convert best_of_responses
            let best_of_sequences = best_of_responses.map(|responses: Vec<InferResponse>| {
                responses
                    .into_iter()
                    .map(|response: InferResponse| {
                        // Add prompt if return_full_text
                        let mut output_text = response.generated_text.text;
                        if let Some(prompt) = &add_prompt {
                            output_text = prompt.clone() + &output_text;
                        }

                        BestOfSequence {
                            generated_text: output_text,
OlivierDehaene's avatar
OlivierDehaene committed
228
                            finish_reason: response.generated_text.finish_reason,
229
230
231
                            generated_tokens: response.generated_text.generated_tokens,
                            prefill: response.prefill,
                            tokens: response.tokens,
Nicolas Patry's avatar
Nicolas Patry committed
232
                            top_tokens: response.top_tokens,
233
234
235
236
237
238
239
                            seed: response.generated_text.seed,
                        }
                    })
                    .collect()
            });

            Some(Details {
OlivierDehaene's avatar
OlivierDehaene committed
240
                finish_reason: response.generated_text.finish_reason,
241
242
243
244
245
                generated_tokens: response.generated_text.generated_tokens,
                prefill: response.prefill,
                tokens: response.tokens,
                seed: response.generated_text.seed,
                best_of_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
246
                top_tokens: response.top_tokens,
247
248
            })
        }
OlivierDehaene's avatar
OlivierDehaene committed
249
250
251
        false => None,
    };

252
253
254
255
    // Timings
    let total_time = start_time.elapsed();
    let validation_time = response.queued - start_time;
    let queue_time = response.start - response.queued;
256
257
    let inference_time = Instant::now() - response.start;
    let time_per_token = inference_time / response.generated_text.generated_tokens;
258

259
260
261
262
263
264
265
266
    // Tracing metadata
    span.record("total_time", format!("{total_time:?}"));
    span.record("validation_time", format!("{validation_time:?}"));
    span.record("queue_time", format!("{queue_time:?}"));
    span.record("inference_time", format!("{inference_time:?}"));
    span.record("time_per_token", format!("{time_per_token:?}"));
    span.record("seed", format!("{:?}", response.generated_text.seed));

267
268
    // Headers
    let mut headers = HeaderMap::new();
269
    headers.insert("x-compute-type", compute_type.parse().unwrap());
270
271
    headers.insert(
        "x-compute-time",
Nicolas Patry's avatar
Nicolas Patry committed
272
        total_time.as_secs_f64().to_string().parse().unwrap(),
273
274
275
276
277
    );
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
278
279
280
281
282
283
284
285
286
287
288
    headers.insert(
        "x-total-time",
        total_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-validation-time",
        validation_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-queue-time",
        queue_time.as_millis().to_string().parse().unwrap(),
Olivier Dehaene's avatar
Olivier Dehaene committed
289
    );
290
291
292
293
294
295
296
297
    headers.insert(
        "x-inference-time",
        inference_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-time-per-token",
        time_per_token.as_millis().to_string().parse().unwrap(),
    );
298
299
300
301
302
    headers.insert("x-prompt-tokens", input_length.into());
    headers.insert(
        "x-generated-tokens",
        response.generated_text.generated_tokens.into(),
    );
303

304
    // Metrics
305
306
307
308
309
310
311
312
313
    metrics::counter!("tgi_request_success").increment(1);
    metrics::histogram!("tgi_request_duration").record(total_time.as_secs_f64());
    metrics::histogram!("tgi_request_validation_duration").record(validation_time.as_secs_f64());
    metrics::histogram!("tgi_request_queue_duration").record(queue_time.as_secs_f64());
    metrics::histogram!("tgi_request_inference_duration").record(inference_time.as_secs_f64());
    metrics::histogram!("tgi_request_mean_time_per_token_duration")
        .record(time_per_token.as_secs_f64());
    metrics::histogram!("tgi_request_generated_tokens")
        .record(response.generated_text.generated_tokens as f64);
314

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
315
    // Send response
316
317
318
319
320
    let mut output_text = response.generated_text.text;
    if let Some(prompt) = add_prompt {
        output_text = prompt + &output_text;
    }

321
322
    tracing::debug!("Output: {}", output_text);
    tracing::info!("Success");
323

324
    let response = GenerateResponse {
325
        generated_text: output_text,
OlivierDehaene's avatar
OlivierDehaene committed
326
        details,
327
    };
328
    Ok((headers, Json(response)))
Olivier Dehaene's avatar
Olivier Dehaene committed
329
330
}

Yannic Kilcher's avatar
Yannic Kilcher committed
331
/// Generate a stream of token using Server-Sent Events
332
#[utoipa::path(
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
post,
tag = "Text Generation Inference",
path = "/generate_stream",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = StreamResponse,
content_type = "text/event-stream"),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"}),
content_type = "text/event-stream"),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"}),
content_type = "text/event-stream"),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"}),
content_type = "text/event-stream"),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"}),
content_type = "text/event-stream"),
)
353
)]
354
#[instrument(
355
356
skip_all,
fields(
357
parameters = ? req.parameters,
358
359
360
361
362
363
364
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
365
366
)]
async fn generate_stream(
367
    Extension(infer): Extension<Infer>,
368
    Extension(compute_type): Extension<ComputeType>,
369
    Json(req): Json<GenerateRequest>,
370
371
372
373
) -> (
    HeaderMap,
    Sse<impl Stream<Item = Result<Event, Infallible>>>,
) {
374
    let span = tracing::Span::current();
375
376
377
378
379
    let on_message_callback = |stream_token: StreamResponse| {
        let event = Event::default();
        event.json_data(stream_token).unwrap()
    };
    let (headers, response_stream) =
380
        generate_stream_internal(infer, compute_type, Json(req), on_message_callback, span).await;
381
382
383
384
385
386
    let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
    (headers, sse)
}

async fn generate_stream_internal(
    infer: Infer,
387
    ComputeType(compute_type): ComputeType,
388
389
    Json(req): Json<GenerateRequest>,
    on_message_callback: impl Fn(StreamResponse) -> Event,
390
    span: tracing::Span,
391
) -> (HeaderMap, impl Stream<Item = Result<Event, Infallible>>) {
392
    let start_time = Instant::now();
393
    metrics::counter!("tgi_request_count").increment(1);
394

395
    tracing::debug!("Input: {}", req.inputs);
396

397
    let compute_characters = req.inputs.chars().count();
398
399

    let mut headers = HeaderMap::new();
400
    headers.insert("x-compute-type", compute_type.parse().unwrap());
401
402
403
404
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
405
    headers.insert("X-Accel-Buffering", "no".parse().unwrap());
406

407
408
409
410
    let stream = async_stream::stream! {
        // Inference
        let mut end_reached = false;
        let mut error = false;
411
412

        let mut add_prompt = None;
413
414
        if req.parameters.return_full_text.unwrap_or(false) {
            add_prompt = Some(req.inputs.clone());
415
        }
416
        let details = req.parameters.details;
417

418
        let best_of = req.parameters.best_of.unwrap_or(1);
419
420
        if best_of != 1 {
            let err = InferError::from(ValidationError::BestOfStream);
421
            metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
422
423
            tracing::error!("{err}");
            yield Ok(Event::from(err));
424
        } else if req.parameters.decoder_input_details {
425
            let err = InferError::from(ValidationError::PrefillDetailsStream);
426
            metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
427
428
429
            tracing::error!("{err}");
            yield Ok(Event::from(err));
        } else {
430
            match infer.generate_stream(req).instrument(info_span!(parent: &span, "async_stream")).await {
431
                // Keep permit as long as generate_stream lives
Nicolas Patry's avatar
Nicolas Patry committed
432
                Ok((_permit, _input_length, response_stream)) => {
433
                    let mut index = 0;
Nicolas Patry's avatar
Nicolas Patry committed
434
                    let mut response_stream = Box::pin(response_stream);
435
436
                    // Server-Sent Event stream
                    while let Some(response) = response_stream.next().await {
437
                        index += 1;
438
439
440
441
442
443
                        match response {
                            Ok(response) => {
                                match response {
                                    // Prefill is ignored
                                    InferStreamResponse::Prefill(_) => {}
                                    // Yield event for every new token
Nicolas Patry's avatar
Nicolas Patry committed
444
445
446
447
                                    InferStreamResponse::Intermediate{
                                        token,
                                        top_tokens,
                                    } => {
448
449
                                        tracing::debug!(parent: &span, "Token: {:?}", token);

450
451
                                        // StreamResponse
                                        let stream_token = StreamResponse {
452
                                            index,
453
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
454
                                            top_tokens,
455
456
457
                                            generated_text: None,
                                            details: None,
                                        };
458
459
                                        let event = on_message_callback(stream_token);
                                        yield Ok(event);
460
                                    }
461
462
                                    // Yield event for last token and compute timings
                                    InferStreamResponse::End {
463
                                        token,
464
465
466
                                        generated_text,
                                        start,
                                        queued,
Nicolas Patry's avatar
Nicolas Patry committed
467
                                        top_tokens,
468
469
470
471
                                    } => {
                                        // Token details
                                        let details = match details {
                                            true => Some(StreamDetails {
OlivierDehaene's avatar
OlivierDehaene committed
472
                                                finish_reason: generated_text.finish_reason,
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
                                                generated_tokens: generated_text.generated_tokens,
                                                seed: generated_text.seed,
                                            }),
                                            false => None,
                                        };

