main.rs 58.5 KB
Newer Older
1
use clap::{Parser, ValueEnum};
2
use hf_hub::{api::sync::Api, Repo, RepoType};
3
4
use nix::sys::signal::{self, Signal};
use nix::unistd::Pid;
5
use serde::Deserialize;
Nicolas Patry's avatar
Nicolas Patry committed
6
use std::env;
7
use std::ffi::OsString;
8
use std::io::{BufRead, BufReader, Lines};
9
use std::os::unix::process::{CommandExt, ExitStatusExt};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
10
use std::path::Path;
OlivierDehaene's avatar
OlivierDehaene committed
11
use std::process::{Child, Command, ExitStatus, Stdio};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
12
13
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::mpsc::TryRecvError;
14
use std::sync::{mpsc, Arc};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
15
16
17
18
use std::thread;
use std::thread::sleep;
use std::time::{Duration, Instant};
use std::{fs, io};
19
use thiserror::Error;
20
use tracing_subscriber::{filter::LevelFilter, EnvFilter};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
21

22
23
mod env_runtime;

24
#[derive(Deserialize)]
25
struct RawConfig {
26
    max_position_embeddings: Option<usize>,
27
    n_positions: Option<usize>,
28
    model_type: Option<String>,
29
30
31
    max_seq_len: Option<usize>,
}

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#[derive(Deserialize)]
struct Config {
    max_position_embeddings: Option<usize>,
}

impl From<RawConfig> for Config {
    fn from(other: RawConfig) -> Self {
        let max_position_embeddings = other
            .max_position_embeddings
            .or(other.max_seq_len)
            .or(other.n_positions);
        Config {
            max_position_embeddings,
        }
    }
}

49
50
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Quantization {
51
    /// 4 bit quantization. Requires a specific AWQ quantized model:
52
    ///   <https://hf.co/models?search=awq>.
53
    /// Should replace GPTQ models wherever possible because of the better latency
54
55
56
    Awq,
    /// 8 bit quantization, doesn't require specific model.
    /// Should be a drop-in replacement to bitsandbytes with much better performance.
57
    /// Kernels are from <https://github.com/NetEase-FuXi/EETQ.git>
58
    Eetq,
59
60
61
62
    /// Variable bit quantization. Requires a specific EXL2 quantized model:
    /// <https://hf.co/models?search=exl2>. Requires exllama2 kernels and does
    /// not support tensor parallelism (num_shard > 1).
    Exl2,
63
    /// 4 bit quantization. Requires a specific GTPQ quantized model: <https://hf.co/models?search=gptq>.
64
    /// text-generation-inference will use exllama (faster) kernels wherever possible, and use
65
66
67
    /// triton kernel (wider support) when it's not.
    /// AWQ has faster kernels.
    Gptq,
68
69
    /// 4 bit quantization. Requires a specific Marlin quantized model: <https://hf.co/models?search=marlin>.
    Marlin,
70
71
72
73
74
75
    /// Bitsandbytes 8bit. Can be applied on any model, will cut the memory requirement in half,
    /// but it is known that the model will be much slower to run than the native f16.
    #[deprecated(
        since = "1.1.0",
        note = "Use `eetq` instead, which provides better latencies overall and is drop-in in most cases"
    )]
76
    Bitsandbytes,
77
78
    /// Bitsandbytes 4bit. Can be applied on any model, will cut the memory requirement by 4x,
    /// but it is known that the model will be much slower to run than the native f16.
Nicolas Patry's avatar
Nicolas Patry committed
79
    BitsandbytesNF4,
80
81
    /// Bitsandbytes 4bit. nf4 should be preferred in most cases but maybe this one has better
    /// perplexity performance for you model
Nicolas Patry's avatar
Nicolas Patry committed
82
    BitsandbytesFP4,
Nicolas Patry's avatar
Nicolas Patry committed
83
84
85
86
87
    /// [FP8](https://developer.nvidia.com/blog/nvidia-arm-and-intel-publish-fp8-specification-for-standardization-as-an-interchange-format-for-ai/) (e4m3) works on H100 and above
    /// This dtype has native ops should be the fastest if available.
    /// This is currently not the fastest because of local unpacking + padding to satisfy matrix
    /// multiplication limitations.
    Fp8,
88
89
90
91
92
93
}

impl std::fmt::Display for Quantization {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
94
95
            #[allow(deprecated)]
            // Use `eetq` instead, which provides better latencies overall and is drop-in in most cases
96
97
98
            Quantization::Bitsandbytes => {
                write!(f, "bitsandbytes")
            }
Nicolas Patry's avatar
Nicolas Patry committed
99
100
101
102
103
104
            Quantization::BitsandbytesNF4 => {
                write!(f, "bitsandbytes-nf4")
            }
            Quantization::BitsandbytesFP4 => {
                write!(f, "bitsandbytes-fp4")
            }
105
106
107
            Quantization::Exl2 => {
                write!(f, "exl2")
            }
108
109
110
            Quantization::Gptq => {
                write!(f, "gptq")
            }
111
112
113
            Quantization::Marlin => {
                write!(f, "marlin")
            }
114
115
116
            Quantization::Awq => {
                write!(f, "awq")
            }
117
118
119
            Quantization::Eetq => {
                write!(f, "eetq")
            }
Nicolas Patry's avatar
Nicolas Patry committed
120
121
122
            Quantization::Fp8 => {
                write!(f, "fp8")
            }
123
124
125
126
        }
    }
}

127
128
129
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Dtype {
    Float16,
130
    #[clap(name = "bfloat16")]
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
    BFloat16,
}

impl std::fmt::Display for Dtype {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            Dtype::Float16 => {
                write!(f, "float16")
            }
            Dtype::BFloat16 => {
                write!(f, "bfloat16")
            }
        }
    }
}

Nicolas Patry's avatar
Nicolas Patry committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
#[derive(Clone, Copy, Debug, ValueEnum)]
enum RopeScaling {
    Linear,
    Dynamic,
}

impl std::fmt::Display for RopeScaling {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            RopeScaling::Linear => {
                write!(f, "linear")
            }
            RopeScaling::Dynamic => {
                write!(f, "dynamic")
            }
        }
    }
}

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
168
169
170
171
/// App Configuration
#[derive(Parser, Debug)]
#[clap(author, version, about, long_about = None)]
struct Args {
172
173
174
175
176
    /// The name of the model to load.
    /// Can be a MODEL_ID as listed on <https://hf.co/models> like
    /// `gpt2` or `OpenAssistant/oasst-sft-1-pythia-12b`.
    /// Or it can be a local directory containing the necessary files
    /// as saved by `save_pretrained(...)` methods of transformers
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
177
    #[clap(default_value = "bigscience/bloom-560m", long, env)]
178
    model_id: String,
179
180
181

    /// The actual revision of the model if you're referring to a model
    /// on the hub. You can use a specific commit id or a branch like `refs/pr/2`.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
182
    #[clap(long, env)]
183
    revision: Option<String>,
184

185
186
187
188
189
    /// The number of tokenizer workers used for payload validation and truncation inside the
    /// router.
    #[clap(default_value = "2", long, env)]
    validation_workers: usize,

190
    /// Whether to shard the model across multiple GPUs
191
192
    /// By default text-generation-inference will use all available GPUs to run
    /// the model. Setting it to `false` deactivates `num_shard`.
193
194
    #[clap(long, env)]
    sharded: Option<bool>,
195
196

    /// The number of shards to use if you don't want to use all GPUs on a given machine.
197
198
    /// You can use `CUDA_VISIBLE_DEVICES=0,1 text-generation-launcher... --num_shard 2`
    /// and `CUDA_VISIBLE_DEVICES=2,3 text-generation-launcher... --num_shard 2` to
199
    /// launch 2 copies with 2 shard each on a given machine with 4 GPUs for instance.
200
201
    #[clap(long, env)]
    num_shard: Option<usize>,
202

203
    /// Whether you want the model to be quantized.
204
205
    #[clap(long, env, value_enum)]
    quantize: Option<Quantization>,
206

Nicolas Patry's avatar
Nicolas Patry committed
207
208
209
210
211
212
213
    /// The number of input_ids to speculate on
    /// If using a medusa model, the heads will be picked up automatically
    /// Other wise, it will use n-gram speculation which is relatively free
    /// in terms of compute, but the speedup heavily depends on the task.
    #[clap(long, env)]
    speculate: Option<usize>,

