server.rs 93.7 KB
Newer Older
1
/// HTTP Server logic
OlivierDehaene's avatar
OlivierDehaene committed
2
use crate::config::Config;
Nicolas Patry's avatar
Nicolas Patry committed
3
4
use crate::infer::tool_grammar::ToolGrammar;
use crate::infer::{Backend, Infer, InferError, InferResponse, InferStreamResponse};
5
6
7
8
9
#[cfg(feature = "kserve")]
use crate::kserve::{
    kerve_server_metadata, kserve_health_live, kserve_health_ready, kserve_model_infer,
    kserve_model_metadata, kserve_model_metadata_ready,
};
10
use crate::validation::ValidationError;
Nicolas Patry's avatar
Nicolas Patry committed
11
12
use crate::vertex::vertex_compatibility;
use crate::ChatTokenizeResponse;
13
use crate::{
14
15
16
    usage_stats, BestOfSequence, Details, ErrorResponse, FinishReason, FunctionName,
    GenerateParameters, GenerateRequest, GenerateResponse, GrammarType, HubModelInfo,
    HubProcessorConfig, HubTokenizerConfig, Info, Message, MessageChunk, MessageContent,
Nicolas Patry's avatar
Nicolas Patry committed
17
18
    OutputMessage, PrefillToken, SimpleToken, StreamDetails, StreamOptions, StreamResponse,
    TextMessage, Token, TokenizeResponse, ToolCallDelta, ToolCallMessage, Url, Usage, Validation,
19
20
21
22
};
use crate::{
    ChatCompletion, ChatCompletionChoice, ChatCompletionChunk, ChatCompletionComplete,
    ChatCompletionDelta, ChatCompletionLogprob, ChatCompletionLogprobs, ChatCompletionTopLogprob,
23
    ChatRequest, Chunk, CompatGenerateRequest, Completion, CompletionComplete, CompletionFinal,
Nicolas Patry's avatar
Nicolas Patry committed
24
    CompletionRequest, CompletionType, DeltaToolCall, Function, Prompt, Tool,
25
};
drbh's avatar
drbh committed
26
use crate::{FunctionDefinition, HubPreprocessorConfig, ToolCall, ToolChoice, ToolType};
drbh's avatar
drbh committed
27
use crate::{ModelInfo, ModelsInfo};
28
use async_stream::__private::AsyncStream;
Olivier Dehaene's avatar
Olivier Dehaene committed
29
use axum::extract::Extension;
Nicolas Patry's avatar
Nicolas Patry committed
30
use axum::http::{HeaderMap, HeaderValue, Method, StatusCode};
31
use axum::response::sse::{Event, KeepAlive, Sse};
32
use axum::response::{IntoResponse, Response};
Olivier Dehaene's avatar
Olivier Dehaene committed
33
use axum::routing::{get, post};
34
use axum::{http, Json, Router};
Nicolas Patry's avatar
Nicolas Patry committed
35
use axum_tracing_opentelemetry::middleware::OtelAxumLayer;
36
use futures::stream::StreamExt;
37
use futures::stream::{FuturesOrdered, FuturesUnordered};
38
use futures::Stream;
drbh's avatar
drbh committed
39
use futures::TryStreamExt;
Nicolas Patry's avatar
Nicolas Patry committed
40
41
use hf_hub::api::tokio::{Api, ApiBuilder, ApiRepo};
use hf_hub::{Cache, Repo, RepoType};
Erik Kaunismäki's avatar
Erik Kaunismäki committed
42
use http::header::AUTHORIZATION;
43
use metrics_exporter_prometheus::{Matcher, PrometheusBuilder, PrometheusHandle};
Nicolas Patry's avatar
Nicolas Patry committed
44
use pyo3::types::IntoPyDict;
drbh's avatar
drbh committed
45
use serde_json::Value;
46
use std::convert::Infallible;
Nicolas Patry's avatar
Nicolas Patry committed
47
48
49
50
use std::fs::File;
use std::io::BufReader;
use std::net::{IpAddr, Ipv4Addr, SocketAddr};
use std::path::{Path, PathBuf};
OlivierDehaene's avatar
OlivierDehaene committed
51
use thiserror::Error;
Olivier Dehaene's avatar
Olivier Dehaene committed
52
use tokenizers::Tokenizer;
53
use tokio::select;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
54
use tokio::signal;
55
use tokio::sync::oneshot;
Olivier Dehaene's avatar
Olivier Dehaene committed
56
use tokio::time::Instant;
57
use tower_http::cors::{AllowOrigin, CorsLayer};
58
use tracing::{info_span, instrument, Instrument};
59
60
use utoipa::OpenApi;
use utoipa_swagger_ui::SwaggerUi;
Olivier Dehaene's avatar
Olivier Dehaene committed
61

62
63
/// Generate tokens if `stream == false` or a stream of token if `stream == true`
#[utoipa::path(
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
post,
tag = "Text Generation Inference",
path = "/",
request_body = CompatGenerateRequest,
responses(
(status = 200, description = "Generated Text",
content(
("application/json" = GenerateResponse),
("text/event-stream" = StreamResponse),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
83
)]
84
#[instrument(skip(infer, req))]
85
async fn compat_generate(
86
    Extension(default_return_full_text): Extension<bool>,
87
    infer: Extension<Infer>,
88
    compute_type: Extension<ComputeType>,
89
    Json(mut req): Json<CompatGenerateRequest>,
90
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
91
92
    // default return_full_text given the pipeline_tag
    if req.parameters.return_full_text.is_none() {
93
        req.parameters.return_full_text = Some(default_return_full_text)
94
95
    }

96
97
    // switch on stream
    if req.stream {
98
        Ok(generate_stream(infer, compute_type, Json(req.into()))
99
100
101
            .await
            .into_response())
    } else {
102
        let (headers, Json(generation)) = generate(infer, compute_type, Json(req.into())).await?;
103
        // wrap generation inside a Vec to match api-inference
104
        Ok((headers, Json(vec![generation])).into_response())
105
106
107
    }
}

108
109
/// Text Generation Inference endpoint info
#[utoipa::path(
110
111
112
113
get,
tag = "Text Generation Inference",
path = "/info",
responses((status = 200, description = "Served model info", body = Info))
114
115
)]
#[instrument]
116
117
async fn get_model_info(info: Extension<Info>) -> Json<Info> {
    Json(info.0)
118
119
}

drbh's avatar
drbh committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
#[utoipa::path(
get,
tag = "Text Generation Inference",
path = "/v1/models",
responses(
(status = 200, description = "Served model info", body = ModelInfo),
(status = 404, description = "Model not found", body = ErrorResponse),
)
)]
#[instrument(skip(info))]
/// Get model info
async fn openai_get_model_info(info: Extension<Info>) -> Json<ModelsInfo> {
    Json(ModelsInfo {
        data: vec![ModelInfo {
            id: info.0.model_id.clone(),
            object: "model".to_string(),
            created: 0, // TODO: determine how to get this
            owned_by: info.0.model_id.clone(),
        }],
        ..Default::default()
    })
}

143
144
145
146
147
148
149
150
151
#[utoipa::path(
    post,
    tag = "Text Generation Inference",
    path = "/chat_tokenize",
    request_body = ChatRequest,
    responses((status = 200, description = "Templated and tokenized ChatRequest", body = ChatTokenizeResponse))
)]
async fn get_chat_tokenize(
    Extension(infer): Extension<Infer>,
Nicolas Patry's avatar
Nicolas Patry committed
152
    Json(chat): Json<ChatRequest>,
153
154
155
) -> Result<(HeaderMap, Json<ChatTokenizeResponse>), (StatusCode, Json<ErrorResponse>)> {
    metrics::counter!("tgi_request_count").increment(1);

Nicolas Patry's avatar
Nicolas Patry committed
156
    let generate_request: GenerateRequest = chat.try_into_generate(&infer)?.0;
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
    let input = generate_request.inputs.clone();
    let encoding = infer.tokenize(generate_request).await?;
    if let Some(encoding) = encoding {
        let tokens: Vec<SimpleToken> = encoding
            .get_ids()
            .iter()
            .zip(encoding.get_offsets())
            .map(|(&id, &(start, stop))| {
                let text = input
                    .chars()
                    .skip(start)
                    .take(stop - start)
                    .collect::<String>();
                SimpleToken {
                    id,
                    text,
                    start,
                    stop,
                }
            })
            .collect();

        let resp = ChatTokenizeResponse {
            tokenize_response: TokenizeResponse(tokens),
            templated_text: input,
        };
        Ok((HeaderMap::new(), Json(resp)))
    } else {
        Err((
            StatusCode::NOT_FOUND,
            Json(ErrorResponse {
                error: "No fast tokenizer or tokenizer.json for this model".to_string(),
                error_type: "no fast tokenizer".to_string(),
            }),
        ))
    }
}