                                        // Timings
                                        let total_time = start_time.elapsed();
                                        let validation_time = queued - start_time;
                                        let queue_time = start - queued;
                                        let inference_time = Instant::now() - start;
                                        let time_per_token = inference_time / generated_text.generated_tokens;

                                        // Tracing metadata
                                        span.record("total_time", format!("{total_time:?}"));
                                        span.record("validation_time", format!("{validation_time:?}"));
                                        span.record("queue_time", format!("{queue_time:?}"));
                                        span.record("inference_time", format!("{inference_time:?}"));
                                        span.record("time_per_token", format!("{time_per_token:?}"));
                                        span.record("seed", format!("{:?}", generated_text.seed));

                                        // Metrics
495
496
497
498
499
500
501
                                        metrics::counter!("tgi_request_success").increment(1);
                                        metrics::histogram!("tgi_request_duration").record(total_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_validation_duration").record(validation_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_queue_duration").record(queue_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_inference_duration").record(inference_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_mean_time_per_token_duration").record(time_per_token.as_secs_f64());
                                        metrics::histogram!("tgi_request_generated_tokens").record(generated_text.generated_tokens as f64);
502
503
504
505
506
507
508
509
510

                                        // StreamResponse
                                        end_reached = true;

                                        let mut output_text = generated_text.text;
                                        if let Some(prompt) = add_prompt {
                                            output_text = prompt + &output_text;
                                        }

511
512
                                        tracing::debug!(parent: &span, "Output: {}", output_text);
                                        tracing::info!(parent: &span, "Success");
513

514
                                        let stream_token = StreamResponse {
515
                                            index,
516
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
517
                                            top_tokens,
518
519
520
521
                                            generated_text: Some(output_text),
                                            details
                                        };

522
523
524

                                        let event = on_message_callback(stream_token);
                                        yield Ok(event);
525
526
                                        break;
                                    }
527
528
                                }
                            }
529
530
531
532
533
534
                            // yield error
                            Err(err) => {
                                error = true;
                                yield Ok(Event::from(err));
                                break;
                            }
535
536
                        }
                    }
537
538
539
540
541
                },
                // yield error
                Err(err) => {
                    error = true;
                    yield Ok(Event::from(err));
542
                }
543
544
545
546
547
            }
            // Check if generation reached the end
            // Skip if we already sent an error
            if !end_reached && !error {
                let err = InferError::IncompleteGeneration;
548
                metrics::counter!("tgi_request_failure", "err" => "incomplete").increment(1);
549
                tracing::error!("{err}");
550
                yield Ok(Event::from(err));
551
552
553
554
            }
        }
    };

555
556
557
    (headers, stream)
}

558
559
/// Generate tokens
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
560
561
562
563
564
565
566
post,
tag = "Text Generation Inference",
path = "/v1/completions",
request_body = CompletionRequest,
responses(
(status = 200, description = "Generated Chat Completion",
content(
567
568
("application/json" = CompletionFinal),
("text/event-stream" = Chunk),
OlivierDehaene's avatar
OlivierDehaene committed
569
570
571
572
573
574
575
576
577
578
579
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
580
#[instrument(
OlivierDehaene's avatar
OlivierDehaene committed
581
582
583
584
585
586
587
588
589
590
591
skip_all,
fields(
// parameters = ? req.parameters,
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
)]
592
593
594
595
596
597
async fn completions(
    Extension(infer): Extension<Infer>,
    Extension(compute_type): Extension<ComputeType>,
    Extension(info): Extension<Info>,
    Json(req): Json<CompletionRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
598
    let span = tracing::Span::current();
599
    metrics::counter!("tgi_request_count").increment(1);
600

601
    let CompletionRequest {
602
        model,
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
        max_tokens,
        seed,
        stop,
        stream,
        temperature,
        ..
    } = req;

    let max_new_tokens = max_tokens.or(Some(100));
    let stop = stop.unwrap_or_default();
    // enable greedy only when temperature is 0
    let (do_sample, temperature) = match temperature {
        Some(temperature) if temperature == 0.0 => (false, None),
        other => (true, other),
    };
618
619
620

    // if suffix is present throw an error
    if req.suffix.is_some() {
621
        metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
622
623
624
625
626
627
628
629
630
631
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: "Suffix is not supported and can be achieved by preprocessing the prompt."
                    .to_string(),
                error_type: "suffix not supported".to_string(),
            }),
        ));
    }

632
    if req.prompt.0.len() > info.max_client_batch_size {
633
        metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
634
635
636
637
638
639
640
641
642
643
644
645
646
647
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: format!(
                    "Number of prompts exceeds the maximum allowed batch size of {}",
                    info.max_client_batch_size
                ),
                error_type: "batch size exceeded".to_string(),
            }),
        ));
    }

    let generate_requests: Vec<GenerateRequest> = req
        .prompt
648
        .0
649
650
651
652
653
        .iter()
        .map(|prompt| GenerateRequest {
            inputs: prompt.to_string(),
            parameters: GenerateParameters {
                best_of: None,
654
                temperature,
655
656
657
658
659
                repetition_penalty: req.repetition_penalty,
                frequency_penalty: req.frequency_penalty,
                top_k: None,
                top_p: req.top_p,
                typical_p: None,
660
                do_sample,
661
662
                max_new_tokens,
                return_full_text: None,
663
                stop: stop.clone(),
664
665
666
667
668
669
670
                truncate: None,
                watermark: false,
                details: true,
                decoder_input_details: !stream,
                seed,
                top_n_tokens: None,
                grammar: None,
671
                adapter_id: model.as_ref().filter(|m| *m != "tgi").map(String::from),
672
673
674
675
676
677
678
            },
        })
        .collect();

    let mut x_compute_type = None;
    let mut x_compute_characters = 0u32;
    let mut x_accel_buffering = None;
679
680

    if stream {
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
        let mut response_streams = FuturesOrdered::new();
        for (index, generate_request) in generate_requests.into_iter().enumerate() {
            let model_id = info.model_id.clone();
            let system_fingerprint =
                format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));
            let infer_clone = infer.clone();
            let compute_type_clone = compute_type.clone();
            let span_clone = span.clone();

            // Create a future for each generate_stream_internal call.
            let generate_future = async move {
                let on_message_callback = move |stream_token: StreamResponse| {
                    let event = Event::default();

                    let current_time = std::time::SystemTime::now()
                        .duration_since(std::time::UNIX_EPOCH)
                        .unwrap_or_else(|_| std::time::Duration::from_secs(0))
                        .as_secs();

                    event
701
                        .json_data(Completion::Chunk(Chunk {
702
703
704
705
706
707
708
709
710
711
712
713
                            id: "".to_string(),
                            created: current_time,

                            choices: vec![CompletionComplete {
                                finish_reason: "".to_string(),
                                index: index as u32,
                                logprobs: None,
                                text: stream_token.token.text,
                            }],

                            model: model_id.clone(),
                            system_fingerprint: system_fingerprint.clone(),
714
                        }))
715
                        .unwrap_or_else(|_e| Event::default())
716
717
718
719
720
721
722
723
724
725
726
727
728
729
                };

                let (header_tx, header_rx) = oneshot::channel();
                let (sse_tx, sse_rx) = tokio::sync::mpsc::unbounded_channel();

                tokio::spawn(async move {
                    let (header_map, sse) = generate_stream_internal(
                        infer_clone.clone(),
                        compute_type_clone.clone(),
                        Json(generate_request),
                        on_message_callback,
                        span_clone.clone(),
                    )
                    .await;
730

731
732
                    // send and dont wait for response
                    let _ = header_tx.send(header_map);
733

734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
                    // pin an emit messages to the sse_tx
                    let mut sse = Box::pin(sse);
                    while let Some(event) = sse.next().await {
                        if sse_tx.send(event).is_err() {
                            tracing::error!("Failed to send event. Receiver dropped.");
                            break;
                        }
                    }
                });

                (header_rx, sse_rx)
            };
            response_streams.push_back(generate_future);
        }

        let mut all_rxs = vec![];

        while let Some((header_rx, sse_rx)) = response_streams.next().await {
            all_rxs.push(sse_rx);

            // get the headers from the first response of each stream
            let headers = header_rx.await.map_err(|e| {
                tracing::error!("Failed to get headers: {:?}", e);
                (
                    StatusCode::INTERNAL_SERVER_ERROR,
                    Json(ErrorResponse {
                        error: "Failed to get headers".to_string(),
                        error_type: "headers".to_string(),
                    }),
763
                )
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
            })?;
            if x_compute_type.is_none() {
                x_compute_type = headers
                    .get("x-compute-type")
                    .and_then(|v| v.to_str().ok())
                    .map(|v| v.to_string());

                x_accel_buffering = headers
                    .get("x-accel-buffering")
                    .and_then(|v| v.to_str().ok())
                    .map(|v| v.to_string());
            }
            x_compute_characters += headers
                .get("x-compute-characters")
                .and_then(|v| v.to_str().ok())
                .and_then(|v| v.parse().ok())
                .unwrap_or(0);
        }
782