214
215
216
217
    /// The dtype to be forced upon the model. This option cannot be used with `--quantize`.
    #[clap(long, env, value_enum)]
    dtype: Option<Dtype>,

218
219
220
221
222
223
    /// Whether you want to execute hub modelling code. Explicitly passing a `revision` is
    /// encouraged when loading a model with custom code to ensure no malicious code has been
    /// contributed in a newer revision.
    #[clap(long, env, value_enum)]
    trust_remote_code: bool,

224
225
226
    /// The maximum amount of concurrent requests for this particular deployment.
    /// Having a low limit will refuse clients requests instead of having them
    /// wait for too long and is usually good to handle backpressure correctly.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
227
228
    #[clap(default_value = "128", long, env)]
    max_concurrent_requests: usize,
229
230
231
232

    /// This is the maximum allowed value for clients to set `best_of`.
    /// Best of makes `n` generations at the same time, and return the best
    /// in terms of overall log probability over the entire generated sequence
233
234
    #[clap(default_value = "2", long, env)]
    max_best_of: usize,
235
236
237
238
239
240

    /// This is the maximum allowed value for clients to set `stop_sequences`.
    /// Stop sequences are used to allow the model to stop on more than just
    /// the EOS token, and enable more complex "prompting" where users can preprompt
    /// the model in a specific way and define their "own" stop token aligned with
    /// their prompt.
241
242
    #[clap(default_value = "4", long, env)]
    max_stop_sequences: usize,
243

Nicolas Patry's avatar
Nicolas Patry committed
244
    /// This is the maximum allowed value for clients to set `top_n_tokens`.
245
    /// `top_n_tokens` is used to return information about the the `n` most likely
Nicolas Patry's avatar
Nicolas Patry committed
246
247
248
249
250
251
    /// tokens at each generation step, instead of just the sampled token. This
    /// information can be used for downstream tasks like for classification or
    /// ranking.
    #[clap(default_value = "5", long, env)]
    max_top_n_tokens: u32,

252
253
254
255
    /// This is the maximum allowed input length (expressed in number of tokens)
    /// for users. The larger this value, the longer prompt users can send which
    /// can impact the overall memory required to handle the load.
    /// Please note that some models have a finite range of sequence they can handle.
256
257
258
259
260
261
262
    /// Default to min(max_position_embeddings - 1, 4095)
    #[clap(long, env)]
    max_input_tokens: Option<usize>,

    /// Legacy version of [`Args::max_input_tokens`].
    #[clap(long, env)]
    max_input_length: Option<usize>,
263
264
265
266
267
268
269
270
271

    /// This is the most important value to set as it defines the "memory budget"
    /// of running clients requests.
    /// Clients will send input sequences and ask to generate `max_new_tokens`
    /// on top. with a value of `1512` users can send either a prompt of
    /// `1000` and ask for `512` new tokens, or send a prompt of `1` and ask for
    /// `1511` max_new_tokens.
    /// The larger this value, the larger amount each request will be in your RAM
    /// and the less effective batching can be.
272
273
274
    /// Default to min(max_position_embeddings, 4096)
    #[clap(long, env)]
    max_total_tokens: Option<usize>,
275
276
277
278
279
280
281
282
283
284
285

    /// This represents the ratio of waiting queries vs running queries where
    /// you want to start considering pausing the running queries to include the waiting
    /// ones into the same batch.
    /// `waiting_served_ratio=1.2` Means when 12 queries are waiting and there's
    /// only 10 queries left in the current batch we check if we can fit those 12
    /// waiting queries into the batching strategy, and if yes, then batching happens
    /// delaying the 10 running queries by a `prefill` run.
    ///
    /// This setting is only applied if there is room in the batch
    /// as defined by `max_batch_total_tokens`.
286
    #[clap(default_value = "0.3", long, env)]
287
    waiting_served_ratio: f32,
288

289
290
291
    /// Limits the number of tokens for the prefill operation.
    /// Since this operation take the most memory and is compute bound, it is interesting
    /// to limit the number of requests that can be sent.
292
293
294
    /// Default to `max_input_tokens + 50` to give a bit of room.
    #[clap(long, env)]
    max_batch_prefill_tokens: Option<u32>,
295

296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
    /// **IMPORTANT** This is one critical control to allow maximum usage
    /// of the available hardware.
    ///
    /// This represents the total amount of potential tokens within a batch.
    /// When using padding (not recommended) this would be equivalent of
    /// `batch_size` * `max_total_tokens`.
    ///
    /// However in the non-padded (flash attention) version this can be much finer.
    ///
    /// For `max_batch_total_tokens=1000`, you could fit `10` queries of `total_tokens=100`
    /// or a single query of `1000` tokens.
    ///
    /// Overall this number should be the largest possible amount that fits the
    /// remaining memory (after the model is loaded). Since the actual memory overhead
    /// depends on other parameters like if you're using quantization, flash attention
    /// or the model implementation, text-generation-inference cannot infer this number
    /// automatically.
313
314
    #[clap(long, env)]
    max_batch_total_tokens: Option<u32>,
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332

    /// This setting defines how many tokens can be passed before forcing the waiting
    /// queries to be put on the batch (if the size of the batch allows for it).
    /// New queries require 1 `prefill` forward, which is different from `decode`
    /// and therefore you need to pause the running batch in order to run `prefill`
    /// to create the correct values for the waiting queries to be able to join the batch.
    ///
    /// With a value too small, queries will always "steal" the compute to run `prefill`
    /// and running queries will be delayed by a lot.
    ///
    /// With a value too big, waiting queries could wait for a very long time
    /// before being allowed a slot in the running batch. If your server is busy
    /// that means that requests that could run in ~2s on an empty server could
    /// end up running in ~20s because the query had to wait for 18s.
    ///
    /// This number is expressed in number of tokens to make it a bit more
    /// "model" agnostic, but what should really matter is the overall latency
    /// for end users.
333
334
    #[clap(default_value = "20", long, env)]
    max_waiting_tokens: usize,
335

336
337
338
339
340
    /// Enforce a maximum number of requests per batch
    /// Specific flag for hardware targets that do not support unpadded inference
    #[clap(long, env)]
    max_batch_size: Option<usize>,

341
342
    /// Specify the batch sizes to compute cuda graphs for.
    /// Use "0" to disable.
343
344
345
    /// Default = "1,2,4,8,16,32"
    #[clap(long, env, value_delimiter = ',')]
    cuda_graphs: Option<Vec<usize>>,
346

347
348
349
350
    /// The IP address to listen on
    #[clap(default_value = "0.0.0.0", long, env)]
    hostname: String,

351
    /// The port to listen on.
352
    #[clap(default_value = "3000", long, short, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
353
    port: u16,
354
355
356

    /// The name of the socket for gRPC communication between the webserver
    /// and the shards.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
357
358
    #[clap(default_value = "/tmp/text-generation-server", long, env)]
    shard_uds_path: String,
359
360

    /// The address the master shard will listen on. (setting used by torch distributed)
361
    #[clap(default_value = "localhost", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
362
    master_addr: String,
363
364

    /// The address the master port will listen on. (setting used by torch distributed)
365
    #[clap(default_value = "29500", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
366
    master_port: usize,
367
368
369

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
370
    #[clap(long, env)]
371
    huggingface_hub_cache: Option<String>,
372
373
374

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
375
376
    #[clap(long, env)]
    weights_cache_override: Option<String>,
377
378
379
380
381

    /// For some models (like bloom), text-generation-inference implemented custom
    /// cuda kernels to speed up inference. Those kernels were only tested on A100.
    /// Use this flag to disable them if you're running on different hardware and
    /// encounter issues.
382
    #[clap(long, env)]
383
    disable_custom_kernels: bool,
384

385
386
387
388
389
    /// Limit the CUDA available memory.
    /// The allowed value equals the total visible memory multiplied by cuda-memory-fraction.
    #[clap(default_value = "1.0", long, env)]
    cuda_memory_fraction: f32,