195
#[utoipa::path(
196
197
198
199
200
201
202
203
get,
tag = "Text Generation Inference",
path = "/health",
responses(
(status = 200, description = "Everything is working fine"),
(status = 503, description = "Text generation inference is down", body = ErrorResponse,
example = json ! ({"error": "unhealthy", "error_type": "healthcheck"})),
)
204
)]
Nicolas Patry's avatar
Nicolas Patry committed
205
#[instrument(skip(infer))]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
206
/// Health check method
Nicolas Patry's avatar
Nicolas Patry committed
207
208
async fn health(infer: Extension<Infer>) -> Result<(), (StatusCode, Json<ErrorResponse>)> {
    match infer.health().await {
209
210
211
212
213
214
215
216
217
        true => Ok(()),
        false => Err((
            StatusCode::SERVICE_UNAVAILABLE,
            Json(ErrorResponse {
                error: "unhealthy".to_string(),
                error_type: "healthcheck".to_string(),
            }),
        )),
    }
Olivier Dehaene's avatar
Olivier Dehaene committed
218
219
}

220
221
/// Generate tokens
#[utoipa::path(
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
post,
tag = "Text Generation Inference",
path = "/generate",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = GenerateResponse),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
237
)]
238
#[instrument(
239
240
skip_all,
fields(
241
parameters = ? req.parameters,
242
243
244
245
246
247
248
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
249
)]
Olivier Dehaene's avatar
Olivier Dehaene committed
250
async fn generate(
251
    infer: Extension<Infer>,
252
    Extension(ComputeType(compute_type)): Extension<ComputeType>,
253
    Json(req): Json<GenerateRequest>,
254
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
255
    let span = tracing::Span::current();
256
257
258
    generate_internal(infer, ComputeType(compute_type), Json(req), span).await
}

259
pub(crate) async fn generate_internal(
260
261
262
263
264
    infer: Extension<Infer>,
    ComputeType(compute_type): ComputeType,
    Json(req): Json<GenerateRequest>,
    span: tracing::Span,
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
265
    let start_time = Instant::now();
266
    metrics::counter!("tgi_request_count").increment(1);
267

268
    // Do not long ultra long inputs, like image payloads.
269
270
271
272
    tracing::debug!(
        "Input: {}",
        &req.inputs.chars().take(1000).collect::<String>()
    );
273

274
    let compute_characters = req.inputs.chars().count();
275
    let mut add_prompt = None;
276
277
    if req.parameters.return_full_text.unwrap_or(false) {
        add_prompt = Some(req.inputs.clone());
278
279
    }

Nicolas Patry's avatar
Nicolas Patry committed
280
    let details: bool = req.parameters.details || req.parameters.decoder_input_details;
281
282

    // Inference
283
    let (response, best_of_responses) = match req.parameters.best_of {
284
        Some(best_of) if best_of > 1 => {
285
            let (response, best_of_responses) = infer.generate_best_of(req, best_of).await?;
286
287
            (response, Some(best_of_responses))
        }
288
        _ => (infer.generate(req).await?, None),
289
    };
Olivier Dehaene's avatar
Olivier Dehaene committed
290

OlivierDehaene's avatar
OlivierDehaene committed
291
    // Token details
292
    let input_length = response._input_length;
OlivierDehaene's avatar
OlivierDehaene committed
293
    let details = match details {
294
295
296
297
298
299
300
301
302
303
304
305
306
307
        true => {
            // convert best_of_responses
            let best_of_sequences = best_of_responses.map(|responses: Vec<InferResponse>| {
                responses
                    .into_iter()
                    .map(|response: InferResponse| {
                        // Add prompt if return_full_text
                        let mut output_text = response.generated_text.text;
                        if let Some(prompt) = &add_prompt {
                            output_text = prompt.clone() + &output_text;
                        }

                        BestOfSequence {
                            generated_text: output_text,
OlivierDehaene's avatar
OlivierDehaene committed
308
                            finish_reason: response.generated_text.finish_reason,
309
310
311
                            generated_tokens: response.generated_text.generated_tokens,
                            prefill: response.prefill,
                            tokens: response.tokens,
Nicolas Patry's avatar
Nicolas Patry committed
312
                            top_tokens: response.top_tokens,
313
314
315
316
317
318
319
                            seed: response.generated_text.seed,
                        }
                    })
                    .collect()
            });

            Some(Details {
OlivierDehaene's avatar
OlivierDehaene committed
320
                finish_reason: response.generated_text.finish_reason,
321
322
323
324
325
                generated_tokens: response.generated_text.generated_tokens,
                prefill: response.prefill,
                tokens: response.tokens,
                seed: response.generated_text.seed,
                best_of_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
326
                top_tokens: response.top_tokens,
327
328
            })
        }
OlivierDehaene's avatar
OlivierDehaene committed
329
330
331
        false => None,
    };

332
333
334
335
    // Timings
    let total_time = start_time.elapsed();
    let validation_time = response.queued - start_time;
    let queue_time = response.start - response.queued;
336
337
    let inference_time = Instant::now() - response.start;
    let time_per_token = inference_time / response.generated_text.generated_tokens;
338

339
340
341
342
343
344
345
346
    // Tracing metadata
    span.record("total_time", format!("{total_time:?}"));
    span.record("validation_time", format!("{validation_time:?}"));
    span.record("queue_time", format!("{queue_time:?}"));
    span.record("inference_time", format!("{inference_time:?}"));
    span.record("time_per_token", format!("{time_per_token:?}"));
    span.record("seed", format!("{:?}", response.generated_text.seed));

347
348
    // Headers
    let mut headers = HeaderMap::new();
349
    headers.insert("x-compute-type", compute_type.parse().unwrap());
350
351
    headers.insert(
        "x-compute-time",
Nicolas Patry's avatar
Nicolas Patry committed
352
        total_time.as_secs_f64().to_string().parse().unwrap(),
353
354
355
356
357
    );
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
358
359
360
361
362
363
364
365
366
367
368
    headers.insert(
        "x-total-time",
        total_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-validation-time",
        validation_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-queue-time",
        queue_time.as_millis().to_string().parse().unwrap(),
Olivier Dehaene's avatar
Olivier Dehaene committed
369
    );
370
371
372
373
374
375
376
377
    headers.insert(
        "x-inference-time",
        inference_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-time-per-token",
        time_per_token.as_millis().to_string().parse().unwrap(),
    );
378
379
380
381
382
    headers.insert("x-prompt-tokens", input_length.into());
    headers.insert(
        "x-generated-tokens",
        response.generated_text.generated_tokens.into(),
    );
383

384
    // Metrics
385
386
387
388
389
390
391
392
393
    metrics::counter!("tgi_request_success").increment(1);
    metrics::histogram!("tgi_request_duration").record(total_time.as_secs_f64());
    metrics::histogram!("tgi_request_validation_duration").record(validation_time.as_secs_f64());
    metrics::histogram!("tgi_request_queue_duration").record(queue_time.as_secs_f64());
    metrics::histogram!("tgi_request_inference_duration").record(inference_time.as_secs_f64());
    metrics::histogram!("tgi_request_mean_time_per_token_duration")
        .record(time_per_token.as_secs_f64());
    metrics::histogram!("tgi_request_generated_tokens")
        .record(response.generated_text.generated_tokens as f64);
394

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
395
    // Send response
396
397
398
399
400
    let mut output_text = response.generated_text.text;
    if let Some(prompt) = add_prompt {
        output_text = prompt + &output_text;
    }

401
402
    tracing::debug!("Output: {}", output_text);
    tracing::info!("Success");
403

404
    let response = GenerateResponse {
405
        generated_text: output_text,
OlivierDehaene's avatar
OlivierDehaene committed
406
        details,
407
    };
408
    Ok((headers, Json(response)))
Olivier Dehaene's avatar
Olivier Dehaene committed
409
410
}