783
784
785
786
787
788
789
790
        let mut headers = HeaderMap::new();
        if let Some(x_compute_type) = x_compute_type {
            headers.insert("x-compute-type", x_compute_type.parse().unwrap());
        }
        headers.insert("x-compute-characters", x_compute_characters.into());
        if let Some(x_accel_buffering) = x_accel_buffering {
            headers.insert("x-accel-buffering", x_accel_buffering.parse().unwrap());
        }
791

792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
        // now sink the sse streams into a single stream and remove the ones that are done
        let stream: AsyncStream<Result<Event, Infallible>, _> = async_stream::stream! {
            loop {
                let mut i = 0;
                while i < all_rxs.len() {
                    let rx = &mut all_rxs[i];
                    select! {
                        Some(event) = rx.recv() => {
                            yield event;
                        }
                        else => {
                            all_rxs.remove(i);
                            continue; // skip the increment to handle the next element at the same index
                        }
                    }
                    i += 1; // only increment when no element was removed
                }

                if all_rxs.is_empty() {
                    break;
                }
            }
        };

816
817
818
819
        let stream = stream.chain(futures::stream::once(async {
            Ok(Event::default().data("[DONE]"))
        }));

820
        let sse = Sse::new(stream).keep_alive(KeepAlive::default());
821
822
823
824
825
826
827
        Ok((headers, sse).into_response())
    } else {
        let current_time = std::time::SystemTime::now()
            .duration_since(std::time::UNIX_EPOCH)
            .unwrap_or_else(|_| std::time::Duration::from_secs(0))
            .as_secs();

828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
        let responses = FuturesUnordered::new();
        for (index, generate_request) in generate_requests.into_iter().enumerate() {
            let infer_clone = infer.clone();
            let compute_type_clone = compute_type.clone();
            let span_clone = span.clone();
            let response_future = async move {
                let result = generate_internal(
                    Extension(infer_clone),
                    compute_type_clone,
                    Json(generate_request),
                    span_clone,
                )
                .await;
                result.map(|(headers, generation)| (index, headers, generation))
            };
            responses.push(response_future);
        }
        let generate_responses = responses.try_collect::<Vec<_>>().await?;

        let mut prompt_tokens = 0u32;
        let mut completion_tokens = 0u32;
        let mut total_tokens = 0u32;

        let mut x_compute_time = 0u32;
        let mut x_total_time = 0u32;
        let mut x_validation_time = 0u32;
        let mut x_queue_time = 0u32;
        let mut x_inference_time = 0u32;
        let mut x_time_per_token = 0u32;
        let mut x_prompt_tokens = 0u32;
        let mut x_generated_tokens = 0u32;

        let choices = generate_responses
            .into_iter()
            .map(|(index, headers, Json(generation))| {
                let details = generation.details.ok_or((
                    // this should never happen but handle if details are missing unexpectedly
                    StatusCode::INTERNAL_SERVER_ERROR,
                    Json(ErrorResponse {
                        error: "No details in generation".to_string(),
                        error_type: "no details".to_string(),
                    }),
                ))?;

                if x_compute_type.is_none() {
                    x_compute_type = headers
                        .get("x-compute-type")
                        .and_then(|v| v.to_str().ok())
                        .map(|v| v.to_string());
                }

                // accumulate headers and usage from each response
                x_compute_time += headers
                    .get("x-compute-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_compute_characters += headers
                    .get("x-compute-characters")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_total_time += headers
                    .get("x-total-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_validation_time += headers
                    .get("x-validation-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_queue_time += headers
                    .get("x-queue-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_inference_time += headers
                    .get("x-inference-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_time_per_token += headers
                    .get("x-time-per-token")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_prompt_tokens += headers
                    .get("x-prompt-tokens")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_generated_tokens += headers
                    .get("x-generated-tokens")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);

                prompt_tokens += details.prefill.len() as u32;
                completion_tokens += details.generated_tokens;
                total_tokens += details.prefill.len() as u32 + details.generated_tokens;

                Ok(CompletionComplete {
                    finish_reason: details.finish_reason.to_string(),
                    index: index as u32,
                    logprobs: None,
                    text: generation.generated_text,
                })
            })
            .collect::<Result<Vec<_>, _>>()
            .map_err(|(status, Json(err))| (status, Json(err)))?;
930

931
        let response = Completion::Final(CompletionFinal {
932
933
934
935
936
937
938
939
            id: "".to_string(),
            created: current_time,
            model: info.model_id.clone(),
            system_fingerprint: format!(
                "{}-{}",
                info.version,
                info.docker_label.unwrap_or("native")
            ),
940
            choices,
941
            usage: Usage {
942
943
944
                prompt_tokens,
                completion_tokens,
                total_tokens,
945
            },
946
        });
947

948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
        // headers similar to `generate` but aggregated
        let mut headers = HeaderMap::new();
        if let Some(x_compute_type) = x_compute_type {
            headers.insert("x-compute-type", x_compute_type.parse().unwrap());
        }
        headers.insert("x-compute-characters", x_compute_characters.into());
        headers.insert("x-total-time", x_total_time.into());
        headers.insert("x-validation-time", x_validation_time.into());
        headers.insert("x-queue-time", x_queue_time.into());
        headers.insert("x-inference-time", x_inference_time.into());
        headers.insert("x-time-per-token", x_time_per_token.into());
        headers.insert("x-prompt-tokens", x_prompt_tokens.into());
        headers.insert("x-generated-tokens", x_generated_tokens.into());
        if let Some(x_accel_buffering) = x_accel_buffering {
            headers.insert("x-accel-buffering", x_accel_buffering.parse().unwrap());
        }
964
965
966
967
        Ok((headers, Json(response)).into_response())
    }
}

968
969
/// Generate tokens
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
post,
tag = "Text Generation Inference",
path = "/v1/chat/completions",
request_body = ChatRequest,
responses(
(status = 200, description = "Generated Chat Completion",
content(
("application/json" = ChatCompletion),
("text/event-stream" = ChatCompletionChunk),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
990
#[instrument(
OlivierDehaene's avatar
OlivierDehaene committed
991
992
993
994
995
996
997
998
999
1000
1001
skip_all,
fields(
// parameters = ? req.parameters,
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
)]
1002
1003
async fn chat_completions(
    Extension(infer): Extension<Infer>,
1004
    Extension(compute_type): Extension<ComputeType>,
1005
1006
1007
    Extension(info): Extension<Info>,
    Json(req): Json<ChatRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
1008
    let span = tracing::Span::current();
1009
    metrics::counter!("tgi_request_count").increment(1);
1010
    let ChatRequest {
1011
        model,
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
        logprobs,
        max_tokens,
        messages,
        presence_penalty,
        seed,
        stop,
        stream,
        tools,
        tool_choice,
        tool_prompt,
1022
        temperature,
drbh's avatar
drbh committed
1023
        response_format,
1024
1025
1026
1027
1028
1029
1030
1031
        ..
    } = req;

    let repetition_penalty = presence_penalty.map(|x| x + 2.0);
    let max_new_tokens = max_tokens.or(Some(100));
    let logprobs = logprobs.unwrap_or(false);
    let tool_prompt = tool_prompt.unwrap_or_default();
    let stop = stop.unwrap_or_default();
1032
1033
1034
1035
1036
    // enable greedy only when temperature is 0
    let (do_sample, temperature) = match temperature {
        Some(temperature) if temperature == 0.0 => (false, None),
        other => (true, other),
    };
1037

drbh's avatar
drbh committed
1038
1039
    // response_format and tools are mutually exclusive
    if response_format.is_some() && tools.as_ref().is_some() {
1040
        metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
drbh's avatar
drbh committed
1041
1042
1043
1044
1045
1046
1047
1048
1049
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: "Grammar and tools are mutually exclusive".to_string(),
                error_type: "grammar and tools".to_string(),
            }),
        ));
    }

1050
1051
1052
    // extract tool grammar if present
    let tool_grammar = match ToolGrammar::apply(tools, tool_choice) {
        Ok(grammar) => grammar,
1053
        Err(err) => {
1054
            metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
            tracing::error!("{err}");
            return Err((
                StatusCode::UNPROCESSABLE_ENTITY,
                Json(ErrorResponse {
                    error: err.to_string(),
                    error_type: err.error_type().to_string(),
                }),
            ));
        }
    };

drbh's avatar
drbh committed
1066
1067
    // determine the appropriate arguments for apply_chat_template
    let tools_grammar_prompt = tool_grammar
1068
1069
        .as_ref()
        .map(|t| (GrammarType::Json(serde_json::json!(t)), tool_prompt));
drbh's avatar
drbh committed
1070

drbh's avatar
drbh committed
1071
1072
1073
1074
1075
1076
1077
    let (tools_grammar_prompt, grammar) = match response_format {
        Some(response_format) => (None, Some(response_format)),
        None => (
            tools_grammar_prompt.clone(),
            tools_grammar_prompt.map(|(grammar, _)| grammar.clone()),
        ),
    };
drbh's avatar
drbh committed
1078