Nicolas Patry's avatar
Nicolas Patry committed
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
    /// Rope scaling will only be used for RoPE models
    /// and allow rescaling the position rotary to accomodate for
    /// larger prompts.
    ///
    /// Goes together with `rope_factor`.
    ///
    /// `--rope-factor 2.0` gives linear scaling with a factor of 2.0
    /// `--rope-scaling dynamic` gives dynamic scaling with a factor of 1.0
    /// `--rope-scaling linear` gives linear scaling with a factor of 1.0 (Nothing will be changed
    /// basically)
    ///
    /// `--rope-scaling linear --rope-factor` fully describes the scaling you want
    #[clap(long, env)]
    rope_scaling: Option<RopeScaling>,

    /// Rope scaling will only be used for RoPE models
    /// See `rope_scaling`
    #[clap(long, env)]
    rope_factor: Option<f32>,

410
    /// Outputs the logs in JSON format (useful for telemetry)
411
    #[clap(long, env)]
412
    json_output: bool,
413

414
415
    #[clap(long, env)]
    otlp_endpoint: Option<String>,
416

417
418
419
    #[clap(default_value = "text-generation-inference.router", long, env)]
    otlp_service_name: String,

420
421
    #[clap(long, env)]
    cors_allow_origin: Vec<String>,
422
423
424
425
    #[clap(long, env)]
    watermark_gamma: Option<f32>,
    #[clap(long, env)]
    watermark_delta: Option<f32>,
426

427
428
429
430
431
432
433
434
    /// Enable ngrok tunneling
    #[clap(long, env)]
    ngrok: bool,

    /// ngrok authentication token
    #[clap(long, env)]
    ngrok_authtoken: Option<String>,

435
    /// ngrok edge
436
    #[clap(long, env)]
437
    ngrok_edge: Option<String>,
438

439
440
441
442
443
    /// The path to the tokenizer config file. This path is used to load the tokenizer configuration which may
    /// include a `chat_template`. If not provided, the default config will be used from the model hub.
    #[clap(long, env)]
    tokenizer_config_path: Option<String>,

drbh's avatar
drbh committed
444
445
446
447
448
    /// Disable outlines grammar constrained generation.
    /// This is a feature that allows you to generate text that follows a specific grammar.
    #[clap(long, env)]
    disable_grammar_support: bool,

449
450
451
    /// Display a lot of information about your runtime environment
    #[clap(long, short, action)]
    env: bool,
452
453
454
455

    /// Control the maximum number of inputs that a client can send in a single request
    #[clap(default_value = "4", long, env)]
    max_client_batch_size: usize,
drbh's avatar
drbh committed
456
457
458
459
460

    /// Lora Adapters a list of adapter ids i.e. `repo/adapter1,repo/adapter2` to load during
    /// startup that will be available to callers via the `adapter_id` field in a request.
    #[clap(long, env)]
    lora_adapters: Option<String>,
461
462
463
464
465
466
467
468

    /// Disable sending of all usage statistics
    #[clap(default_value = "false", long, env)]
    disable_usage_stats: bool,

    /// Disable sending of crash reports, but allow anonymous usage statistics
    #[clap(default_value = "false", long, env)]
    disable_crash_reports: bool,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
469
470
}

471
472
473
#[derive(Debug)]
enum ShardStatus {
    Ready,
474
    Failed(usize),
475
}
476

477
478
479
480
#[allow(clippy::too_many_arguments)]
fn shard_manager(
    model_id: String,
    revision: Option<String>,
481
    quantize: Option<Quantization>,
Nicolas Patry's avatar
Nicolas Patry committed
482
    speculate: Option<usize>,
483
    dtype: Option<Dtype>,
484
    trust_remote_code: bool,
485
486
487
488
489
490
491
492
493
494
    uds_path: String,
    rank: usize,
    world_size: usize,
    master_addr: String,
    master_port: usize,
    huggingface_hub_cache: Option<String>,
    weights_cache_override: Option<String>,
    disable_custom_kernels: bool,
    watermark_gamma: Option<f32>,
    watermark_delta: Option<f32>,
495
    cuda_graphs: Vec<usize>,
496
    cuda_memory_fraction: f32,
Nicolas Patry's avatar
Nicolas Patry committed
497
498
    rope_scaling: Option<RopeScaling>,
    rope_factor: Option<f32>,
499
500
    max_total_tokens: usize,
    max_batch_size: Option<usize>,
501
    max_input_tokens: usize,
drbh's avatar
drbh committed
502
    lora_adapters: Option<String>,
503
    otlp_endpoint: Option<String>,
504
    otlp_service_name: String,
505
    log_level: LevelFilter,
506
    status_sender: mpsc::Sender<ShardStatus>,
507
    shutdown: Arc<AtomicBool>,
508
509
    _shutdown_sender: mpsc::Sender<()>,
) {
510
511
512
    // Enter shard-manager tracing span
    let _span = tracing::span!(tracing::Level::INFO, "shard-manager", rank = rank).entered();

513
514
515
516
    // Get UDS path
    let uds_string = format!("{uds_path}-{rank}");
    let uds = Path::new(&uds_string);
    // Clean previous runs
517
518
519
    if uds.exists() {
        fs::remove_file(uds).unwrap();
    }
520
521

    // Process args
OlivierDehaene's avatar
OlivierDehaene committed
522
    let mut shard_args = vec![
523
524
525
526
527
        "serve".to_string(),
        model_id,
        "--uds-path".to_string(),
        uds_path,
        "--logger-level".to_string(),
528
        log_level.to_string().to_uppercase(),
529
530
531
        "--json-output".to_string(),
    ];

532
533
    // Activate trust remote code
    if trust_remote_code {
OlivierDehaene's avatar
OlivierDehaene committed
534
        shard_args.push("--trust-remote-code".to_string());
535
536
    }

537
538
    // Activate tensor parallelism
    if world_size > 1 {
OlivierDehaene's avatar
OlivierDehaene committed
539
        shard_args.push("--sharded".to_string());
540
541
    }

542
    if let Some(quantize) = quantize {
OlivierDehaene's avatar
OlivierDehaene committed
543
544
        shard_args.push("--quantize".to_string());
        shard_args.push(quantize.to_string())
545
    }
546

Nicolas Patry's avatar
Nicolas Patry committed
547
548
549
550
551
    if let Some(speculate) = speculate {
        shard_args.push("--speculate".to_string());
        shard_args.push(speculate.to_string())
    }

552
    if let Some(dtype) = dtype {
OlivierDehaene's avatar
OlivierDehaene committed
553
554
        shard_args.push("--dtype".to_string());
        shard_args.push(dtype.to_string())
555
556
    }

557
558
    // Model optional revision
    if let Some(revision) = revision {
OlivierDehaene's avatar
OlivierDehaene committed
559
560
        shard_args.push("--revision".to_string());
        shard_args.push(revision)
561
    }
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
562

Nicolas Patry's avatar
Nicolas Patry committed
563
564
565
566
567
568
    let rope = match (rope_scaling, rope_factor) {
        (None, None) => None,
        (Some(scaling), None) => Some((scaling, 1.0)),
        (Some(scaling), Some(factor)) => Some((scaling, factor)),
        (None, Some(factor)) => Some((RopeScaling::Linear, factor)),
    };
569

570
    // OpenTelemetry Endpoint
571
    if let Some(otlp_endpoint) = otlp_endpoint {
OlivierDehaene's avatar
OlivierDehaene committed
572
573
        shard_args.push("--otlp-endpoint".to_string());
        shard_args.push(otlp_endpoint);
574
575
    }

576
577
578
579
    // OpenTelemetry Service Name
    shard_args.push("--otlp-service-name".to_string());
    shard_args.push(otlp_service_name);

580
581
582
583
    // In case we use sliding window, we may ignore the sliding in flash for some backends depending on the parameter.
    shard_args.push("--max-input-tokens".to_string());
    shard_args.push(max_input_tokens.to_string());

584
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
585
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
586

587
588
589
    // Remove LOG_LEVEL if present
    envs.retain(|(name, _)| name != "LOG_LEVEL");

590
    // Torch Distributed Env vars
OlivierDehaene's avatar
OlivierDehaene committed
591
592
593
594
    envs.push(("RANK".into(), rank.to_string().into()));
    envs.push(("WORLD_SIZE".into(), world_size.to_string().into()));
    envs.push(("MASTER_ADDR".into(), master_addr.into()));
    envs.push(("MASTER_PORT".into(), master_port.to_string().into()));
595
    envs.push(("TORCH_NCCL_AVOID_RECORD_STREAMS".into(), "1".into()));
596