Yannic Kilcher's avatar
Yannic Kilcher committed
411
/// Generate a stream of token using Server-Sent Events
412
#[utoipa::path(
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
post,
tag = "Text Generation Inference",
path = "/generate_stream",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = StreamResponse,
content_type = "text/event-stream"),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"}),
content_type = "text/event-stream"),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"}),
content_type = "text/event-stream"),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"}),
content_type = "text/event-stream"),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"}),
content_type = "text/event-stream"),
)
433
)]
434
#[instrument(
435
436
skip_all,
fields(
437
parameters = ? req.parameters,
438
439
440
441
442
443
444
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
445
446
)]
async fn generate_stream(
447
    Extension(infer): Extension<Infer>,
448
    Extension(compute_type): Extension<ComputeType>,
449
    Json(req): Json<GenerateRequest>,
450
451
452
453
) -> (
    HeaderMap,
    Sse<impl Stream<Item = Result<Event, Infallible>>>,
) {
454
    let span = tracing::Span::current();
455
456
457
458
459
    let on_message_callback = |stream_token: StreamResponse| {
        let event = Event::default();
        event.json_data(stream_token).unwrap()
    };
    let (headers, response_stream) =
460
        generate_stream_internal(infer, compute_type, Json(req), on_message_callback, span).await;
461
462
463
464
465
466
    let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
    (headers, sse)
}

async fn generate_stream_internal(
    infer: Infer,
467
    ComputeType(compute_type): ComputeType,
468
469
    Json(req): Json<GenerateRequest>,
    on_message_callback: impl Fn(StreamResponse) -> Event,
470
    span: tracing::Span,
471
) -> (HeaderMap, impl Stream<Item = Result<Event, Infallible>>) {
472
    let start_time = Instant::now();
473
    metrics::counter!("tgi_request_count").increment(1);
474

475
    tracing::debug!("Input: {}", req.inputs);
476

477
    let compute_characters = req.inputs.chars().count();
478
479

    let mut headers = HeaderMap::new();
480
    headers.insert("x-compute-type", compute_type.parse().unwrap());
481
482
483
484
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
485
    headers.insert("X-Accel-Buffering", "no".parse().unwrap());
486

487
488
489
490
    let stream = async_stream::stream! {
        // Inference
        let mut end_reached = false;
        let mut error = false;
491
492

        let mut add_prompt = None;
493
494
        if req.parameters.return_full_text.unwrap_or(false) {
            add_prompt = Some(req.inputs.clone());
495
        }
496
        let details = req.parameters.details;
497

498
        let best_of = req.parameters.best_of.unwrap_or(1);
499
500
        if best_of != 1 {
            let err = InferError::from(ValidationError::BestOfStream);
501
            metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
502
503
            tracing::error!("{err}");
            yield Ok(Event::from(err));
504
        } else if req.parameters.decoder_input_details {
505
            let err = InferError::from(ValidationError::PrefillDetailsStream);
506
            metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
507
508
509
            tracing::error!("{err}");
            yield Ok(Event::from(err));
        } else {
510
            match infer.generate_stream(req).instrument(info_span!(parent: &span, "async_stream")).await {
511
                // Keep permit as long as generate_stream lives
512
                Ok((_permit, input_length, response_stream)) => {
513
                    let mut index = 0;
Nicolas Patry's avatar
Nicolas Patry committed
514
                    let mut response_stream = Box::pin(response_stream);
515
516
                    // Server-Sent Event stream
                    while let Some(response) = response_stream.next().await {
517
                        index += 1;
518
519
520
521
522
523
                        match response {
                            Ok(response) => {
                                match response {
                                    // Prefill is ignored
                                    InferStreamResponse::Prefill(_) => {}
                                    // Yield event for every new token
Nicolas Patry's avatar
Nicolas Patry committed
524
525
526
527
                                    InferStreamResponse::Intermediate{
                                        token,
                                        top_tokens,
                                    } => {
528
529
                                        tracing::debug!(parent: &span, "Token: {:?}", token);

530
531
                                        // StreamResponse
                                        let stream_token = StreamResponse {
532
                                            index,
533
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
534
                                            top_tokens,
535
536
537
                                            generated_text: None,
                                            details: None,
                                        };
538
539
                                        let event = on_message_callback(stream_token);
                                        yield Ok(event);
540
                                    }
541
542
                                    // Yield event for last token and compute timings
                                    InferStreamResponse::End {
543
                                        token,
544
545
546
                                        generated_text,
                                        start,
                                        queued,
Nicolas Patry's avatar
Nicolas Patry committed
547
                                        top_tokens,
548
549
550
551
                                    } => {
                                        // Token details
                                        let details = match details {
                                            true => Some(StreamDetails {
OlivierDehaene's avatar
OlivierDehaene committed
552
                                                finish_reason: generated_text.finish_reason,
553
554
                                                generated_tokens: generated_text.generated_tokens,
                                                seed: generated_text.seed,
555
                                                input_length,
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
                                            }),
                                            false => None,
                                        };

                                        // Timings
                                        let total_time = start_time.elapsed();
                                        let validation_time = queued - start_time;
                                        let queue_time = start - queued;
                                        let inference_time = Instant::now() - start;
                                        let time_per_token = inference_time / generated_text.generated_tokens;

                                        // Tracing metadata
                                        span.record("total_time", format!("{total_time:?}"));
                                        span.record("validation_time", format!("{validation_time:?}"));
                                        span.record("queue_time", format!("{queue_time:?}"));
                                        span.record("inference_time", format!("{inference_time:?}"));
                                        span.record("time_per_token", format!("{time_per_token:?}"));
                                        span.record("seed", format!("{:?}", generated_text.seed));

                                        // Metrics
576
577
578
579
580
581
582
                                        metrics::counter!("tgi_request_success").increment(1);
                                        metrics::histogram!("tgi_request_duration").record(total_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_validation_duration").record(validation_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_queue_duration").record(queue_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_inference_duration").record(inference_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_mean_time_per_token_duration").record(time_per_token.as_secs_f64());
                                        metrics::histogram!("tgi_request_generated_tokens").record(generated_text.generated_tokens as f64);
583
584
585
586
587
588
589
590
591

                                        // StreamResponse
                                        end_reached = true;

                                        let mut output_text = generated_text.text;
                                        if let Some(prompt) = add_prompt {
                                            output_text = prompt + &output_text;
                                        }

592
593
                                        tracing::debug!(parent: &span, "Output: {}", output_text);
                                        tracing::info!(parent: &span, "Success");
594

595
                                        let stream_token = StreamResponse {
596
                                            index,
597
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
598
                                            top_tokens,
599
600
601
602
                                            generated_text: Some(output_text),
                                            details
                                        };

603
604
605

                                        let event = on_message_callback(stream_token);
                                        yield Ok(event);
606
607
                                        break;
                                    }
608
609
                                }
                            }
610
611
612
613
614
615
                            // yield error
                            Err(err) => {
                                error = true;
                                yield Ok(Event::from(err));
                                break;
                            }
616
617
                        }
                    }
618
619
620
621
622
                },
                // yield error
                Err(err) => {
                    error = true;
                    yield Ok(Event::from(err));
623
                }
624
625
626
627
            }
            // Check if generation reached the end
            // Skip if we already sent an error
            if !end_reached && !error {
628
                let err = InferError::IncompleteGenerationStream;
629
                metrics::counter!("tgi_request_failure", "err" => "incomplete").increment(1);
630
                tracing::error!("{err}");
631
                yield Ok(Event::from(err));
632
633
634
635
            }
        }
    };

636
637
638
    (headers, stream)
}

639
640
/// Generate tokens
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
641
642
643
644
645
646
647
post,
tag = "Text Generation Inference",
path = "/v1/completions",
request_body = CompletionRequest,
responses(
(status = 200, description = "Generated Chat Completion",
content(
648
649
("application/json" = CompletionFinal),
("text/event-stream" = Chunk),
OlivierDehaene's avatar
OlivierDehaene committed
650
651
652
653
654
655
656
657
658
659
660
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
661
#[instrument(
OlivierDehaene's avatar
OlivierDehaene committed
662
663
664
665
666
667
668
669
670
671
672
skip_all,
fields(
// parameters = ? req.parameters,
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
)]
673
674
675
676
677
678
async fn completions(
    Extension(infer): Extension<Infer>,
    Extension(compute_type): Extension<ComputeType>,
    Extension(info): Extension<Info>,
    Json(req): Json<CompletionRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
679
    let span = tracing::Span::current();
680
    metrics::counter!("tgi_request_count").increment(1);
681