1079
    // apply chat template to flatten the request into a single input
drbh's avatar
drbh committed
1080
    let inputs = match infer.apply_chat_template(messages, tools_grammar_prompt) {
1081
1082
        Ok(inputs) => inputs,
        Err(err) => {
1083
            metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
1084
1085
            tracing::error!("{err}");
            return Err((
drbh's avatar
drbh committed
1086
1087
                StatusCode::UNPROCESSABLE_ENTITY,
                Json(ErrorResponse {
1088
1089
                    error: err.to_string(),
                    error_type: err.error_type().to_string(),
drbh's avatar
drbh committed
1090
                }),
1091
1092
            ));
        }
drbh's avatar
drbh committed
1093
1094
    };

1095
1096
1097
1098
1099
    // build the request passing some parameters
    let generate_request = GenerateRequest {
        inputs: inputs.to_string(),
        parameters: GenerateParameters {
            best_of: None,
1100
            temperature,
1101
            repetition_penalty,
1102
            frequency_penalty: req.frequency_penalty,
1103
            top_k: None,
1104
            top_p: req.top_p,
1105
            typical_p: None,
1106
            do_sample,
1107
1108
            max_new_tokens,
            return_full_text: None,
1109
            stop,
1110
1111
1112
            truncate: None,
            watermark: false,
            details: true,
1113
            decoder_input_details: !stream,
1114
            seed,
1115
            top_n_tokens: req.top_logprobs,
drbh's avatar
drbh committed
1116
            grammar,
1117
            adapter_id: model.filter(|m| *m != "tgi").map(String::from),
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
        },
    };

    // static values that will be returned in all cases
    let model_id = info.model_id.clone();
    let system_fingerprint = format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));

    // switch on stream
    if stream {
        // pass this callback to the stream generation and build the required event structure
        let on_message_callback = move |stream_token: StreamResponse| {
            let event = Event::default();

            let current_time = std::time::SystemTime::now()
                .duration_since(std::time::UNIX_EPOCH)
                .unwrap_or_else(|_| std::time::Duration::from_secs(0))
                .as_secs();

1136
1137
1138
1139
            let logprobs = logprobs.then(|| {
                ChatCompletionLogprobs::from((stream_token.token.clone(), stream_token.top_tokens))
            });

drbh's avatar
drbh committed
1140
1141
1142
1143
            // replace the content with the tool calls if grammar is present
            let (content, tool_calls) = if tool_grammar.is_some() {
                (None, Some(vec![stream_token.token.text]))
            } else {
1144
1145
1146
1147
1148
1149
1150
                let content = if !stream_token.token.special {
                    Some(stream_token.token.text)
                } else {
                    None
                };

                (content, None)
drbh's avatar
drbh committed
1151
1152
            };

1153
            event
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
                .json_data(CompletionType::ChatCompletionChunk(
                    ChatCompletionChunk::new(
                        model_id.clone(),
                        system_fingerprint.clone(),
                        content,
                        tool_calls,
                        current_time,
                        logprobs,
                        stream_token.details.map(|d| d.finish_reason.to_string()),
                    ),
1164
                ))
1165
1166
1167
1168
                .unwrap_or_else(|e| {
                    println!("Failed to serialize ChatCompletionChunk: {:?}", e);
                    Event::default()
                })
1169
1170
        };

1171
1172
1173
1174
1175
        let (headers, response_stream) = generate_stream_internal(
            infer,
            compute_type,
            Json(generate_request),
            on_message_callback,
1176
            span,
1177
1178
        )
        .await;
1179
1180
1181
1182
1183

        let response_stream = response_stream.chain(futures::stream::once(async {
            Ok(Event::default().data("[DONE]"))
        }));

1184
1185
1186
        let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
        Ok((headers, sse).into_response())
    } else {
1187
1188
        let (headers, Json(generation)) =
            generate_internal(Extension(infer), compute_type, Json(generate_request), span).await?;
1189
1190
1191
1192
1193
1194

        let current_time = std::time::SystemTime::now()
            .duration_since(std::time::UNIX_EPOCH)
            .unwrap_or_else(|_| std::time::Duration::from_secs(0))
            .as_secs();

drbh's avatar
drbh committed
1195
        let (tool_calls, output) = if tool_grammar.is_some() {
drbh's avatar
drbh committed
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
            let gen_text_value: Value = serde_json::from_str(&generation.generated_text)
                .map_err(|e| InferError::ToolError(e.to_string()))?;

            let function = gen_text_value.get("function").ok_or(InferError::ToolError(
                "No function found in generated text".to_string(),
            ))?;

            let name = function
                .get("_name")
                .and_then(Value::as_str)
                .ok_or(InferError::ToolError(
                    "No _name found in generated text".to_string(),
                ))?
                .to_string();

            let mut arguments = function.clone();
            if let Value::Object(ref mut props) = arguments {
                props.remove("_name");
            }

1216
            let tool_calls = vec![ToolCall {
1217
                id: "0".to_string(),
drbh's avatar
drbh committed
1218
1219
1220
                r#type: "function".to_string(),
                function: FunctionDefinition {
                    description: None,
drbh's avatar
drbh committed
1221
1222
                    name,
                    arguments,
drbh's avatar
drbh committed
1223
                },
1224
1225
            }];
            (Some(tool_calls), None)
drbh's avatar
drbh committed
1226
1227
1228
        } else {
            (None, Some(generation.generated_text))
        };
1229
        // build the complete response object with the full text
1230
        let response = CompletionType::ChatCompletion(ChatCompletion::new(
1231
1232
            model_id,
            system_fingerprint,
drbh's avatar
drbh committed
1233
            output,
1234
1235
1236
            current_time,
            generation.details.unwrap(),
            logprobs,
drbh's avatar
drbh committed
1237
            tool_calls,
1238
        ));
1239
1240
1241
1242

        // wrap generation inside a Vec to match api-inference
        Ok((headers, Json(response)).into_response())
    }
1243
1244
}

drbh's avatar
drbh committed
1245
1246
/// Generate tokens from Vertex request
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
post,
tag = "Text Generation Inference",
path = "/vertex",
request_body = VertexRequest,
responses(
(status = 200, description = "Generated Text", body = VertexResponse),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
drbh's avatar
drbh committed
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
#[instrument(
    skip_all,
    fields(
        total_time,
        validation_time,
        queue_time,
        inference_time,
        time_per_token,
        seed,
    )
)]
async fn vertex_compatibility(
    Extension(infer): Extension<Infer>,
    Extension(compute_type): Extension<ComputeType>,
    Json(req): Json<VertexRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
1279
    let span = tracing::Span::current();
1280
    metrics::counter!("tgi_request_count").increment(1);
drbh's avatar
drbh committed
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310

    // check that theres at least one instance
    if req.instances.is_empty() {
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: "Input validation error".to_string(),
                error_type: "Input validation error".to_string(),
            }),
        ));
    }

    // Process all instances
    let predictions = req
        .instances
        .iter()
        .map(|instance| {
            let generate_request = GenerateRequest {
                inputs: instance.inputs.clone(),
                parameters: GenerateParameters {
                    do_sample: true,
                    max_new_tokens: instance.parameters.as_ref().and_then(|p| p.max_new_tokens),
                    seed: instance.parameters.as_ref().and_then(|p| p.seed),
                    details: true,
                    decoder_input_details: true,
                    ..Default::default()
                },
            };

            async {
1311
                generate_internal(
drbh's avatar
drbh committed
1312
                    Extension(infer.clone()),
1313
                    compute_type.clone(),
drbh's avatar
drbh committed
1314
                    Json(generate_request),
1315
                    span.clone(),
drbh's avatar
drbh committed
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
                )
                .await
                .map(|(_, Json(generation))| generation.generated_text)
                .map_err(|_| {
                    (
                        StatusCode::INTERNAL_SERVER_ERROR,
                        Json(ErrorResponse {
                            error: "Incomplete generation".into(),
                            error_type: "Incomplete generation".into(),
                        }),
                    )
                })
            }
        })
        .collect::<FuturesUnordered<_>>()
        .try_collect::<Vec<_>>()
        .await?;

    let response = VertexResponse { predictions };
    Ok((HeaderMap::new(), Json(response)).into_response())
}