597
598
599
600
601
602
    // CUDA memory fraction
    envs.push((
        "CUDA_MEMORY_FRACTION".into(),
        cuda_memory_fraction.to_string().into(),
    ));

603
    // Safetensors load fast
OlivierDehaene's avatar
OlivierDehaene committed
604
    envs.push(("SAFETENSORS_FAST_GPU".into(), "1".into()));
605

606
607
608
    // Disable progress bar
    envs.push(("HF_HUB_DISABLE_PROGRESS_BARS".into(), "1".into()));

609
610
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
OlivierDehaene's avatar
OlivierDehaene committed
611
    envs.push((
612
613
614
615
616
617
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));

    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
618
        envs.push(("HF_TOKEN".into(), api_token.into()))
619
620
    };

Nicolas Patry's avatar
Nicolas Patry committed
621
622
623
624
625
626
627
628
629
    // Detect rope scaling
    // Sending as env instead of CLI args to not bloat everything
    // those only can be used by RoPE models, so passing information around
    // for all models will complexify code unnecessarily
    if let Some((scaling, factor)) = rope {
        envs.push(("ROPE_SCALING".into(), scaling.to_string().into()));
        envs.push(("ROPE_FACTOR".into(), factor.to_string().into()));
    }

630
631
632
633
634
635
636
637
    envs.push((
        "MAX_TOTAL_TOKENS".into(),
        max_total_tokens.to_string().into(),
    ));
    if let Some(max_batch_size) = max_batch_size {
        envs.push(("MAX_BATCH_SIZE".into(), max_batch_size.to_string().into()));
    }

drbh's avatar
drbh committed
638
639
640
641
642
    // Lora Adapters
    if let Some(lora_adapters) = lora_adapters {
        envs.push(("LORA_ADAPTERS".into(), lora_adapters.into()));
    }

643
644
645
    // If huggingface_hub_cache is some, pass it to the shard
    // Useful when running inside a docker container
    if let Some(huggingface_hub_cache) = huggingface_hub_cache {
OlivierDehaene's avatar
OlivierDehaene committed
646
        envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
647
648
649
650
651
    };

    // If weights_cache_override is some, pass it to the shard
    // Useful when running inside a HuggingFace Inference Endpoint
    if let Some(weights_cache_override) = weights_cache_override {
OlivierDehaene's avatar
OlivierDehaene committed
652
        envs.push((
653
654
655
656
657
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

658
    // Enable experimental support for cuda graphs
659
660
661
662
663
664
665
666
667
668
    if !cuda_graphs.is_empty() {
        envs.push((
            "CUDA_GRAPHS".into(),
            cuda_graphs
                .into_iter()
                .map(|c| c.to_string())
                .collect::<Vec<_>>()
                .join(",")
                .into(),
        ));
669
670
    }

671
672
    // If disable_custom_kernels is true, pass it to the shard as an env var
    if disable_custom_kernels {
OlivierDehaene's avatar
OlivierDehaene committed
673
        envs.push(("DISABLE_CUSTOM_KERNELS".into(), "True".into()))
674
675
676
677
    }

    // Watermark Gamma
    if let Some(watermark_gamma) = watermark_gamma {
OlivierDehaene's avatar
OlivierDehaene committed
678
        envs.push(("WATERMARK_GAMMA".into(), watermark_gamma.to_string().into()))
679
680
681
682
    }

    // Watermark Delta
    if let Some(watermark_delta) = watermark_delta {
OlivierDehaene's avatar
OlivierDehaene committed
683
        envs.push(("WATERMARK_DELTA".into(), watermark_delta.to_string().into()))
684
685
686
    }

    // Start process
687
    tracing::info!("Starting shard");
688
    let mut p = match Command::new("text-generation-server")
OlivierDehaene's avatar
OlivierDehaene committed
689
        .args(shard_args)
690
        .env_clear()
OlivierDehaene's avatar
OlivierDehaene committed
691
        .envs(envs)
692
693
694
695
696
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
697
698
        Ok(p) => p,
        Err(err) => {
699
700
701
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-server not found in PATH");
                tracing::error!("Please install it with `make install-server`")
702
703
            }
            {
704
                tracing::error!("{}", err);
705
            }
706

707
            status_sender.send(ShardStatus::Failed(rank)).unwrap();
708
709
710
711
712
            return;
        }
    };

    // Redirect STDOUT to the console
713
    let shard_stdout_reader = BufReader::new(p.stdout.take().unwrap());
714
    let shard_stderr_reader = BufReader::new(p.stderr.take().unwrap());
715

716
    //stdout tracing thread
717
    thread::spawn(move || {
718
        log_lines(shard_stdout_reader.lines());
719
    });
720
721
722
    // We read stderr in another thread as it seems that lines() can block in some cases
    let (err_sender, err_receiver) = mpsc::channel();
    thread::spawn(move || {
OlivierDehaene's avatar
OlivierDehaene committed
723
        for line in shard_stderr_reader.lines().map_while(Result::ok) {
724
725
726
            err_sender.send(line).unwrap_or(());
        }
    });
727
728
729
730
731
732

    let mut ready = false;
    let start_time = Instant::now();
    let mut wait_time = Instant::now();
    loop {
        // Process exited
733
        if let Some(exit_status) = p.try_wait().unwrap() {
734
735
736
737
            let mut err = String::new();
            while let Ok(line) = err_receiver.recv_timeout(Duration::from_millis(10)) {
                err = err + "\n" + &line;
            }
738

739
            tracing::error!("Shard complete standard error output:\n{err}");
740

741
            if let Some(signal) = exit_status.signal() {
742
743
744
                tracing::error!("Shard process was signaled to shutdown with signal {signal}");
            }

745
            status_sender.send(ShardStatus::Failed(rank)).unwrap();
746
747
748
749
            return;
        }

        // We received a shutdown signal
750
        if shutdown.load(Ordering::SeqCst) {
751
            terminate("shard", p, Duration::from_secs(90)).unwrap();
752
753
754
755
756
            return;
        }

        // Shard is ready
        if uds.exists() && !ready {
757
            tracing::info!("Shard ready in {:?}", start_time.elapsed());
758
759
760
            status_sender.send(ShardStatus::Ready).unwrap();
            ready = true;
        } else if !ready && wait_time.elapsed() > Duration::from_secs(10) {
761
            tracing::info!("Waiting for shard to be ready...");
762
763
764
765
766
767
            wait_time = Instant::now();
        }
        sleep(Duration::from_millis(100));
    }
}

768
fn shutdown_shards(shutdown: Arc<AtomicBool>, shutdown_receiver: &mpsc::Receiver<()>) {
769
770
771
    tracing::info!("Shutting down shards");
    // Update shutdown value to true
    // This will be picked up by the shard manager
772
    shutdown.store(true, Ordering::SeqCst);
773
774
775
776
777
778
779

    // Wait for shards to shutdown
    // This will block till all shutdown_sender are dropped
    let _ = shutdown_receiver.recv();
}

fn num_cuda_devices() -> Option<usize> {
780
781
    let devices = match env::var("CUDA_VISIBLE_DEVICES") {
        Ok(devices) => devices,
782
783
784
        Err(_) => match env::var("NVIDIA_VISIBLE_DEVICES") {
            Ok(devices) => devices,
            Err(_) => env::var("ZE_AFFINITY_MASK").ok()?,
Nicolas Patry's avatar
Nicolas Patry committed
785
        },
786
    };
787
788
    let n_devices = devices.split(',').count();
    Some(n_devices)
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
}

#[derive(Deserialize)]
#[serde(rename_all = "UPPERCASE")]
enum PythonLogLevelEnum {
    Trace,
    Debug,
    Info,
    Success,
    Warning,
    Error,
    Critical,
}

#[derive(Deserialize)]
struct PythonLogLevel {
    name: PythonLogLevelEnum,
}

#[derive(Deserialize)]
struct PythonLogRecord {
    level: PythonLogLevel,
}

#[derive(Deserialize)]
struct PythonLogMessage {
    text: String,
    record: PythonLogRecord,
}

impl PythonLogMessage {
    fn trace(&self) {
        match self.record.level.name {
822
823
824
825
826
827
828
            PythonLogLevelEnum::Trace => tracing::trace!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Debug => tracing::debug!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Info => tracing::info!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Success => tracing::info!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Warning => tracing::warn!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Error => tracing::error!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Critical => tracing::error!("{}", self.text.trim_end()),
829
830
831
832
        }
    }
}