682
    let CompletionRequest {
683
        model,
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
        max_tokens,
        seed,
        stop,
        stream,
        temperature,
        ..
    } = req;

    let max_new_tokens = max_tokens.or(Some(100));
    let stop = stop.unwrap_or_default();
    // enable greedy only when temperature is 0
    let (do_sample, temperature) = match temperature {
        Some(temperature) if temperature == 0.0 => (false, None),
        other => (true, other),
    };
699
700
701

    // if suffix is present throw an error
    if req.suffix.is_some() {
702
        metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
703
704
705
706
707
708
709
710
711
712
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: "Suffix is not supported and can be achieved by preprocessing the prompt."
                    .to_string(),
                error_type: "suffix not supported".to_string(),
            }),
        ));
    }

713
    if req.prompt.0.len() > info.max_client_batch_size {
714
        metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
715
716
717
718
719
720
721
722
723
724
725
726
727
728
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: format!(
                    "Number of prompts exceeds the maximum allowed batch size of {}",
                    info.max_client_batch_size
                ),
                error_type: "batch size exceeded".to_string(),
            }),
        ));
    }

    let generate_requests: Vec<GenerateRequest> = req
        .prompt
729
        .0
730
731
732
        .iter()
        .map(|prompt| GenerateRequest {
            inputs: prompt.to_string(),
733
            add_special_tokens: true,
734
735
            parameters: GenerateParameters {
                best_of: None,
736
                temperature,
737
738
739
740
741
                repetition_penalty: req.repetition_penalty,
                frequency_penalty: req.frequency_penalty,
                top_k: None,
                top_p: req.top_p,
                typical_p: None,
742
                do_sample,
743
744
                max_new_tokens,
                return_full_text: None,
745
                stop: stop.clone(),
746
747
748
749
750
751
752
                truncate: None,
                watermark: false,
                details: true,
                decoder_input_details: !stream,
                seed,
                top_n_tokens: None,
                grammar: None,
753
                adapter_id: model.as_ref().filter(|m| *m != "tgi").map(String::from),
754
755
756
757
758
759
760
            },
        })
        .collect();

    let mut x_compute_type = None;
    let mut x_compute_characters = 0u32;
    let mut x_accel_buffering = None;
761
762

    if stream {
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
        let mut response_streams = FuturesOrdered::new();
        for (index, generate_request) in generate_requests.into_iter().enumerate() {
            let model_id = info.model_id.clone();
            let system_fingerprint =
                format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));
            let infer_clone = infer.clone();
            let compute_type_clone = compute_type.clone();
            let span_clone = span.clone();

            // Create a future for each generate_stream_internal call.
            let generate_future = async move {
                let on_message_callback = move |stream_token: StreamResponse| {
                    let event = Event::default();

                    let current_time = std::time::SystemTime::now()
                        .duration_since(std::time::UNIX_EPOCH)
                        .unwrap_or_else(|_| std::time::Duration::from_secs(0))
                        .as_secs();

782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
                    let message = match stream_token.details {
                        Some(details) => {
                            let completion_tokens = details.generated_tokens;
                            let prompt_tokens = details.input_length;
                            let total_tokens = prompt_tokens + completion_tokens;

                            Completion::Final(CompletionFinal {
                                id: String::new(),
                                created: current_time,
                                model: model_id.clone(),
                                system_fingerprint: system_fingerprint.clone(),
                                choices: vec![CompletionComplete {
                                    finish_reason: details.finish_reason.to_string(),
                                    index: index as u32,
                                    logprobs: None,
                                    text: stream_token.token.text,
                                }],
                                usage: Usage {
                                    prompt_tokens,
                                    completion_tokens,
                                    total_tokens,
                                },
                            })
                        }
                        None => Completion::Chunk(Chunk {
                            id: String::new(),
808
809
                            created: current_time,
                            choices: vec![CompletionComplete {
810
                                finish_reason: String::new(),
811
812
813
814
815
816
                                index: index as u32,
                                logprobs: None,
                                text: stream_token.token.text,
                            }],
                            model: model_id.clone(),
                            system_fingerprint: system_fingerprint.clone(),
817
818
819
820
821
                        }),
                    };

                    event
                        .json_data(message)
822
                        .unwrap_or_else(|_e| Event::default())
823
824
825
826
827
828
829
830
831
832
833
834
835
836
                };

                let (header_tx, header_rx) = oneshot::channel();
                let (sse_tx, sse_rx) = tokio::sync::mpsc::unbounded_channel();

                tokio::spawn(async move {
                    let (header_map, sse) = generate_stream_internal(
                        infer_clone.clone(),
                        compute_type_clone.clone(),
                        Json(generate_request),
                        on_message_callback,
                        span_clone.clone(),
                    )
                    .await;
837

838
839
                    // send and dont wait for response
                    let _ = header_tx.send(header_map);
840

841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
                    // pin an emit messages to the sse_tx
                    let mut sse = Box::pin(sse);
                    while let Some(event) = sse.next().await {
                        if sse_tx.send(event).is_err() {
                            tracing::error!("Failed to send event. Receiver dropped.");
                            break;
                        }
                    }
                });

                (header_rx, sse_rx)
            };
            response_streams.push_back(generate_future);
        }

        let mut all_rxs = vec![];

        while let Some((header_rx, sse_rx)) = response_streams.next().await {
            all_rxs.push(sse_rx);

            // get the headers from the first response of each stream
            let headers = header_rx.await.map_err(|e| {
                tracing::error!("Failed to get headers: {:?}", e);
                (
                    StatusCode::INTERNAL_SERVER_ERROR,
                    Json(ErrorResponse {
                        error: "Failed to get headers".to_string(),
                        error_type: "headers".to_string(),
                    }),
870
                )
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
            })?;
            if x_compute_type.is_none() {
                x_compute_type = headers
                    .get("x-compute-type")
                    .and_then(|v| v.to_str().ok())
                    .map(|v| v.to_string());

                x_accel_buffering = headers
                    .get("x-accel-buffering")
                    .and_then(|v| v.to_str().ok())
                    .map(|v| v.to_string());
            }
            x_compute_characters += headers
                .get("x-compute-characters")
                .and_then(|v| v.to_str().ok())
                .and_then(|v| v.parse().ok())
                .unwrap_or(0);
        }
889

890
891
892
893
894
895
896
897
        let mut headers = HeaderMap::new();
        if let Some(x_compute_type) = x_compute_type {
            headers.insert("x-compute-type", x_compute_type.parse().unwrap());
        }
        headers.insert("x-compute-characters", x_compute_characters.into());
        if let Some(x_accel_buffering) = x_accel_buffering {
            headers.insert("x-accel-buffering", x_accel_buffering.parse().unwrap());
        }
898

899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
        // now sink the sse streams into a single stream and remove the ones that are done
        let stream: AsyncStream<Result<Event, Infallible>, _> = async_stream::stream! {
            loop {
                let mut i = 0;
                while i < all_rxs.len() {
                    let rx = &mut all_rxs[i];
                    select! {
                        Some(event) = rx.recv() => {
                            yield event;
                        }
                        else => {
                            all_rxs.remove(i);
                            continue; // skip the increment to handle the next element at the same index
                        }
                    }
                    i += 1; // only increment when no element was removed
                }

                if all_rxs.is_empty() {
                    break;
                }
            }
        };

923
924
925
926
        let stream = stream.chain(futures::stream::once(async {
            Ok(Event::default().data("[DONE]"))
        }));

927
        let sse = Sse::new(stream).keep_alive(KeepAlive::default());
928
929
930
931
932
933
934
        Ok((headers, sse).into_response())
    } else {
        let current_time = std::time::SystemTime::now()
            .duration_since(std::time::UNIX_EPOCH)
            .unwrap_or_else(|_| std::time::Duration::from_secs(0))
            .as_secs();