1338
1339
/// Tokenize inputs
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
post,
tag = "Text Generation Inference",
path = "/tokenize",
request_body = GenerateRequest,
responses(
(status = 200, description = "Tokenized ids", body = TokenizeResponse),
(status = 404, description = "No tokenizer found", body = ErrorResponse,
example = json ! ({"error": "No fast tokenizer available"})),
)
)]
1350
1351
1352
1353
#[instrument(skip_all)]
async fn tokenize(
    Extension(infer): Extension<Infer>,
    Json(req): Json<GenerateRequest>,
1354
) -> Result<Json<TokenizeResponse>, (StatusCode, Json<ErrorResponse>)> {
1355
1356
1357
1358
1359
1360
1361
1362
    let input = req.inputs.clone();
    let encoding = infer.tokenize(req).await?;
    if let Some(encoding) = encoding {
        let tokens: Vec<SimpleToken> = encoding
            .get_ids()
            .iter()
            .zip(encoding.get_offsets())
            .map(|(&id, &(start, stop))| {
1363
1364
                let text: String =
                    String::from_utf8_lossy(&input.as_bytes()[start..stop]).to_string();
1365
1366
1367
1368
1369
1370
1371
1372
                SimpleToken {
                    id,
                    text,
                    start,
                    stop,
                }
            })
            .collect();
1373
        Ok(Json(TokenizeResponse(tokens)))
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
    } else {
        Err((
            StatusCode::NOT_FOUND,
            Json(ErrorResponse {
                error: "No fast tokenizer or tokenizer.json for this model".to_string(),
                error_type: "no fast tokenizer".to_string(),
            }),
        ))
    }
}

1385
1386
/// Prometheus metrics scrape endpoint
#[utoipa::path(
1387
1388
1389
1390
    get,
    tag = "Text Generation Inference",
    path = "/metrics",
    responses((status = 200, description = "Prometheus Metrics", body = String))
1391
1392
1393
1394
1395
)]
async fn metrics(prom_handle: Extension<PrometheusHandle>) -> String {
    prom_handle.render()
}

1396
1397
1398
#[derive(Clone, Debug)]
pub(crate) struct ComputeType(String);

Nicolas Patry's avatar
Nicolas Patry committed
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
// OpenAPI documentation
#[derive(OpenApi)]
#[openapi(
paths(
health,
get_model_info,
compat_generate,
generate,
generate_stream,
chat_completions,
completions,
tokenize,
metrics,
),
components(
schemas(
Info,
CompatGenerateRequest,
GenerateRequest,
GrammarType,
ChatRequest,
Message,
MessageContent,
MessageChunk,
Url,
FunctionName,
OutputMessage,
TextMessage,
ToolCallMessage,
ToolCallDelta,
ChatCompletionComplete,
ChatCompletionChoice,
ChatCompletionDelta,
ChatCompletionChunk,
ChatCompletionLogprob,
ChatCompletionLogprobs,
ChatCompletionTopLogprob,
ChatCompletion,
CompletionRequest,
CompletionComplete,
Chunk,
Completion,
CompletionFinal,
Prompt,
GenerateParameters,
PrefillToken,
Token,
GenerateResponse,
TokenizeResponse,
SimpleToken,
BestOfSequence,
Details,
FinishReason,
StreamResponse,
StreamDetails,
ErrorResponse,
GrammarType,
Usage,
DeltaToolCall,
ToolType,
Tool,
ToolCall,
Function,
FunctionDefinition,
ToolChoice,
)
),
tags(
(name = "Text Generation Inference", description = "Hugging Face Text Generation Inference API")
),
info(
title = "Text Generation Inference",
license(
name = "Apache 2.0",
url = "https://www.apache.org/licenses/LICENSE-2.0"
)
)
)]
pub struct ApiDoc;

pub fn schema() -> ApiDoc {
    ApiDoc
}

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1483
1484
1485
/// Serving method
#[allow(clippy::too_many_arguments)]
pub async fn run(
Nicolas Patry's avatar
Nicolas Patry committed
1486
    backend: impl Backend + Send + Sync + 'static,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1487
    max_concurrent_requests: usize,
1488
    max_best_of: usize,
1489
    max_stop_sequences: usize,
Nicolas Patry's avatar
Nicolas Patry committed
1490
    max_top_n_tokens: u32,
OlivierDehaene's avatar
OlivierDehaene committed
1491
    max_input_tokens: usize,
1492
    max_total_tokens: usize,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1493
    validation_workers: usize,
Erik Kaunismäki's avatar
Erik Kaunismäki committed
1494
    api_key: Option<String>,
Nicolas Patry's avatar
Nicolas Patry committed
1495
1496
1497
1498
1499
1500
    tokenizer_name: String,
    tokenizer_config_path: Option<String>,
    revision: Option<String>,
    hostname: String,
    port: u16,
    cors_allow_origin: Option<Vec<String>>,
1501
    ngrok: bool,
1502
1503
    _ngrok_authtoken: Option<String>,
    _ngrok_edge: Option<String>,
1504
    messages_api_enabled: bool,
Nicolas Patry's avatar
Nicolas Patry committed
1505
    disable_grammar_support: bool,
1506
    max_client_batch_size: usize,
1507
    usage_stats_level: usage_stats::UsageStatsLevel,
OlivierDehaene's avatar
OlivierDehaene committed
1508
) -> Result<(), WebServerError> {
Nicolas Patry's avatar
Nicolas Patry committed
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
    // CORS allowed origins
    // map to go inside the option and then map to parse from String to HeaderValue
    // Finally, convert to AllowOrigin
    let allow_origin: Option<AllowOrigin> = cors_allow_origin.map(|cors_allow_origin| {
        AllowOrigin::list(
            cors_allow_origin
                .iter()
                .map(|origin| origin.parse::<HeaderValue>().unwrap()),
        )
    });
1519

Nicolas Patry's avatar
Nicolas Patry committed
1520
1521
1522
1523
    // Parse Huggingface hub token
    let authorization_token = std::env::var("HF_TOKEN")
        .or_else(|_| std::env::var("HUGGING_FACE_HUB_TOKEN"))
        .ok();
OlivierDehaene's avatar
OlivierDehaene committed
1524

Nicolas Patry's avatar
Nicolas Patry committed
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
    // Tokenizer instance
    // This will only be used to validate payloads
    let local_path = Path::new(&tokenizer_name);

    // Shared API builder initialization
    let api_builder = || {
        let mut builder = ApiBuilder::new()
            .with_progress(false)
            .with_token(authorization_token);

        if let Ok(cache_dir) = std::env::var("HUGGINGFACE_HUB_CACHE") {
            builder = builder.with_cache_dir(cache_dir.into());
        }

        builder
    };

    // Decide if we need to use the API based on the revision and local path
    let use_api = revision.is_some() || !local_path.exists() || !local_path.is_dir();

    // Initialize API if needed
    #[derive(Clone)]
    enum Type {
        Api(Api),
        Cache(Cache),
        None,
    }
    let api = if use_api {
        if std::env::var("HF_HUB_OFFLINE") == Ok("1".to_string()) {
            let cache = std::env::var("HUGGINGFACE_HUB_CACHE")
                .map_err(|_| ())
                .map(|cache_dir| Cache::new(cache_dir.into()))
                .unwrap_or_else(|_| Cache::default());
            tracing::warn!("Offline mode active using cache defaults");
            Type::Cache(cache)
        } else {
            tracing::info!("Using the Hugging Face API");
            match api_builder().build() {
                Ok(api) => Type::Api(api),
                Err(_) => {
                    tracing::warn!("Unable to build the Hugging Face API");
                    Type::None
OlivierDehaene's avatar
OlivierDehaene committed
1567
                }
Nicolas Patry's avatar
Nicolas Patry committed
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
            }
        }
    } else {
        Type::None
    };

    // Load tokenizer and model info
    let (
        tokenizer_filename,
        config_filename,
        tokenizer_config_filename,
        preprocessor_config_filename,
        processor_config_filename,
        model_info,
    ) = match api {
        Type::None => (
            Some(local_path.join("tokenizer.json")),
            Some(local_path.join("config.json")),
            Some(local_path.join("tokenizer_config.json")),
            Some(local_path.join("preprocessor_config.json")),
            Some(local_path.join("processor_config.json")),
            None,
        ),
        Type::Api(api) => {
            let api_repo = api.repo(Repo::with_revision(
                tokenizer_name.to_string(),
                RepoType::Model,
                revision.clone().unwrap_or_else(|| "main".to_string()),
            ));

            let tokenizer_filename = match api_repo.get("tokenizer.json").await {
                Ok(tokenizer_filename) => Some(tokenizer_filename),
                Err(_) => get_base_tokenizer(&api, &api_repo).await,
            };
            let config_filename = api_repo.get("config.json").await.ok();
            let tokenizer_config_filename = api_repo.get("tokenizer_config.json").await.ok();
            let preprocessor_config_filename = api_repo.get("preprocessor_config.json").await.ok();
            let processor_config_filename = api_repo.get("processor_config.json").await.ok();
OlivierDehaene's avatar
OlivierDehaene committed
1606