833
834
835
836
837
838
839
840
841
impl TryFrom<&String> for PythonLogMessage {
    type Error = serde_json::Error;

    fn try_from(value: &String) -> Result<Self, Self::Error> {
        serde_json::from_str::<Self>(value)
    }
}

fn log_lines<S: Sized + BufRead>(lines: Lines<S>) {
OlivierDehaene's avatar
OlivierDehaene committed
842
    for line in lines.map_while(Result::ok) {
843
844
845
846
847
848
849
        match PythonLogMessage::try_from(&line) {
            Ok(log) => log.trace(),
            Err(_) => tracing::debug!("{line}"),
        }
    }
}

850
851
852
853
fn find_num_shards(
    sharded: Option<bool>,
    num_shard: Option<usize>,
) -> Result<usize, LauncherError> {
854
855
856
857
    // get the number of shards given `sharded` and `num_shard`
    let num_shard = match (sharded, num_shard) {
        (Some(true), None) => {
            // try to default to the number of available GPUs
858
            tracing::info!("Parsing num_shard from CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES/ZE_AFFINITY_MASK");
859
            let n_devices = num_cuda_devices()
860
                .expect("--num-shard and CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES/ZE_AFFINITY_MASK are not set");
861
            if n_devices <= 1 {
862
863
864
                return Err(LauncherError::NotEnoughCUDADevices(format!(
                    "`sharded` is true but only found {n_devices} CUDA devices"
                )));
865
            }
866
            n_devices
867
        }
868
869
870
        (Some(true), Some(num_shard)) => {
            // we can't have only one shard while sharded
            if num_shard <= 1 {
871
872
873
                return Err(LauncherError::ArgumentValidation(
                    "`sharded` is true but `num_shard` <= 1".to_string(),
                ));
874
875
            }
            num_shard
876
        }
877
878
879
880
        (Some(false), Some(num_shard)) => num_shard,
        (Some(false), None) => 1,
        (None, None) => num_cuda_devices().unwrap_or(1),
        (None, Some(num_shard)) => num_shard,
881
    };
882
    if num_shard < 1 {
883
884
885
        return Err(LauncherError::ArgumentValidation(
            "`num_shard` cannot be < 1".to_string(),
        ));
886
    }
887
    Ok(num_shard)
888
}
889

890
#[derive(Debug, Error)]
891
enum LauncherError {
892
    #[error("Invalid argument: {0}")]
893
    ArgumentValidation(String),
894
    #[error("not enough cuda devices: {0}")]
895
    NotEnoughCUDADevices(String),
896
    #[error("Download error")]
897
    DownloadError,
898
    #[error("Shard cannot start")]
899
    ShardCannotStart,
900
    #[error("Shard disconnected")]
901
    ShardDisconnected,
902
    #[error("Shard failed")]
903
    ShardFailed,
904
    #[error("Webserver failed")]
905
    WebserverFailed,
906
    #[error("Webserver cannot start")]
907
908
    WebserverCannotStart,
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
909

910
911
912
913
914
915
916
917
fn download_convert_model(
    model_id: &str,
    revision: Option<&str>,
    trust_remote_code: bool,
    huggingface_hub_cache: Option<&str>,
    weights_cache_override: Option<&str>,
    running: Arc<AtomicBool>,
) -> Result<(), LauncherError> {
918
919
920
    // Enter download tracing span
    let _span = tracing::span!(tracing::Level::INFO, "download").entered();

OlivierDehaene's avatar
OlivierDehaene committed
921
    let mut download_args = vec![
922
        "download-weights".to_string(),
923
        model_id.to_string(),
924
925
926
927
928
929
        "--extension".to_string(),
        ".safetensors".to_string(),
        "--logger-level".to_string(),
        "INFO".to_string(),
        "--json-output".to_string(),
    ];
930

931
    // Model optional revision
932
    if let Some(revision) = &revision {
OlivierDehaene's avatar
OlivierDehaene committed
933
934
        download_args.push("--revision".to_string());
        download_args.push(revision.to_string())
935
    }
936

937
    // Trust remote code for automatic peft fusion
938
    if trust_remote_code {
939
940
941
        download_args.push("--trust-remote-code".to_string());
    }

942
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
943
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
944

945
946
947
    // Remove LOG_LEVEL if present
    envs.retain(|(name, _)| name != "LOG_LEVEL");

948
949
950
    // Disable progress bar
    envs.push(("HF_HUB_DISABLE_PROGRESS_BARS".into(), "1".into()));

951
    // If huggingface_hub_cache is set, pass it to the download process
952
    // Useful when running inside a docker container
953
    if let Some(ref huggingface_hub_cache) = huggingface_hub_cache {
OlivierDehaene's avatar
OlivierDehaene committed
954
        envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
955
    };
956

957
958
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
OlivierDehaene's avatar
OlivierDehaene committed
959
    envs.push((
960
961
962
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));
963

964
965
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
966
        envs.push(("HF_TOKEN".into(), api_token.into()))
967
    };
968

969
970
    // If args.weights_cache_override is some, pass it to the download process
    // Useful when running inside a HuggingFace Inference Endpoint
971
    if let Some(weights_cache_override) = &weights_cache_override {
OlivierDehaene's avatar
OlivierDehaene committed
972
        envs.push((
973
974
975
976
977
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

978
    // Start process
979
    tracing::info!("Starting check and download process for {model_id}");
980
    let mut download_process = match Command::new("text-generation-server")
OlivierDehaene's avatar
OlivierDehaene committed
981
        .args(download_args)
982
        .env_clear()
OlivierDehaene's avatar
OlivierDehaene committed
983
        .envs(envs)
984
985
986
987
988
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
989
990
        Ok(p) => p,
        Err(err) => {
991
992
993
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-server not found in PATH");
                tracing::error!("Please install it with `make install-server`")
994
995
            } else {
                tracing::error!("{}", err);
996
            }
997

998
999
1000
            return Err(LauncherError::DownloadError);
        }
    };
1001

1002
    let download_stdout = BufReader::new(download_process.stdout.take().unwrap());
1003

1004
    thread::spawn(move || {
1005
1006
1007
1008
1009
1010
1011
1012
        log_lines(download_stdout.lines());
    });

    let download_stderr = BufReader::new(download_process.stderr.take().unwrap());

    // We read stderr in another thread as it seems that lines() can block in some cases
    let (err_sender, err_receiver) = mpsc::channel();
    thread::spawn(move || {
OlivierDehaene's avatar
OlivierDehaene committed
1013
        for line in download_stderr.lines().map_while(Result::ok) {
1014
1015
            err_sender.send(line).unwrap_or(());
        }
1016
    });
1017

1018
    loop {
1019
1020
        if let Some(status) = download_process.try_wait().unwrap() {
            if status.success() {
1021
                tracing::info!("Successfully downloaded weights for {model_id}");
1022
                break;
1023
            }
1024
1025

            let mut err = String::new();
1026
1027
1028
1029
            while let Ok(line) = err_receiver.recv_timeout(Duration::from_millis(10)) {
                err = err + "\n" + &line;
            }

1030
1031
1032
1033
1034
1035
1036
1037
1038
            if let Some(signal) = status.signal() {
                tracing::error!(
                    "Download process was signaled to shutdown with signal {signal}: {err}"
                );
            } else {
                tracing::error!("Download encountered an error: {err}");
            }

            return Err(LauncherError::DownloadError);
1039
        }
1040
        if !running.load(Ordering::SeqCst) {
OlivierDehaene's avatar
OlivierDehaene committed
1041
            terminate("download", download_process, Duration::from_secs(10)).unwrap();
1042
1043
1044
            return Ok(());
        }
        sleep(Duration::from_millis(100));
1045
    }
1046
1047
    Ok(())
}
1048