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
        let responses = FuturesUnordered::new();
        for (index, generate_request) in generate_requests.into_iter().enumerate() {
            let infer_clone = infer.clone();
            let compute_type_clone = compute_type.clone();
            let span_clone = span.clone();
            let response_future = async move {
                let result = generate_internal(
                    Extension(infer_clone),
                    compute_type_clone,
                    Json(generate_request),
                    span_clone,
                )
                .await;
                result.map(|(headers, generation)| (index, headers, generation))
            };
            responses.push(response_future);
        }
        let generate_responses = responses.try_collect::<Vec<_>>().await?;

        let mut prompt_tokens = 0u32;
        let mut completion_tokens = 0u32;
        let mut total_tokens = 0u32;

        let mut x_compute_time = 0u32;
        let mut x_total_time = 0u32;
        let mut x_validation_time = 0u32;
        let mut x_queue_time = 0u32;
        let mut x_inference_time = 0u32;
        let mut x_time_per_token = 0u32;
        let mut x_prompt_tokens = 0u32;
        let mut x_generated_tokens = 0u32;

        let choices = generate_responses
            .into_iter()
            .map(|(index, headers, Json(generation))| {
                let details = generation.details.ok_or((
                    // this should never happen but handle if details are missing unexpectedly
                    StatusCode::INTERNAL_SERVER_ERROR,
                    Json(ErrorResponse {
                        error: "No details in generation".to_string(),
                        error_type: "no details".to_string(),
                    }),
                ))?;

                if x_compute_type.is_none() {
                    x_compute_type = headers
                        .get("x-compute-type")
                        .and_then(|v| v.to_str().ok())
                        .map(|v| v.to_string());
                }

                // accumulate headers and usage from each response
                x_compute_time += headers
                    .get("x-compute-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_compute_characters += headers
                    .get("x-compute-characters")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_total_time += headers
                    .get("x-total-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_validation_time += headers
                    .get("x-validation-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_queue_time += headers
                    .get("x-queue-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_inference_time += headers
                    .get("x-inference-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_time_per_token += headers
                    .get("x-time-per-token")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_prompt_tokens += headers
                    .get("x-prompt-tokens")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_generated_tokens += headers
                    .get("x-generated-tokens")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);

                prompt_tokens += details.prefill.len() as u32;
                completion_tokens += details.generated_tokens;
                total_tokens += details.prefill.len() as u32 + details.generated_tokens;

                Ok(CompletionComplete {
1029
                    finish_reason: details.finish_reason.format(true),
1030
1031
1032
1033
1034
1035
1036
                    index: index as u32,
                    logprobs: None,
                    text: generation.generated_text,
                })
            })
            .collect::<Result<Vec<_>, _>>()
            .map_err(|(status, Json(err))| (status, Json(err)))?;
1037

1038
        let response = Completion::Final(CompletionFinal {
1039
1040
1041
1042
1043
1044
1045
1046
            id: "".to_string(),
            created: current_time,
            model: info.model_id.clone(),
            system_fingerprint: format!(
                "{}-{}",
                info.version,
                info.docker_label.unwrap_or("native")
            ),
1047
            choices,
1048
            usage: Usage {
1049
1050
1051
                prompt_tokens,
                completion_tokens,
                total_tokens,
1052
            },
1053
        });
1054

1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
        // headers similar to `generate` but aggregated
        let mut headers = HeaderMap::new();
        if let Some(x_compute_type) = x_compute_type {
            headers.insert("x-compute-type", x_compute_type.parse().unwrap());
        }
        headers.insert("x-compute-characters", x_compute_characters.into());
        headers.insert("x-total-time", x_total_time.into());
        headers.insert("x-validation-time", x_validation_time.into());
        headers.insert("x-queue-time", x_queue_time.into());
        headers.insert("x-inference-time", x_inference_time.into());
        headers.insert("x-time-per-token", x_time_per_token.into());
        headers.insert("x-prompt-tokens", x_prompt_tokens.into());
        headers.insert("x-generated-tokens", x_generated_tokens.into());
        if let Some(x_accel_buffering) = x_accel_buffering {
            headers.insert("x-accel-buffering", x_accel_buffering.parse().unwrap());
        }
1071
1072
1073
1074
        Ok((headers, Json(response)).into_response())
    }
}

1075
1076
/// Generate tokens
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
post,
tag = "Text Generation Inference",
path = "/v1/chat/completions",
request_body = ChatRequest,
responses(
(status = 200, description = "Generated Chat Completion",
content(
("application/json" = ChatCompletion),
("text/event-stream" = ChatCompletionChunk),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
1097
#[instrument(
OlivierDehaene's avatar
OlivierDehaene committed
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
skip_all,
fields(
// parameters = ? req.parameters,
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
)]
1109
1110
async fn chat_completions(
    Extension(infer): Extension<Infer>,
1111
    Extension(compute_type): Extension<ComputeType>,
1112
    Extension(info): Extension<Info>,
Nicolas Patry's avatar
Nicolas Patry committed
1113
    Json(chat): Json<ChatRequest>,
1114
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
1115
    let span = tracing::Span::current();
1116
    metrics::counter!("tgi_request_count").increment(1);
1117
1118
    let ChatRequest {
        stream,
Nicolas Patry's avatar
Nicolas Patry committed
1119
        stream_options,
Nicolas Patry's avatar
Nicolas Patry committed
1120
        logprobs,
1121
        ..
Nicolas Patry's avatar
Nicolas Patry committed
1122
1123
1124
    } = chat.clone();
    let (generate_request, using_tools): (GenerateRequest, bool) =
        chat.try_into_generate(&infer)?;
1125

Nicolas Patry's avatar
Nicolas Patry committed
1126
    let logprobs = logprobs.unwrap_or_default();
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142

    // static values that will be returned in all cases
    let model_id = info.model_id.clone();
    let system_fingerprint = format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));

    // switch on stream
    if stream {
        // pass this callback to the stream generation and build the required event structure
        let on_message_callback = move |stream_token: StreamResponse| {
            let event = Event::default();

            let current_time = std::time::SystemTime::now()
                .duration_since(std::time::UNIX_EPOCH)
                .unwrap_or_else(|_| std::time::Duration::from_secs(0))
                .as_secs();

1143
1144
1145
1146
            let logprobs = logprobs.then(|| {
                ChatCompletionLogprobs::from((stream_token.token.clone(), stream_token.top_tokens))
            });

drbh's avatar
drbh committed
1147
            // replace the content with the tool calls if grammar is present
drbh's avatar
drbh committed
1148
            let (content, tool_calls) = if using_tools {
drbh's avatar
drbh committed
1149
1150
                (None, Some(vec![stream_token.token.text]))
            } else {
1151
1152
1153
1154
1155
1156
1157
                let content = if !stream_token.token.special {
                    Some(stream_token.token.text)
                } else {
                    None
                };

                (content, None)
drbh's avatar
drbh committed
1158
1159
            };

Nicolas Patry's avatar
Nicolas Patry committed
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
            let (usage, finish_reason) = match stream_token.details {
                Some(details) => {
                    let usage = if stream_options
                        .as_ref()
                        .map(|s| s.include_usage)
                        .unwrap_or(false)
                    {
                        let completion_tokens = details.generated_tokens;
                        let prompt_tokens = details.input_length;
                        let total_tokens = prompt_tokens + completion_tokens;
                        Some(Usage {
                            completion_tokens,
                            prompt_tokens,
                            total_tokens,
                        })
                    } else {
                        None
                    };
                    (usage, Some(details.finish_reason.format(true)))
                }
                None => (None, None),
            };
1182
            event
1183
1184
1185
1186
1187
1188
1189
1190
                .json_data(CompletionType::ChatCompletionChunk(
                    ChatCompletionChunk::new(
                        model_id.clone(),
                        system_fingerprint.clone(),
                        content,
                        tool_calls,
                        current_time,
                        logprobs,
Nicolas Patry's avatar
Nicolas Patry committed
1191
1192
                        finish_reason,
                        usage,
1193
                    ),
1194
                ))
1195
1196
1197
1198
                .unwrap_or_else(|e| {
                    println!("Failed to serialize ChatCompletionChunk: {:?}", e);
                    Event::default()
                })
1199
1200
        };

1201
1202
1203
1204
1205
        let (headers, response_stream) = generate_stream_internal(
            infer,
            compute_type,
            Json(generate_request),
            on_message_callback,
1206
            span,
1207
1208
        )
        .await;
1209
1210
1211
1212
1213

        let response_stream = response_stream.chain(futures::stream::once(async {
            Ok(Event::default().data("[DONE]"))
        }));