Nicolas Patry's avatar
Nicolas Patry committed
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
            let model_info = if let Some(model_info) = get_hub_model_info(&api_repo).await {
                Some(model_info)
            } else {
                tracing::warn!("Could not retrieve model info from the Hugging Face hub.");
                None
            };
            (
                tokenizer_filename,
                config_filename,
                tokenizer_config_filename,
                preprocessor_config_filename,
                processor_config_filename,
                model_info,
            )
        }
        Type::Cache(cache) => {
            let repo = cache.repo(Repo::with_revision(
                tokenizer_name.to_string(),
                RepoType::Model,
                revision.clone().unwrap_or_else(|| "main".to_string()),
            ));
            (
                repo.get("tokenizer.json"),
                repo.get("config.json"),
                repo.get("tokenizer_config.json"),
                repo.get("preprocessor_config.json"),
                repo.get("processor_config.json"),
                None,
            )
        }
    };

    // Read the JSON contents of the file as an instance of 'HubTokenizerConfig'.
    let tokenizer_config: Option<HubTokenizerConfig> = if let Some(filename) = tokenizer_config_path
    {
        HubTokenizerConfig::from_file(filename)
    } else {
        tokenizer_config_filename.and_then(HubTokenizerConfig::from_file)
    };
    let tokenizer_config = tokenizer_config.unwrap_or_else(|| {
        tracing::warn!("Could not find tokenizer config locally and no API specified");
        HubTokenizerConfig::default()
    });

    let tokenizer: Option<Tokenizer> = tokenizer_filename.and_then(|filename| {
        let mut tokenizer = Tokenizer::from_file(filename).ok();
        if let Some(tokenizer) = &mut tokenizer {
            if let Some(class) = &tokenizer_config.tokenizer_class {
                if class == "LlamaTokenizer" || class == "LlamaTokenizerFast"{
                    if let Ok(post_processor) = create_post_processor(tokenizer, &tokenizer_config) {
                        tracing::info!("Overriding LlamaTokenizer with TemplateProcessing to follow python override defined in https://github.com/huggingface/transformers/blob/4aa17d00690b7f82c95bb2949ea57e22c35b4336/src/transformers/models/llama/tokenization_llama_fast.py#L203-L205");
                        tokenizer.with_post_processor(post_processor);
                    }
OlivierDehaene's avatar
OlivierDehaene committed
1660
1661
                }
            }
Nicolas Patry's avatar
Nicolas Patry committed
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
        }
        tokenizer
    });

    let config: Option<Config> = config_filename.and_then(|filename| {
        std::fs::read_to_string(filename)
            .ok()
            .as_ref()
            .and_then(|c| {
                let config: Result<Config, _> = serde_json::from_str(c);
                if let Err(err) = &config {
                    tracing::warn!("Could not parse config {err:?}");
                }
                config.ok()
            })
    });
    let model_info = model_info.unwrap_or_else(|| HubModelInfo {
        model_id: tokenizer_name.to_string(),
        sha: None,
        pipeline_tag: None,
    });

    let processor_config = processor_config_filename
        .and_then(HubProcessorConfig::from_file)
        .unwrap_or_default();

    let preprocessor_config: Option<HubPreprocessorConfig> =
        preprocessor_config_filename.and_then(HubPreprocessorConfig::from_file);

    tracing::info!("Using config {config:?}");
    if tokenizer.is_none() {
        tracing::warn!("Could not find a fast tokenizer implementation for {tokenizer_name}");
        tracing::warn!("Rust input length validation and truncation is disabled");
    }
OlivierDehaene's avatar
OlivierDehaene committed
1696

Nicolas Patry's avatar
Nicolas Patry committed
1697
1698
    // Only send usage stats when TGI is run in container and the function returns Some
    let is_container = matches!(usage_stats::is_container(), Ok(true));
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
    let user_agent = match (usage_stats_level, is_container) {
        (usage_stats::UsageStatsLevel::On | usage_stats::UsageStatsLevel::NoStack, true) => {
            let reduced_args = usage_stats::Args::new(
                config.clone(),
                tokenizer_config.tokenizer_class.clone(),
                max_concurrent_requests,
                max_best_of,
                max_stop_sequences,
                max_top_n_tokens,
                max_input_tokens,
                max_total_tokens,
                // waiting_served_ratio,
                // max_batch_prefill_tokens,
                // max_batch_total_tokens,
                // max_waiting_tokens,
                // max_batch_size,
                revision.clone(),
                validation_workers,
                messages_api_enabled,
                disable_grammar_support,
                max_client_batch_size,
                usage_stats_level,
            );
            Some(usage_stats::UserAgent::new(reduced_args))
        }
        _ => None,
Nicolas Patry's avatar
Nicolas Patry committed
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
    };

    if let Some(ref ua) = user_agent {
        let start_event =
            usage_stats::UsageStatsEvent::new(ua.clone(), usage_stats::EventType::Start, None);
        tokio::spawn(async move {
            start_event.send().await;
        });
    };
    let compat_return_full_text = match &model_info.pipeline_tag {
        None => {
            tracing::warn!("no pipeline tag found for model {tokenizer_name}");
            true
        }
        Some(pipeline_tag) => pipeline_tag.as_str() == "text-generation",
    };
    let result = start(
        backend,
        max_concurrent_requests,
        max_best_of,
        max_stop_sequences,
        max_top_n_tokens,
        max_input_tokens,
        max_total_tokens,
        validation_workers,
        api_key,
        config,
        (tokenizer, tokenizer_config),
        (preprocessor_config, processor_config),
        hostname,
        port,
        ngrok,
        _ngrok_authtoken,
        _ngrok_edge,
        messages_api_enabled,
        disable_grammar_support,
        max_client_batch_size,
        model_info,
        compat_return_full_text,
        allow_origin,
    )
    .await;

    if let Some(ua) = user_agent {
        match result {
            Ok(_) => {
                let stop_event = usage_stats::UsageStatsEvent::new(
                    ua.clone(),
                    usage_stats::EventType::Stop,
                    None,
                );
                stop_event.send().await;
                Ok(())
OlivierDehaene's avatar
OlivierDehaene committed
1778
            }
Nicolas Patry's avatar
Nicolas Patry committed
1779
            Err(e) => {
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
                let description = match usage_stats_level {
                    usage_stats::UsageStatsLevel::On => Some(e.to_string()),
                    usage_stats::UsageStatsLevel::NoStack => Some("unknow_error".to_string()),
                    _ => None,
                };
                let event = usage_stats::UsageStatsEvent::new(
                    ua.clone(),
                    usage_stats::EventType::Error,
                    description,
                );
                event.send().await;

Nicolas Patry's avatar
Nicolas Patry committed
1792
                Err(e)
OlivierDehaene's avatar
OlivierDehaene committed
1793
1794
            }
        }
Nicolas Patry's avatar
Nicolas Patry committed
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
    } else {
        result
    }
}

#[allow(clippy::too_many_arguments)]
async fn start(
    backend: impl Backend + Send + Sync + 'static,
    max_concurrent_requests: usize,
    max_best_of: usize,
    max_stop_sequences: usize,
    max_top_n_tokens: u32,
    max_input_tokens: usize,
    max_total_tokens: usize,
    validation_workers: usize,
    api_key: Option<String>,
    config: Option<Config>,
    (tokenizer, tokenizer_config): (Option<Tokenizer>, HubTokenizerConfig),
    (preprocessor_config, processor_config): (Option<HubPreprocessorConfig>, HubProcessorConfig),
    hostname: String,
    port: u16,
    ngrok: bool,
    _ngrok_authtoken: Option<String>,
    _ngrok_edge: Option<String>,
    messages_api_enabled: bool,
    disable_grammar_support: bool,
    max_client_batch_size: usize,
    model_info: HubModelInfo,
    compat_return_full_text: bool,
    allow_origin: Option<AllowOrigin>,
) -> Result<(), WebServerError> {
    // Determine the server port based on the feature and environment variable.
    let port = if cfg!(feature = "google") {
        std::env::var("AIP_HTTP_PORT")
            .map(|aip_http_port| aip_http_port.parse::<u16>().unwrap_or(port))
            .unwrap_or(port)
    } else {
        port
    };

    let addr = match hostname.parse() {
        Ok(ip) => SocketAddr::new(ip, port),
        Err(_) => {
            tracing::warn!("Invalid hostname, defaulting to 0.0.0.0");
            SocketAddr::new(IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)), port)
        }
OlivierDehaene's avatar
OlivierDehaene committed
1841
1842
    };

Nicolas Patry's avatar
Nicolas Patry committed
1843
    // Create state
1844
1845
1846
    let validation = Validation::new(
        validation_workers,
        tokenizer,
1847
        config,
1848
        preprocessor_config,
1849
        max_best_of,
1850
        max_stop_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
1851
        max_top_n_tokens,
OlivierDehaene's avatar
OlivierDehaene committed
1852
        max_input_tokens,
1853
        max_total_tokens,
Nicolas Patry's avatar
Nicolas Patry committed
1854
        disable_grammar_support,
1855
    );
OlivierDehaene's avatar
OlivierDehaene committed
1856

1857
    let infer = Infer::new(
Nicolas Patry's avatar
Nicolas Patry committed
1858
        backend,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1859
        validation,
1860
        max_concurrent_requests,
1861
        tokenizer_config,
drbh's avatar
drbh committed
1862
        processor_config,
1863
    );
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1864