1049
#[allow(clippy::too_many_arguments)]
1050
1051
1052
fn spawn_shards(
    num_shard: usize,
    args: &Args,
1053
    cuda_graphs: Vec<usize>,
1054
    max_total_tokens: usize,
1055
    max_input_tokens: usize,
1056
    max_log_level: LevelFilter,
1057
    shutdown: Arc<AtomicBool>,
1058
1059
1060
1061
1062
1063
    shutdown_receiver: &mpsc::Receiver<()>,
    shutdown_sender: mpsc::Sender<()>,
    status_receiver: &mpsc::Receiver<ShardStatus>,
    status_sender: mpsc::Sender<ShardStatus>,
    running: Arc<AtomicBool>,
) -> Result<(), LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1064
1065
    // Start shard processes
    for rank in 0..num_shard {
1066
1067
1068
1069
1070
1071
        let model_id = args.model_id.clone();
        let revision = args.revision.clone();
        let uds_path = args.shard_uds_path.clone();
        let master_addr = args.master_addr.clone();
        let huggingface_hub_cache = args.huggingface_hub_cache.clone();
        let weights_cache_override = args.weights_cache_override.clone();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1072
1073
1074
        let status_sender = status_sender.clone();
        let shutdown = shutdown.clone();
        let shutdown_sender = shutdown_sender.clone();
1075
        let otlp_endpoint = args.otlp_endpoint.clone();
1076
        let otlp_service_name = args.otlp_service_name.clone();
1077
        let quantize = args.quantize;
Nicolas Patry's avatar
Nicolas Patry committed
1078
        let speculate = args.speculate;
1079
        let dtype = args.dtype;
1080
        let trust_remote_code = args.trust_remote_code;
1081
1082
1083
1084
        let master_port = args.master_port;
        let disable_custom_kernels = args.disable_custom_kernels;
        let watermark_gamma = args.watermark_gamma;
        let watermark_delta = args.watermark_delta;
1085
        let cuda_graphs_clone = cuda_graphs.clone();
1086
        let cuda_memory_fraction = args.cuda_memory_fraction;
Nicolas Patry's avatar
Nicolas Patry committed
1087
1088
        let rope_scaling = args.rope_scaling;
        let rope_factor = args.rope_factor;
1089
        let max_batch_size = args.max_batch_size;
drbh's avatar
drbh committed
1090
        let lora_adapters = args.lora_adapters.clone();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1091
1092
        thread::spawn(move || {
            shard_manager(
1093
                model_id,
1094
                revision,
1095
                quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1096
                speculate,
1097
                dtype,
1098
                trust_remote_code,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1099
1100
1101
1102
1103
                uds_path,
                rank,
                num_shard,
                master_addr,
                master_port,
1104
1105
                huggingface_hub_cache,
                weights_cache_override,
1106
                disable_custom_kernels,
1107
1108
                watermark_gamma,
                watermark_delta,
1109
                cuda_graphs_clone,
1110
                cuda_memory_fraction,
Nicolas Patry's avatar
Nicolas Patry committed
1111
1112
                rope_scaling,
                rope_factor,
1113
1114
                max_total_tokens,
                max_batch_size,
1115
                max_input_tokens,
drbh's avatar
drbh committed
1116
                lora_adapters,
1117
                otlp_endpoint,
1118
                otlp_service_name,
1119
                max_log_level,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
                status_sender,
                shutdown,
                shutdown_sender,
            )
        });
    }
    drop(shutdown_sender);

    // Wait for shard to start
    let mut shard_ready = 0;
    while running.load(Ordering::SeqCst) {
        match status_receiver.try_recv() {
            Ok(ShardStatus::Ready) => {
                shard_ready += 1;
                if shard_ready == num_shard {
                    break;
                }
            }
            Err(TryRecvError::Empty) => {
                sleep(Duration::from_millis(100));
            }
1141
            Ok(ShardStatus::Failed(rank)) => {
1142
                tracing::error!("Shard {rank} failed to start");
1143
                shutdown_shards(shutdown, shutdown_receiver);
1144
                return Err(LauncherError::ShardCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1145
1146
1147
            }
            Err(TryRecvError::Disconnected) => {
                tracing::error!("Shard status channel disconnected");
1148
                shutdown_shards(shutdown, shutdown_receiver);
1149
                return Err(LauncherError::ShardDisconnected);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1150
1151
1152
            }
        }
    }
1153
1154
    Ok(())
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1155

1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
fn compute_type(num_shard: usize) -> Option<String> {
    let output = Command::new("nvidia-smi")
        .args(["--query-gpu=gpu_name", "--format=csv"])
        .output()
        .ok()?;
    let output = String::from_utf8(output.stdout).ok()?;
    let fullname = output.split('\n').nth(1)?;
    let cardname = fullname.replace(' ', "-").to_lowercase();
    let compute_type = format!("{num_shard}-{cardname}");
    Some(compute_type)
}

1168
fn spawn_webserver(
1169
    num_shard: usize,
1170
    args: Args,
1171
1172
1173
    max_input_tokens: usize,
    max_total_tokens: usize,
    max_batch_prefill_tokens: u32,
1174
    shutdown: Arc<AtomicBool>,
1175
    shutdown_receiver: &mpsc::Receiver<()>,
1176
) -> Result<Child, LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1177
1178
1179
    // All shard started
    // Start webserver
    tracing::info!("Starting Webserver");
OlivierDehaene's avatar
OlivierDehaene committed
1180
    let mut router_args = vec![
1181
1182
        "--max-client-batch-size".to_string(),
        args.max_client_batch_size.to_string(),
1183
        "--max-concurrent-requests".to_string(),
1184
        args.max_concurrent_requests.to_string(),
1185
        "--max-best-of".to_string(),
1186
        args.max_best_of.to_string(),
1187
        "--max-stop-sequences".to_string(),
1188
        args.max_stop_sequences.to_string(),
Nicolas Patry's avatar
Nicolas Patry committed
1189
1190
        "--max-top-n-tokens".to_string(),
        args.max_top_n_tokens.to_string(),
1191
1192
        "--max-input-tokens".to_string(),
        max_input_tokens.to_string(),
1193
        "--max-total-tokens".to_string(),
1194
        max_total_tokens.to_string(),
1195
        "--max-batch-prefill-tokens".to_string(),
1196
        max_batch_prefill_tokens.to_string(),
1197
        "--waiting-served-ratio".to_string(),
1198
        args.waiting_served_ratio.to_string(),
1199
        "--max-waiting-tokens".to_string(),
1200
        args.max_waiting_tokens.to_string(),
1201
1202
        "--validation-workers".to_string(),
        args.validation_workers.to_string(),
1203
1204
        "--hostname".to_string(),
        args.hostname.to_string(),
1205
        "--port".to_string(),
1206
        args.port.to_string(),
1207
        "--master-shard-uds-path".to_string(),
1208
        format!("{}-0", args.shard_uds_path),
1209
        "--tokenizer-name".to_string(),
1210
        args.model_id,
1211
1212
    ];

1213
1214
1215
1216
1217
1218
1219
1220
    // Pass usage stats flags to router
    if args.disable_usage_stats {
        router_args.push("--disable-usage-stats".to_string());
    }
    if args.disable_crash_reports {
        router_args.push("--disable-crash-reports".to_string());
    }

drbh's avatar
drbh committed
1221
1222
1223
1224
1225
    // Grammar support
    if args.disable_grammar_support {
        router_args.push("--disable-grammar-support".to_string());
    }

1226
1227
1228
1229
1230
1231
    // Tokenizer config path
    if let Some(ref tokenizer_config_path) = args.tokenizer_config_path {
        router_args.push("--tokenizer-config-path".to_string());
        router_args.push(tokenizer_config_path.to_string());
    }

1232
1233
1234
1235
1236
1237
    // Model optional max batch total tokens
    if let Some(max_batch_total_tokens) = args.max_batch_total_tokens {
        router_args.push("--max-batch-total-tokens".to_string());
        router_args.push(max_batch_total_tokens.to_string());
    }

1238
1239
1240
1241
1242
1243
    // Router optional max batch size
    if let Some(max_batch_size) = args.max_batch_size {
        router_args.push("--max-batch-size".to_string());
        router_args.push(max_batch_size.to_string());
    }

1244
1245
    // Model optional revision
    if let Some(ref revision) = args.revision {
OlivierDehaene's avatar
OlivierDehaene committed
1246
1247
        router_args.push("--revision".to_string());
        router_args.push(revision.to_string())
1248
1249
    }