1214
1215
1216
        let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
        Ok((headers, sse).into_response())
    } else {
1217
1218
        let (headers, Json(generation)) =
            generate_internal(Extension(infer), compute_type, Json(generate_request), span).await?;
1219
1220
1221
1222
1223
1224

        let current_time = std::time::SystemTime::now()
            .duration_since(std::time::UNIX_EPOCH)
            .unwrap_or_else(|_| std::time::Duration::from_secs(0))
            .as_secs();

drbh's avatar
drbh committed
1225
        let (tool_calls, output) = if using_tools {
1226
1227
1228
1229
1230
1231
1232
            let gen_text_value: Value =
                serde_json::from_str(&generation.generated_text).map_err(|e| {
                    InferError::ToolError(format!(
                        "Failed to parse generated text: {} {:?}",
                        e, generation.generated_text
                    ))
                })?;
drbh's avatar
drbh committed
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
            let function = gen_text_value.get("function").ok_or(InferError::ToolError(
                "No function found in generated text".to_string(),
            ))?;

            let name = function
                .get("_name")
                .and_then(Value::as_str)
                .ok_or(InferError::ToolError(
                    "No _name found in generated text".to_string(),
                ))?
                .to_string();

            let mut arguments = function.clone();
            if let Value::Object(ref mut props) = arguments {
                props.remove("_name");
            }
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259

            let tool_calls = vec![ToolCall {
                id: "0".to_string(),
                r#type: "function".to_string(),
                function: FunctionDefinition {
                    description: None,
                    name,
                    arguments,
                },
            }];
            (Some(tool_calls), None)
drbh's avatar
drbh committed
1260
1261
1262
        } else {
            (None, Some(generation.generated_text))
        };
1263
        // build the complete response object with the full text
1264
        let response = CompletionType::ChatCompletion(ChatCompletion::new(
1265
1266
            model_id,
            system_fingerprint,
drbh's avatar
drbh committed
1267
            output,
1268
1269
1270
            current_time,
            generation.details.unwrap(),
            logprobs,
drbh's avatar
drbh committed
1271
            tool_calls,
1272
        ));
1273
1274
1275
1276

        // wrap generation inside a Vec to match api-inference
        Ok((headers, Json(response)).into_response())
    }
1277
1278
}

1279
1280
/// Tokenize inputs
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
post,
tag = "Text Generation Inference",
path = "/tokenize",
request_body = GenerateRequest,
responses(
(status = 200, description = "Tokenized ids", body = TokenizeResponse),
(status = 404, description = "No tokenizer found", body = ErrorResponse,
example = json ! ({"error": "No fast tokenizer available"})),
)
)]
1291
1292
1293
1294
#[instrument(skip_all)]
async fn tokenize(
    Extension(infer): Extension<Infer>,
    Json(req): Json<GenerateRequest>,
1295
) -> Result<Json<TokenizeResponse>, (StatusCode, Json<ErrorResponse>)> {
1296
1297
1298
1299
1300
1301
1302
1303
    let input = req.inputs.clone();
    let encoding = infer.tokenize(req).await?;
    if let Some(encoding) = encoding {
        let tokens: Vec<SimpleToken> = encoding
            .get_ids()
            .iter()
            .zip(encoding.get_offsets())
            .map(|(&id, &(start, stop))| {
1304
1305
1306
1307
1308
                let text = input
                    .chars()
                    .skip(start)
                    .take(stop - start)
                    .collect::<String>();
1309
1310
1311
1312
1313
1314
1315
1316
                SimpleToken {
                    id,
                    text,
                    start,
                    stop,
                }
            })
            .collect();
1317
        Ok(Json(TokenizeResponse(tokens)))
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
    } else {
        Err((
            StatusCode::NOT_FOUND,
            Json(ErrorResponse {
                error: "No fast tokenizer or tokenizer.json for this model".to_string(),
                error_type: "no fast tokenizer".to_string(),
            }),
        ))
    }
}

1329
1330
/// Prometheus metrics scrape endpoint
#[utoipa::path(
1331
1332
1333
1334
    get,
    tag = "Text Generation Inference",
    path = "/metrics",
    responses((status = 200, description = "Prometheus Metrics", body = String))
1335
1336
1337
1338
1339
)]
async fn metrics(prom_handle: Extension<PrometheusHandle>) -> String {
    prom_handle.render()
}

1340
1341
1342
#[derive(Clone, Debug)]
pub(crate) struct ComputeType(String);

Nicolas Patry's avatar
Nicolas Patry committed
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
// OpenAPI documentation
#[derive(OpenApi)]
#[openapi(
paths(
health,
get_model_info,
compat_generate,
generate,
generate_stream,
chat_completions,
completions,
tokenize,
metrics,
drbh's avatar
drbh committed
1356
openai_get_model_info,
Nicolas Patry's avatar
Nicolas Patry committed
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
),
components(
schemas(
Info,
CompatGenerateRequest,
GenerateRequest,
GrammarType,
ChatRequest,
Message,
MessageContent,
MessageChunk,
Url,
FunctionName,
OutputMessage,
TextMessage,
ToolCallMessage,
ToolCallDelta,
ChatCompletionComplete,
ChatCompletionChoice,
ChatCompletionDelta,
ChatCompletionChunk,
ChatCompletionLogprob,
ChatCompletionLogprobs,
ChatCompletionTopLogprob,
ChatCompletion,
CompletionRequest,
CompletionComplete,
Chunk,
Completion,
CompletionFinal,
Prompt,
GenerateParameters,
PrefillToken,
Token,
GenerateResponse,
TokenizeResponse,
SimpleToken,
BestOfSequence,
Details,
FinishReason,
StreamResponse,
StreamDetails,
ErrorResponse,
GrammarType,
Usage,
Nicolas Patry's avatar
Nicolas Patry committed
1402
StreamOptions,
Nicolas Patry's avatar
Nicolas Patry committed
1403
1404
1405
1406
1407
1408
1409
DeltaToolCall,
ToolType,
Tool,
ToolCall,
Function,
FunctionDefinition,
ToolChoice,
drbh's avatar
drbh committed
1410
ModelInfo,
Nicolas Patry's avatar
Nicolas Patry committed
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
)
),
tags(
(name = "Text Generation Inference", description = "Hugging Face Text Generation Inference API")
),
info(
title = "Text Generation Inference",
license(
name = "Apache 2.0",
url = "https://www.apache.org/licenses/LICENSE-2.0"
)
)
)]
pub struct ApiDoc;

pub fn schema() -> ApiDoc {
    ApiDoc
}

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1430
1431
1432
/// Serving method
#[allow(clippy::too_many_arguments)]
pub async fn run(
Nicolas Patry's avatar
Nicolas Patry committed
1433
    backend: impl Backend + Send + Sync + 'static,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1434
    max_concurrent_requests: usize,
1435
    max_best_of: usize,
1436
    max_stop_sequences: usize,
Nicolas Patry's avatar
Nicolas Patry committed
1437
    max_top_n_tokens: u32,
OlivierDehaene's avatar
OlivierDehaene committed
1438
    max_input_tokens: usize,
1439
    max_total_tokens: usize,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1440
    validation_workers: usize,
Erik Kaunismäki's avatar
Erik Kaunismäki committed
1441
    api_key: Option<String>,
Nicolas Patry's avatar
Nicolas Patry committed
1442
1443
1444
1445
1446
1447
    tokenizer_name: String,
    tokenizer_config_path: Option<String>,
    revision: Option<String>,
    hostname: String,
    port: u16,
    cors_allow_origin: Option<Vec<String>>,
1448
    ngrok: bool,
1449
1450
    _ngrok_authtoken: Option<String>,
    _ngrok_edge: Option<String>,
1451
    messages_api_enabled: bool,
Nicolas Patry's avatar
Nicolas Patry committed
1452
    disable_grammar_support: bool,
1453
    max_client_batch_size: usize,
1454
    usage_stats_level: usage_stats::UsageStatsLevel,
OlivierDehaene's avatar
OlivierDehaene committed
1455
) -> Result<(), WebServerError> {
Nicolas Patry's avatar
Nicolas Patry committed
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
    // CORS allowed origins
    // map to go inside the option and then map to parse from String to HeaderValue
    // Finally, convert to AllowOrigin
    let allow_origin: Option<AllowOrigin> = cors_allow_origin.map(|cors_allow_origin| {
        AllowOrigin::list(
            cors_allow_origin
                .iter()
                .map(|origin| origin.parse::<HeaderValue>().unwrap()),
        )
    });
1466