1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
    // Duration buckets
    let duration_matcher = Matcher::Suffix(String::from("duration"));
    let n_duration_buckets = 35;
    let mut duration_buckets = Vec::with_capacity(n_duration_buckets);
    // Minimum duration in seconds
    let mut value = 0.0001;
    for _ in 0..n_duration_buckets {
        // geometric sequence
        value *= 1.5;
        duration_buckets.push(value);
    }
    // Input Length buckets
    let input_length_matcher = Matcher::Full(String::from("tgi_request_input_length"));
    let input_length_buckets: Vec<f64> = (0..100)
OlivierDehaene's avatar
OlivierDehaene committed
1879
        .map(|x| (max_input_tokens as f64 / 100.0) * (x + 1) as f64)
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
        .collect();
    // Generated tokens buckets
    let generated_tokens_matcher = Matcher::Full(String::from("tgi_request_generated_tokens"));
    let generated_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Input Length buckets
    let max_new_tokens_matcher = Matcher::Full(String::from("tgi_request_max_new_tokens"));
    let max_new_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Batch size buckets
    let batch_size_matcher = Matcher::Full(String::from("tgi_batch_next_size"));
1893
    let batch_size_buckets: Vec<f64> = (0..1024).map(|x| (x + 1) as f64).collect();
OlivierDehaene's avatar
OlivierDehaene committed
1894
    // Speculated tokens buckets
Nicolas Patry's avatar
Nicolas Patry committed
1895
1896
    // let skipped_matcher = Matcher::Full(String::from("tgi_request_skipped_tokens"));
    // let skipped_buckets: Vec<f64> = (0..shard_info.speculate + 1).map(|x| x as f64).collect();
1897

1898
    // Prometheus handler
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
    let builder = PrometheusBuilder::new()
        .set_buckets_for_metric(duration_matcher, &duration_buckets)
        .unwrap()
        .set_buckets_for_metric(input_length_matcher, &input_length_buckets)
        .unwrap()
        .set_buckets_for_metric(generated_tokens_matcher, &generated_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(max_new_tokens_matcher, &max_new_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(batch_size_matcher, &batch_size_buckets)
        .unwrap();
Nicolas Patry's avatar
Nicolas Patry committed
1910
1911
    // .set_buckets_for_metric(skipped_matcher, &skipped_buckets)
    // .unwrap();
1912
1913
1914
1915
    let prom_handle = builder
        .install_recorder()
        .expect("failed to install metrics recorder");

1916
1917
1918
1919
1920
1921
1922
    // CORS layer
    let allow_origin = allow_origin.unwrap_or(AllowOrigin::any());
    let cors_layer = CorsLayer::new()
        .allow_methods([Method::GET, Method::POST])
        .allow_headers([http::header::CONTENT_TYPE])
        .allow_origin(allow_origin);

1923
1924
1925
1926
    // Endpoint info
    let info = Info {
        model_id: model_info.model_id,
        model_sha: model_info.sha,
Nicolas Patry's avatar
Nicolas Patry committed
1927
1928
        // model_dtype: shard_info.dtype,
        // model_device_type: shard_info.device_type,
1929
1930
1931
1932
        model_pipeline_tag: model_info.pipeline_tag,
        max_concurrent_requests,
        max_best_of,
        max_stop_sequences,
OlivierDehaene's avatar
OlivierDehaene committed
1933
        max_input_tokens,
1934
        max_total_tokens,
Nicolas Patry's avatar
Nicolas Patry committed
1935
1936
1937
1938
        // waiting_served_ratio,
        // max_batch_total_tokens,
        // max_waiting_tokens,
        // max_batch_size,
1939
        validation_workers,
1940
        max_client_batch_size,
1941
        router: env!("CARGO_PKG_NAME"),
1942
1943
        version: env!("CARGO_PKG_VERSION"),
        sha: option_env!("VERGEN_GIT_SHA"),
1944
        docker_label: option_env!("DOCKER_LABEL"),
1945
1946
    };

1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
    #[allow(unused_mut)] // mut is needed for conditional compilation
    let mut doc = ApiDoc::openapi();

    #[cfg(feature = "google")]
    {
        use crate::VertexInstance;

        #[derive(OpenApi)]
        #[openapi(
            paths(vertex_compatibility),
            components(schemas(VertexInstance, VertexRequest, VertexResponse))
        )]
        struct VertexApiDoc;

        doc.merge(VertexApiDoc::openapi());
    }

    #[cfg(feature = "kserve")]
    {
        use crate::kserve::{
            InferenceOutput, InferenceRequest, LiveResponse, MetadataServerResponse, OutputChunk,
            ReadyResponse,
        };
        use crate::kserve::{
            __path_kerve_server_metadata, __path_kserve_health_live, __path_kserve_health_ready,
            __path_kserve_model_infer, __path_kserve_model_metadata,
            __path_kserve_model_metadata_ready,
        };

        #[derive(OpenApi)]
        #[openapi(
            paths(
                kserve_health_live,
                kserve_health_ready,
                kerve_server_metadata,
                kserve_model_metadata,
                kserve_model_metadata_ready,
1984
                kserve_model_infer,
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
            ),
            components(schemas(
                InferenceOutput,
                InferenceRequest,
                LiveResponse,
                MetadataServerResponse,
                OutputChunk,
                ReadyResponse,
            ))
        )]
        struct KServeApiDoc;

        doc.merge(KServeApiDoc::openapi());
    }
drbh's avatar
drbh committed
1999

2000
    // Configure Swagger UI
drbh's avatar
drbh committed
2001
    let swagger_ui = SwaggerUi::new("/docs").url("/api-doc/openapi.json", doc);
2002
2003

    // Define base and health routes
Erik Kaunismäki's avatar
Erik Kaunismäki committed
2004
    let mut base_routes = Router::new()
2005
        .route("/", post(compat_generate))
Olivier Dehaene's avatar
Olivier Dehaene committed
2006
        .route("/generate", post(generate))
2007
        .route("/generate_stream", post(generate_stream))
2008
        .route("/v1/chat/completions", post(chat_completions))
2009
        .route("/v1/completions", post(completions))
drbh's avatar
drbh committed
2010
        .route("/vertex", post(vertex_compatibility))
Erik Kaunismäki's avatar
Erik Kaunismäki committed
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
        .route("/tokenize", post(tokenize));

    if let Some(api_key) = api_key {
        let mut prefix = "Bearer ".to_string();
        prefix.push_str(&api_key);

        // Leak to allow FnMut
        let api_key: &'static str = prefix.leak();

        let auth = move |headers: HeaderMap,
                         request: axum::extract::Request,
                         next: axum::middleware::Next| async move {
            match headers.get(AUTHORIZATION) {
                Some(token) => match token.to_str() {
                    Ok(token_str) if token_str.to_lowercase() == api_key.to_lowercase() => {
                        let response = next.run(request).await;
                        Ok(response)
                    }
                    _ => Err(StatusCode::UNAUTHORIZED),
                },
                None => Err(StatusCode::UNAUTHORIZED),
            }
        };

        base_routes = base_routes.layer(axum::middleware::from_fn(auth))
    }
    let info_routes = Router::new()
        .route("/", get(health))
        .route("/info", get(get_model_info))
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
2040
        .route("/health", get(health))
2041
        .route("/ping", get(health))
2042
2043
2044
        .route("/metrics", get(metrics));

    // Conditional AWS Sagemaker route
2045
    let aws_sagemaker_route = if messages_api_enabled {
2046
2047
2048
2049
2050
        Router::new().route("/invocations", post(chat_completions)) // Use 'chat_completions' for OAI_ENABLED
    } else {
        Router::new().route("/invocations", post(compat_generate)) // Use 'compat_generate' otherwise
    };

2051
2052
    let compute_type =
        ComputeType(std::env::var("COMPUTE_TYPE").unwrap_or("gpu+optimized".to_string()));
2053

2054
    // Combine routes and layers
drbh's avatar
drbh committed
2055
    let mut app = Router::new()
2056
2057
        .merge(swagger_ui)
        .merge(base_routes)
Erik Kaunismäki's avatar
Erik Kaunismäki committed
2058
        .merge(info_routes)
drbh's avatar
drbh committed
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
        .merge(aws_sagemaker_route);

    #[cfg(feature = "google")]
    {
        tracing::info!("Built with `google` feature");
        tracing::info!(
            "Environment variables `AIP_PREDICT_ROUTE` and `AIP_HEALTH_ROUTE` will be respected."
        );
        if let Ok(env_predict_route) = std::env::var("AIP_PREDICT_ROUTE") {
            app = app.route(&env_predict_route, post(vertex_compatibility));
        }
        if let Ok(env_health_route) = std::env::var("AIP_HEALTH_ROUTE") {
            app = app.route(&env_health_route, get(health));
        }
    }