1250
    if args.json_output {
OlivierDehaene's avatar
OlivierDehaene committed
1251
        router_args.push("--json-output".to_string());
1252
1253
    }

1254
    // OpenTelemetry
1255
    if let Some(otlp_endpoint) = args.otlp_endpoint {
OlivierDehaene's avatar
OlivierDehaene committed
1256
1257
        router_args.push("--otlp-endpoint".to_string());
        router_args.push(otlp_endpoint);
1258
1259
    }

1260
1261
1262
1263
1264
    // OpenTelemetry
    let otlp_service_name = args.otlp_service_name;
    router_args.push("--otlp-service-name".to_string());
    router_args.push(otlp_service_name);

1265
1266
    // CORS origins
    for origin in args.cors_allow_origin.into_iter() {
OlivierDehaene's avatar
OlivierDehaene committed
1267
1268
        router_args.push("--cors-allow-origin".to_string());
        router_args.push(origin);
1269
1270
    }

1271
1272
    // Ngrok
    if args.ngrok {
OlivierDehaene's avatar
OlivierDehaene committed
1273
1274
        router_args.push("--ngrok".to_string());
        router_args.push("--ngrok-authtoken".to_string());
1275
1276
1277
        router_args.push(args.ngrok_authtoken.unwrap());
        router_args.push("--ngrok-edge".to_string());
        router_args.push(args.ngrok_edge.unwrap());
1278
1279
    }

1280
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
1281
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
1282

1283
1284
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
1285
        envs.push(("HF_TOKEN".into(), api_token.into()))
1286
    };
1287

1288
1289
1290
1291
1292
1293
1294
    // Parse Compute type
    if let Ok(compute_type) = env::var("COMPUTE_TYPE") {
        envs.push(("COMPUTE_TYPE".into(), compute_type.into()))
    } else if let Some(compute_type) = compute_type(num_shard) {
        envs.push(("COMPUTE_TYPE".into(), compute_type.into()))
    }

1295
    let mut webserver = match Command::new("text-generation-router")
OlivierDehaene's avatar
OlivierDehaene committed
1296
1297
        .args(router_args)
        .envs(envs)
1298
1299
1300
1301
1302
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1303
1304
        Ok(p) => p,
        Err(err) => {
1305
            tracing::error!("Failed to start webserver: {}", err);
1306
1307
1308
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-router not found in PATH");
                tracing::error!("Please install it with `make install-router`")
1309
1310
            } else {
                tracing::error!("{}", err);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1311
            }
1312

1313
            shutdown_shards(shutdown, shutdown_receiver);
1314
            return Err(LauncherError::WebserverCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1315
1316
1317
        }
    };

1318
1319
1320
    // Redirect STDOUT and STDERR to the console
    let webserver_stdout = webserver.stdout.take().unwrap();
    let webserver_stderr = webserver.stderr.take().unwrap();
1321
1322

    thread::spawn(move || {
1323
1324
        let stdout = BufReader::new(webserver_stdout);
        let stderr = BufReader::new(webserver_stderr);
1325
        for line in stdout.lines() {
1326
            println!("{}", line.unwrap());
1327
        }
1328
1329
        for line in stderr.lines() {
            println!("{}", line.unwrap());
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1330
        }
1331
1332
1333
    });
    Ok(webserver)
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1334

OlivierDehaene's avatar
OlivierDehaene committed
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
fn terminate(process_name: &str, mut process: Child, timeout: Duration) -> io::Result<ExitStatus> {
    tracing::info!("Terminating {process_name}");

    let terminate_time = Instant::now();
    signal::kill(Pid::from_raw(process.id() as i32), Signal::SIGTERM).unwrap();

    tracing::info!("Waiting for {process_name} to gracefully shutdown");
    while terminate_time.elapsed() < timeout {
        if let Some(status) = process.try_wait()? {
            tracing::info!("{process_name} terminated");
            return Ok(status);
        }
        sleep(Duration::from_millis(100));
    }
    tracing::info!("Killing {process_name}");

    process.kill()?;
    let exit_status = process.wait()?;

    tracing::info!("{process_name} killed");
    Ok(exit_status)
}

1358
1359
fn main() -> Result<(), LauncherError> {
    // Pattern match configuration
1360
    let args: Args = Args::parse();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1361

1362
    // Filter events with LOG_LEVEL
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
    let varname = "LOG_LEVEL";
    let env_filter = if let Ok(log_level) = std::env::var(varname) {
        // Override to avoid simple logs to be spammed with tokio level informations
        let log_level = match &log_level[..] {
            "warn" => "text_generation_launcher=warn,text_generation_router=warn",
            "info" => "text_generation_launcher=info,text_generation_router=info",
            "debug" => "text_generation_launcher=debug,text_generation_router=debug",
            log_level => log_level,
        };
        EnvFilter::builder()
            .with_default_directive(LevelFilter::INFO.into())
            .parse_lossy(log_level)
    } else {
        EnvFilter::new("info")
    };
    let max_log_level = env_filter.max_level_hint().unwrap_or(LevelFilter::INFO);
1379

1380
    if args.json_output {
1381
1382
1383
1384
        tracing_subscriber::fmt()
            .with_env_filter(env_filter)
            .json()
            .init();
1385
    } else {
1386
1387
1388
1389
        tracing_subscriber::fmt()
            .with_env_filter(env_filter)
            .compact()
            .init();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1390
1391
    }

1392
1393
1394
1395
1396
    if args.env {
        let env_runtime = env_runtime::Env::new();
        tracing::info!("{}", env_runtime);
    }

Nicolas Patry's avatar
Nicolas Patry committed
1397
    tracing::info!("{:#?}", args);
1398

1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
    let get_max_position_embeddings = || -> Result<usize, Box<dyn std::error::Error>> {
        let model_id = args.model_id.clone();
        let mut path = std::path::Path::new(&args.model_id).to_path_buf();
        let filename = if !path.exists() {
            // Assume it's a hub id
            let api = Api::new()?;
            let repo = if let Some(ref revision) = args.revision {
                api.repo(Repo::with_revision(
                    model_id,
                    RepoType::Model,
                    revision.to_string(),
                ))
            } else {
                api.model(model_id)
            };
            repo.get("config.json")?
        } else {
            path.push("config.json");
            path
        };

        let content = std::fs::read_to_string(filename)?;
1421
        let config: RawConfig = serde_json::from_str(&content)?;
1422
1423
1424
1425
1426

        if config.model_type == Some("gemma2".to_string()) {
            tracing::info!("Forcing flash decoding because of softcap usage");
            std::env::set_var("FLASH_DECODING", "1");
        }
1427
        let config: Config = config.into();
1428
1429
1430
1431

        // Quantization usually means you're even more RAM constrained.
        let max_default = 4096;

1432
1433
1434
1435
1436
1437
1438
1439
        if let Some(max_position_embeddings) = config.max_position_embeddings {
            if max_position_embeddings > max_default {
                let max = max_position_embeddings;
                if args.max_input_tokens.is_none()
                    && args.max_total_tokens.is_none()
                    && args.max_batch_prefill_tokens.is_none()
                {
                    tracing::info!("Model supports up to {max} but tgi will now set its default to {max_default} instead. This is to save VRAM by refusing large prompts in order to allow more users on the same hardware. You can increase that size using `--max-batch-prefill-tokens={} --max-total-tokens={max} --max-input-tokens={}`.", max + 50, max - 1);
1440
                }
1441
1442
1443
                Ok(max_default)
            } else {
                Ok(max_position_embeddings)
1444
            }
1445
1446
1447
1448
1449
        } else {
            Err(Box::new(LauncherError::ArgumentValidation(
                "no max defined".to_string(),
            )))
        }
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
    };
    let max_position_embeddings: usize = get_max_position_embeddings().unwrap_or(4096);

    let max_input_tokens = {
        match (args.max_input_tokens, args.max_input_length) {
            (Some(max_input_tokens), Some(max_input_length)) => {
                return Err(LauncherError::ArgumentValidation(
                    format!("Both `max_input_tokens` ({max_input_tokens}) and `max_input_length` ({max_input_length}) are set. Please define only `max_input_tokens` as `max_input_length is deprecated for naming consistency.",
                )));
            }
            (Some(max_input_tokens), None) | (None, Some(max_input_tokens)) => max_input_tokens,
            (None, None) => {
                let value = max_position_embeddings - 1;
                tracing::info!("Default `max_input_tokens` to {value}");
                value
            }
        }
    };
    let max_total_tokens = {
        match args.max_total_tokens {
            Some(max_total_tokens) => max_total_tokens,
            None => {
                let value = max_position_embeddings;
                tracing::info!("Default `max_total_tokens` to {value}");
                value
            }
        }
    };
    let max_batch_prefill_tokens = {
        match args.max_batch_prefill_tokens {
            Some(max_batch_prefill_tokens) => max_batch_prefill_tokens,
            None => {
                let value: u32 = if let Some(max_batch_size) = args.max_batch_size {
                    max_batch_size * max_input_tokens
                } else {
                    // Adding some edge in order to account for potential block_size alignement
                    // issue.
                    max_input_tokens + 50
                } as u32;
                tracing::info!("Default `max_batch_prefill_tokens` to {value}");
                value
            }
        }
    };