Nicolas Patry's avatar
Nicolas Patry committed
1467
1468
1469
1470
    // Parse Huggingface hub token
    let authorization_token = std::env::var("HF_TOKEN")
        .or_else(|_| std::env::var("HUGGING_FACE_HUB_TOKEN"))
        .ok();
OlivierDehaene's avatar
OlivierDehaene committed
1471

Nicolas Patry's avatar
Nicolas Patry committed
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
    // Tokenizer instance
    // This will only be used to validate payloads
    let local_path = Path::new(&tokenizer_name);

    // Shared API builder initialization
    let api_builder = || {
        let mut builder = ApiBuilder::new()
            .with_progress(false)
            .with_token(authorization_token);

        if let Ok(cache_dir) = std::env::var("HUGGINGFACE_HUB_CACHE") {
            builder = builder.with_cache_dir(cache_dir.into());
        }

        builder
    };

    // Decide if we need to use the API based on the revision and local path
    let use_api = revision.is_some() || !local_path.exists() || !local_path.is_dir();

    // Initialize API if needed
    #[derive(Clone)]
    enum Type {
        Api(Api),
        Cache(Cache),
        None,
    }
    let api = if use_api {
        if std::env::var("HF_HUB_OFFLINE") == Ok("1".to_string()) {
            let cache = std::env::var("HUGGINGFACE_HUB_CACHE")
                .map_err(|_| ())
                .map(|cache_dir| Cache::new(cache_dir.into()))
                .unwrap_or_else(|_| Cache::default());
            tracing::warn!("Offline mode active using cache defaults");
            Type::Cache(cache)
        } else {
            tracing::info!("Using the Hugging Face API");
            match api_builder().build() {
                Ok(api) => Type::Api(api),
                Err(_) => {
                    tracing::warn!("Unable to build the Hugging Face API");
                    Type::None
OlivierDehaene's avatar
OlivierDehaene committed
1514
                }
Nicolas Patry's avatar
Nicolas Patry committed
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
            }
        }
    } else {
        Type::None
    };

    // Load tokenizer and model info
    let (
        tokenizer_filename,
        config_filename,
        tokenizer_config_filename,
        preprocessor_config_filename,
        processor_config_filename,
        model_info,
    ) = match api {
        Type::None => (
            Some(local_path.join("tokenizer.json")),
            Some(local_path.join("config.json")),
            Some(local_path.join("tokenizer_config.json")),
            Some(local_path.join("preprocessor_config.json")),
            Some(local_path.join("processor_config.json")),
            None,
        ),
        Type::Api(api) => {
            let api_repo = api.repo(Repo::with_revision(
                tokenizer_name.to_string(),
                RepoType::Model,
                revision.clone().unwrap_or_else(|| "main".to_string()),
            ));

            let tokenizer_filename = match api_repo.get("tokenizer.json").await {
                Ok(tokenizer_filename) => Some(tokenizer_filename),
                Err(_) => get_base_tokenizer(&api, &api_repo).await,
            };
            let config_filename = api_repo.get("config.json").await.ok();
            let tokenizer_config_filename = api_repo.get("tokenizer_config.json").await.ok();
            let preprocessor_config_filename = api_repo.get("preprocessor_config.json").await.ok();
            let processor_config_filename = api_repo.get("processor_config.json").await.ok();
OlivierDehaene's avatar
OlivierDehaene committed
1553

Nicolas Patry's avatar
Nicolas Patry committed
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
            let model_info = if let Some(model_info) = get_hub_model_info(&api_repo).await {
                Some(model_info)
            } else {
                tracing::warn!("Could not retrieve model info from the Hugging Face hub.");
                None
            };
            (
                tokenizer_filename,
                config_filename,
                tokenizer_config_filename,
                preprocessor_config_filename,
                processor_config_filename,
                model_info,
            )
        }
        Type::Cache(cache) => {
            let repo = cache.repo(Repo::with_revision(
                tokenizer_name.to_string(),
                RepoType::Model,
                revision.clone().unwrap_or_else(|| "main".to_string()),
            ));
            (
                repo.get("tokenizer.json"),
                repo.get("config.json"),
                repo.get("tokenizer_config.json"),
                repo.get("preprocessor_config.json"),
                repo.get("processor_config.json"),
                None,
            )
        }
    };

    // Read the JSON contents of the file as an instance of 'HubTokenizerConfig'.
    let tokenizer_config: Option<HubTokenizerConfig> = if let Some(filename) = tokenizer_config_path
    {
        HubTokenizerConfig::from_file(filename)
    } else {
        tokenizer_config_filename.and_then(HubTokenizerConfig::from_file)
    };
    let tokenizer_config = tokenizer_config.unwrap_or_else(|| {
        tracing::warn!("Could not find tokenizer config locally and no API specified");
        HubTokenizerConfig::default()
    });

    let tokenizer: Option<Tokenizer> = tokenizer_filename.and_then(|filename| {
Nicolas Patry's avatar
Nicolas Patry committed
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
        use pyo3::prelude::*;
        let convert = pyo3::Python::with_gil(|py| -> PyResult<()> {
            let transformers = py.import_bound("transformers")?;
            let auto = transformers.getattr("AutoTokenizer")?;
            let from_pretrained = auto.getattr("from_pretrained")?;
            let args = (tokenizer_name.to_string(),);
            let kwargs = [(
                "revision",
                revision.clone().unwrap_or_else(|| "main".to_string()),
            )]
            .into_py_dict_bound(py);
            let tokenizer = from_pretrained.call(args, Some(&kwargs))?;
            let save = tokenizer.getattr("save_pretrained")?;
            let args = ("out".to_string(),);
            save.call1(args)?;
            Ok(())
        })
        .inspect_err(|err| {
            tracing::error!("Failed to import python tokenizer {err}");
        });
        let filename = if convert.is_ok() {
            // If we have correctly loaded and resaved with transformers
            // We might have modified the tokenizer.json according to transformers
            "out/tokenizer.json".into()
        } else {
            filename
        };
        Tokenizer::from_file(filename).ok()
Nicolas Patry's avatar
Nicolas Patry committed
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
    });

    let config: Option<Config> = config_filename.and_then(|filename| {
        std::fs::read_to_string(filename)
            .ok()
            .as_ref()
            .and_then(|c| {
                let config: Result<Config, _> = serde_json::from_str(c);
                if let Err(err) = &config {
                    tracing::warn!("Could not parse config {err:?}");
                }
                config.ok()
            })
    });
    let model_info = model_info.unwrap_or_else(|| HubModelInfo {
        model_id: tokenizer_name.to_string(),
        sha: None,
        pipeline_tag: None,
    });

    let processor_config = processor_config_filename
        .and_then(HubProcessorConfig::from_file)
        .unwrap_or_default();

    let preprocessor_config: Option<HubPreprocessorConfig> =
        preprocessor_config_filename.and_then(HubPreprocessorConfig::from_file);

    tracing::info!("Using config {config:?}");
    if tokenizer.is_none() {
        tracing::warn!("Could not find a fast tokenizer implementation for {tokenizer_name}");
        tracing::warn!("Rust input length validation and truncation is disabled");
    }
OlivierDehaene's avatar
OlivierDehaene committed
1659