2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
    #[cfg(feature = "kserve")]
    {
        tracing::info!("Built with `kserve` feature");
        app = app
            .route(
                "/v2/models/:model_name/versions/:model_version/infer",
                post(kserve_model_infer),
            )
            .route(
                "/v2/models/:model_name/versions/:model_version",
                get(kserve_model_metadata),
            )
            .route("/v2/health/ready", get(kserve_health_ready))
            .route("/v2/health/live", get(kserve_health_live))
            .route("/v2", get(kerve_server_metadata))
            .route(
                "/v2/models/:model_name/versions/:model_version/ready",
                get(kserve_model_metadata_ready),
            );
    }

drbh's avatar
drbh committed
2096
2097
    // add layers after routes
    app = app
2098
        .layer(Extension(info))
2099
2100
        .layer(Extension(compat_return_full_text))
        .layer(Extension(infer))
2101
        .layer(Extension(compute_type))
2102
        .layer(Extension(prom_handle.clone()))
Nicolas Patry's avatar
Nicolas Patry committed
2103
        .layer(OtelAxumLayer::default())
2104
        .layer(cors_layer);
Olivier Dehaene's avatar
Olivier Dehaene committed
2105

OlivierDehaene's avatar
OlivierDehaene committed
2106
2107
    tracing::info!("Connected");

2108
2109
2110
    if ngrok {
        #[cfg(feature = "ngrok")]
        {
2111
            panic!("ngrok feature is not functional with axum=0.7 and hyper=1, waiting on https://github.com/ngrok/ngrok-rust/pull/137/files to re-enable.");
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125

            // Run server
        }
        #[cfg(not(feature = "ngrok"))]
        {
            let _ngrok_authtoken = ngrok_authtoken;
            let _ngrok_domain = ngrok_domain;
            let _ngrok_username = ngrok_username;
            let _ngrok_password = ngrok_password;

            panic!("`text-generation-router` was compiled without the `ngrok` feature");
        }
    } else {
        // Run server
2126
2127
2128

        let listener = tokio::net::TcpListener::bind(&addr).await.unwrap();
        axum::serve(listener, app)
2129
            .with_graceful_shutdown(shutdown_signal())
OlivierDehaene's avatar
OlivierDehaene committed
2130
2131
            .await
            .map_err(|err| WebServerError::Axum(Box::new(err)))?;
2132
    }
2133
    Ok(())
Olivier Dehaene's avatar
Olivier Dehaene committed
2134
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
2135

Nicolas Patry's avatar
Nicolas Patry committed
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
/// get model info from the Huggingface Hub
pub async fn get_hub_model_info(api: &ApiRepo) -> Option<HubModelInfo> {
    let response = api.info_request().send().await.ok()?;

    if response.status().is_success() {
        let hub_model_info: HubModelInfo =
            serde_json::from_str(&response.text().await.ok()?).ok()?;
        if let Some(sha) = &hub_model_info.sha {
            tracing::info!(
                "Serving revision {sha} of model {}",
                hub_model_info.model_id
            );
        }
        Some(hub_model_info)
    } else {
        None
    }
}

/// get base tokenizer
pub async fn get_base_tokenizer(api: &Api, api_repo: &ApiRepo) -> Option<PathBuf> {
    let config_filename = api_repo.get("config.json").await.ok()?;

    // Open the file in read-only mode with buffer.
    let file = File::open(config_filename).ok()?;
    let reader = BufReader::new(file);

    // Read the JSON contents of the file as an instance of `User`.
    let config: serde_json::Value = serde_json::from_reader(reader).ok()?;

    if let Some(serde_json::Value::String(base_model_id)) = config.get("base_model_name_or_path") {
        let api_base_repo = api.repo(Repo::with_revision(
            base_model_id.to_string(),
            RepoType::Model,
            "main".to_string(),
        ));

        api_base_repo.get("tokenizer.json").await.ok()
    } else {
        None
    }
}

/// get tokenizer_config from the Huggingface Hub
pub async fn get_tokenizer_config(api_repo: &ApiRepo) -> Option<HubTokenizerConfig> {
    let tokenizer_config_filename = api_repo.get("tokenizer_config.json").await.ok()?;

    // Open the file in read-only mode with buffer.
    let file = File::open(tokenizer_config_filename).ok()?;
    let reader = BufReader::new(file);

    // Read the JSON contents of the file as an instance of 'HubTokenizerConfig'.
    let tokenizer_config: HubTokenizerConfig = serde_json::from_reader(reader)
        .map_err(|e| {
            tracing::warn!("Unable to parse tokenizer config: {}", e);
            e
        })
        .ok()?;

    Some(tokenizer_config)
}

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
/// Shutdown signal handler
async fn shutdown_signal() {
    let ctrl_c = async {
        signal::ctrl_c()
            .await
            .expect("failed to install Ctrl+C handler");
    };

    #[cfg(unix)]
    let terminate = async {
        signal::unix::signal(signal::unix::SignalKind::terminate())
            .expect("failed to install signal handler")
            .recv()
            .await;
    };

    #[cfg(not(unix))]
    let terminate = std::future::pending::<()>();

    tokio::select! {
        _ = ctrl_c => {},
        _ = terminate => {},
    }

    tracing::info!("signal received, starting graceful shutdown");
2223
    opentelemetry::global::shutdown_tracer_provider();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
2224
}
2225
2226
2227
2228
2229
2230
2231
2232
2233

/// Convert to Axum supported formats
impl From<InferError> for (StatusCode, Json<ErrorResponse>) {
    fn from(err: InferError) -> Self {
        let status_code = match err {
            InferError::GenerationError(_) => StatusCode::FAILED_DEPENDENCY,
            InferError::Overloaded(_) => StatusCode::TOO_MANY_REQUESTS,
            InferError::ValidationError(_) => StatusCode::UNPROCESSABLE_ENTITY,
            InferError::IncompleteGeneration => StatusCode::INTERNAL_SERVER_ERROR,
2234
            InferError::TemplateError(_) => StatusCode::UNPROCESSABLE_ENTITY,
2235
            InferError::ToolError(_) => StatusCode::UNPROCESSABLE_ENTITY,
2236
2237
2238
2239
2240
2241
        };

        (
            status_code,
            Json(ErrorResponse {
                error: err.to_string(),
2242
                error_type: err.error_type().to_string(),
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
            }),
        )
    }
}

impl From<InferError> for Event {
    fn from(err: InferError) -> Self {
        Event::default()
            .json_data(ErrorResponse {
                error: err.to_string(),
2253
                error_type: err.error_type().to_string(),
2254
2255
2256
2257
            })
            .unwrap()
    }
}
OlivierDehaene's avatar
OlivierDehaene committed
2258
2259
2260
2261
2262
2263

#[derive(Debug, Error)]
pub enum WebServerError {
    #[error("Axum error: {0}")]
    Axum(#[from] axum::BoxError),
}
Nicolas Patry's avatar
Nicolas Patry committed
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334

/// Create a post_processor for the LlamaTokenizer
fn create_post_processor(
    tokenizer: &Tokenizer,
    tokenizer_config: &HubTokenizerConfig,
) -> Result<TemplateProcessing, tokenizers::processors::template::TemplateProcessingBuilderError> {
    let add_bos_token = tokenizer_config.add_bos_token.unwrap_or(true);
    let add_eos_token = tokenizer_config.add_eos_token.unwrap_or(false);

    let bos_token = tokenizer_config.bos_token.as_ref();
    let eos_token = tokenizer_config.eos_token.as_ref();

    if add_bos_token && bos_token.is_none() {
        panic!("add_bos_token = true but bos_token is None");
    }

    if add_eos_token && eos_token.is_none() {
        panic!("add_eos_token = true but eos_token is None");
    }

    let mut single = Vec::new();
    let mut pair = Vec::new();
    let mut special_tokens = Vec::new();

    if add_bos_token {
        if let Some(bos) = bos_token {
            let bos_token_id = tokenizer
                .token_to_id(bos.as_str())
                .expect("Should have found the bos token id");
            special_tokens.push((bos.as_str(), bos_token_id));
            single.push(format!("{}:0", bos.as_str()));
            pair.push(format!("{}:0", bos.as_str()));
        }
    }

    single.push("$A:0".to_string());
    pair.push("$A:0".to_string());

    if add_eos_token {
        if let Some(eos) = eos_token {
            let eos_token_id = tokenizer
                .token_to_id(eos.as_str())
                .expect("Should have found the eos token id");
            special_tokens.push((eos.as_str(), eos_token_id));
            single.push(format!("{}:0", eos.as_str()));
            pair.push(format!("{}:0", eos.as_str()));
        }
    }

    if add_bos_token {
        if let Some(bos) = bos_token {
            pair.push(format!("{}:1", bos.as_str()));
        }
    }

    pair.push("$B:1".to_string());

    if add_eos_token {
        if let Some(eos) = eos_token {
            pair.push(format!("{}:1", eos.as_str()));
        }
    }

    let post_processor = TemplateProcessing::builder()
        .try_single(single)?
        .try_pair(pair)?
        .special_tokens(special_tokens)
        .build()?;

    Ok(post_processor)
}