1495
    // Validate args
1496
    if max_input_tokens >= max_total_tokens {
1497
        return Err(LauncherError::ArgumentValidation(
1498
            "`max_input_tokens must be < `max_total_tokens`".to_string(),
1499
1500
        ));
    }
1501
    if max_input_tokens as u32 > max_batch_prefill_tokens {
1502
        return Err(LauncherError::ArgumentValidation(format!(
1503
1504
            "`max_batch_prefill_tokens` must be >= `max_input_tokens`. Given: {} and {}",
            max_batch_prefill_tokens, max_input_tokens
1505
1506
        )));
    }
1507

1508
    let cuda_graphs = match (&args.cuda_graphs, &args.quantize) {
Nicolas Patry's avatar
Nicolas Patry committed
1509
        (Some(cuda_graphs), _) => cuda_graphs.iter().cloned().filter(|&c| c > 0).collect(),
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
        #[allow(deprecated)]
        (
            None,
            Some(
                Quantization::Bitsandbytes
                | Quantization::BitsandbytesNF4
                | Quantization::BitsandbytesFP4,
            ),
        ) => {
            tracing::info!("Bitsandbytes doesn't work with cuda graphs, deactivating them");
            vec![]
        }
        _ => {
            let cuda_graphs = vec![1, 2, 4, 8, 16, 32];
            tracing::info!("Using default cuda graphs {cuda_graphs:?}");
            cuda_graphs
        }
    };

1529
1530
1531
1532
1533
    if args.validation_workers == 0 {
        return Err(LauncherError::ArgumentValidation(
            "`validation_workers` must be > 0".to_string(),
        ));
    }
1534
1535
1536
1537
1538
1539
    if args.trust_remote_code {
        tracing::warn!(
            "`trust_remote_code` is set. Trusting that model `{}` do not contain malicious code.",
            args.model_id
        );
    }
1540
1541

    let num_shard = find_num_shards(args.sharded, args.num_shard)?;
1542
    if num_shard > 1 {
1543
1544
1545
1546
1547
        if matches!(args.quantize, Some(Quantization::Exl2)) {
            return Err(LauncherError::ArgumentValidation(
                "Sharding is currently not supported with `exl2` quantization".into(),
            ));
        }
1548
        tracing::info!("Sharding model on {num_shard} processes");
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1549
1550
    }

1551
    if let Some(ref max_batch_total_tokens) = args.max_batch_total_tokens {
1552
        if max_batch_prefill_tokens > *max_batch_total_tokens {
1553
1554
            return Err(LauncherError::ArgumentValidation(format!(
                "`max_batch_prefill_tokens` must be <= `max_batch_total_tokens`. Given: {} and {}",
1555
                max_batch_prefill_tokens, max_batch_total_tokens
1556
1557
            )));
        }
1558
        if max_total_tokens as u32 > *max_batch_total_tokens {
1559
1560
            return Err(LauncherError::ArgumentValidation(format!(
                "`max_total_tokens` must be <= `max_batch_total_tokens`. Given: {} and {}",
1561
                max_total_tokens, max_batch_total_tokens
1562
1563
1564
1565
            )));
        }
    }

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
    if args.ngrok {
        if args.ngrok_authtoken.is_none() {
            return Err(LauncherError::ArgumentValidation(
                "`ngrok-authtoken` must be set when using ngrok tunneling".to_string(),
            ));
        }

        if args.ngrok_edge.is_none() {
            return Err(LauncherError::ArgumentValidation(
                "`ngrok-edge` must be set when using ngrok tunneling".to_string(),
            ));
        }
    }

1580
1581
1582
1583
1584
1585
1586
    // Signal handler
    let running = Arc::new(AtomicBool::new(true));
    let r = running.clone();
    ctrlc::set_handler(move || {
        r.store(false, Ordering::SeqCst);
    })
    .expect("Error setting Ctrl-C handler");
1587

1588
    // Download and convert model weights
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
    download_convert_model(
        &args.model_id,
        args.revision.as_deref(),
        args.trust_remote_code,
        args.huggingface_hub_cache.as_deref(),
        args.weights_cache_override.as_deref(),
        running.clone(),
    )?;

    // Download and convert lora adapters if any
    if let Some(lora_adapters) = &args.lora_adapters {
        for adapter in lora_adapters.split(',') {
            download_convert_model(
                adapter,
                None,
                args.trust_remote_code,
                args.huggingface_hub_cache.as_deref(),
                args.weights_cache_override.as_deref(),
                running.clone(),
            )?;
        }
    }
1611

OlivierDehaene's avatar
OlivierDehaene committed
1612
1613
1614
1615
1616
    if !running.load(Ordering::SeqCst) {
        // Launcher was asked to stop
        return Ok(());
    }

1617
    // Shared shutdown bool
1618
    let shutdown = Arc::new(AtomicBool::new(false));
1619
1620
1621
    // Shared shutdown channel
    // When shutting down, the main thread will wait for all senders to be dropped
    let (shutdown_sender, shutdown_receiver) = mpsc::channel();
1622

1623
1624
    // Shared channel to track shard status
    let (status_sender, status_receiver) = mpsc::channel();
1625

1626
1627
1628
    spawn_shards(
        num_shard,
        &args,
1629
        cuda_graphs,
1630
        max_total_tokens,
1631
        max_input_tokens,
1632
        max_log_level,
1633
1634
1635
1636
1637
1638
1639
        shutdown.clone(),
        &shutdown_receiver,
        shutdown_sender,
        &status_receiver,
        status_sender,
        running.clone(),
    )?;
1640

1641
1642
1643
1644
1645
    // We might have received a termination signal
    if !running.load(Ordering::SeqCst) {
        shutdown_shards(shutdown, &shutdown_receiver);
        return Ok(());
    }
1646

1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
    let mut webserver = spawn_webserver(
        num_shard,
        args,
        max_input_tokens,
        max_total_tokens,
        max_batch_prefill_tokens,
        shutdown.clone(),
        &shutdown_receiver,
    )
    .map_err(|err| {
        shutdown_shards(shutdown.clone(), &shutdown_receiver);
        err
    })?;
1660
1661
1662
1663
1664

    // Default exit code
    let mut exit_code = Ok(());

    while running.load(Ordering::SeqCst) {
1665
        if let Ok(ShardStatus::Failed(rank)) = status_receiver.try_recv() {
OlivierDehaene's avatar
OlivierDehaene committed
1666
            tracing::error!("Shard {rank} crashed");
1667
1668
1669
1670
            exit_code = Err(LauncherError::ShardFailed);
            break;
        };

1671
        match webserver.try_wait().unwrap() {
1672
1673
1674
1675
1676
1677
1678
1679
1680
            Some(_) => {
                tracing::error!("Webserver Crashed");
                shutdown_shards(shutdown, &shutdown_receiver);
                return Err(LauncherError::WebserverFailed);
            }
            None => {
                sleep(Duration::from_millis(100));
            }
        };
1681
    }
1682
1683

    // Graceful termination
OlivierDehaene's avatar
OlivierDehaene committed
1684
    terminate("webserver", webserver, Duration::from_secs(90)).unwrap();
1685
1686
1687
    shutdown_shards(shutdown, &shutdown_receiver);

    exit_code
1688
}