Nicolas Patry's avatar
Nicolas Patry committed
1660
1661
    // Only send usage stats when TGI is run in container and the function returns Some
    let is_container = matches!(usage_stats::is_container(), Ok(true));
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
    let user_agent = match (usage_stats_level, is_container) {
        (usage_stats::UsageStatsLevel::On | usage_stats::UsageStatsLevel::NoStack, true) => {
            let reduced_args = usage_stats::Args::new(
                config.clone(),
                tokenizer_config.tokenizer_class.clone(),
                max_concurrent_requests,
                max_best_of,
                max_stop_sequences,
                max_top_n_tokens,
                max_input_tokens,
                max_total_tokens,
                // waiting_served_ratio,
                // max_batch_prefill_tokens,
                // max_batch_total_tokens,
                // max_waiting_tokens,
                // max_batch_size,
                revision.clone(),
                validation_workers,
                messages_api_enabled,
                disable_grammar_support,
                max_client_batch_size,
                usage_stats_level,
            );
            Some(usage_stats::UserAgent::new(reduced_args))
        }
        _ => None,
Nicolas Patry's avatar
Nicolas Patry committed
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
    };

    if let Some(ref ua) = user_agent {
        let start_event =
            usage_stats::UsageStatsEvent::new(ua.clone(), usage_stats::EventType::Start, None);
        tokio::spawn(async move {
            start_event.send().await;
        });
    };
    let compat_return_full_text = match &model_info.pipeline_tag {
        None => {
            tracing::warn!("no pipeline tag found for model {tokenizer_name}");
            true
        }
        Some(pipeline_tag) => pipeline_tag.as_str() == "text-generation",
    };
    let result = start(
        backend,
        max_concurrent_requests,
        max_best_of,
        max_stop_sequences,
        max_top_n_tokens,
        max_input_tokens,
        max_total_tokens,
        validation_workers,
        api_key,
        config,
        (tokenizer, tokenizer_config),
        (preprocessor_config, processor_config),
        hostname,
        port,
        ngrok,
        _ngrok_authtoken,
        _ngrok_edge,
        messages_api_enabled,
        disable_grammar_support,
        max_client_batch_size,
        model_info,
        compat_return_full_text,
        allow_origin,
    )
    .await;

    if let Some(ua) = user_agent {
        match result {
            Ok(_) => {
                let stop_event = usage_stats::UsageStatsEvent::new(
                    ua.clone(),
                    usage_stats::EventType::Stop,
                    None,
                );
                stop_event.send().await;
                Ok(())
OlivierDehaene's avatar
OlivierDehaene committed
1741
            }
Nicolas Patry's avatar
Nicolas Patry committed
1742
            Err(e) => {
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
                let description = match usage_stats_level {
                    usage_stats::UsageStatsLevel::On => Some(e.to_string()),
                    usage_stats::UsageStatsLevel::NoStack => Some("unknow_error".to_string()),
                    _ => None,
                };
                let event = usage_stats::UsageStatsEvent::new(
                    ua.clone(),
                    usage_stats::EventType::Error,
                    description,
                );
                event.send().await;

Nicolas Patry's avatar
Nicolas Patry committed
1755
                Err(e)
OlivierDehaene's avatar
OlivierDehaene committed
1756
1757
            }
        }
Nicolas Patry's avatar
Nicolas Patry committed
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
    } else {
        result
    }
}

#[allow(clippy::too_many_arguments)]
async fn start(
    backend: impl Backend + Send + Sync + 'static,
    max_concurrent_requests: usize,
    max_best_of: usize,
    max_stop_sequences: usize,
    max_top_n_tokens: u32,
    max_input_tokens: usize,
    max_total_tokens: usize,
    validation_workers: usize,
    api_key: Option<String>,
    config: Option<Config>,
    (tokenizer, tokenizer_config): (Option<Tokenizer>, HubTokenizerConfig),
    (preprocessor_config, processor_config): (Option<HubPreprocessorConfig>, HubProcessorConfig),
    hostname: String,
    port: u16,
    ngrok: bool,
    _ngrok_authtoken: Option<String>,
    _ngrok_edge: Option<String>,
    messages_api_enabled: bool,
    disable_grammar_support: bool,
    max_client_batch_size: usize,
    model_info: HubModelInfo,
    compat_return_full_text: bool,
    allow_origin: Option<AllowOrigin>,
) -> Result<(), WebServerError> {
    // Determine the server port based on the feature and environment variable.
    let port = if cfg!(feature = "google") {
        std::env::var("AIP_HTTP_PORT")
            .map(|aip_http_port| aip_http_port.parse::<u16>().unwrap_or(port))
            .unwrap_or(port)
    } else {
        port
    };

    let addr = match hostname.parse() {
        Ok(ip) => SocketAddr::new(ip, port),
        Err(_) => {
            tracing::warn!("Invalid hostname, defaulting to 0.0.0.0");
            SocketAddr::new(IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)), port)
        }
OlivierDehaene's avatar
OlivierDehaene committed
1804
1805
    };

Nicolas Patry's avatar
Nicolas Patry committed
1806
    // Create state
1807
1808
1809
    let validation = Validation::new(
        validation_workers,
        tokenizer,
1810
        config,
1811
        preprocessor_config,
1812
        max_best_of,
1813
        max_stop_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
1814
        max_top_n_tokens,
OlivierDehaene's avatar
OlivierDehaene committed
1815
        max_input_tokens,
1816
        max_total_tokens,
Nicolas Patry's avatar
Nicolas Patry committed
1817
        disable_grammar_support,
1818
    );
OlivierDehaene's avatar
OlivierDehaene committed
1819

1820
    let infer = Infer::new(
Nicolas Patry's avatar
Nicolas Patry committed
1821
        backend,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1822
        validation,
1823
        max_concurrent_requests,
1824
        tokenizer_config,
drbh's avatar
drbh committed
1825
        processor_config,
1826
    );
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1827

1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
    // Duration buckets
    let duration_matcher = Matcher::Suffix(String::from("duration"));
    let n_duration_buckets = 35;
    let mut duration_buckets = Vec::with_capacity(n_duration_buckets);
    // Minimum duration in seconds
    let mut value = 0.0001;
    for _ in 0..n_duration_buckets {
        // geometric sequence
        value *= 1.5;
        duration_buckets.push(value);
    }
    // Input Length buckets
    let input_length_matcher = Matcher::Full(String::from("tgi_request_input_length"));
    let input_length_buckets: Vec<f64> = (0..100)
OlivierDehaene's avatar
OlivierDehaene committed
1842
        .map(|x| (max_input_tokens as f64 / 100.0) * (x + 1) as f64)
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
        .collect();
    // Generated tokens buckets
    let generated_tokens_matcher = Matcher::Full(String::from("tgi_request_generated_tokens"));
    let generated_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Input Length buckets
    let max_new_tokens_matcher = Matcher::Full(String::from("tgi_request_max_new_tokens"));
    let max_new_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Batch size buckets
    let batch_size_matcher = Matcher::Full(String::from("tgi_batch_next_size"));
1856
    let batch_size_buckets: Vec<f64> = (0..1024).map(|x| (x + 1) as f64).collect();
OlivierDehaene's avatar
OlivierDehaene committed
1857
    // Speculated tokens buckets
Nicolas Patry's avatar
Nicolas Patry committed
1858
1859
    // let skipped_matcher = Matcher::Full(String::from("tgi_request_skipped_tokens"));
    // let skipped_buckets: Vec<f64> = (0..shard_info.speculate + 1).map(|x| x as f64).collect();
1860

1861
    // Prometheus handler
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
    let builder = PrometheusBuilder::new()
        .set_buckets_for_metric(duration_matcher, &duration_buckets)
        .unwrap()
        .set_buckets_for_metric(input_length_matcher, &input_length_buckets)
        .unwrap()
        .set_buckets_for_metric(generated_tokens_matcher, &generated_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(max_new_tokens_matcher, &max_new_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(batch_size_matcher, &batch_size_buckets)
        .unwrap();
Nicolas Patry's avatar
Nicolas Patry committed
1873
1874
    // .set_buckets_for_metric(skipped_matcher, &skipped_buckets)
    // .unwrap();
1875
1876
1877
1878
1879
1880
    // See: https://github.com/metrics-rs/metrics/issues/467#issuecomment-2022755151
    let (recorder, _) = builder
        .build()
        .expect("failed to build prometheus recorder");
    let prom_handle = recorder.handle();
    metrics::set_global_recorder(recorder).expect("Failed to set global recorder");
1881

1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
    // Metrics descriptions
    metrics::describe_counter!("tgi_request_success", "Number of successful requests");
    metrics::describe_histogram!(
        "tgi_request_duration",
        metrics::Unit::Seconds,
        "Request duration"
    );
    metrics::describe_histogram!(
        "tgi_request_validation_duration",
        metrics::Unit::Seconds,
        "Request validation duration"
    );
    metrics::describe_histogram!(
        "tgi_request_queue_duration",
        metrics::Unit::Seconds,
        "Request queue duration"
    );
    metrics::describe_histogram!(
        "tgi_request_inference_duration",
        metrics::Unit::Seconds,
        "Request inference duration"
    );
    metrics::describe_histogram!(
        "tgi_request_mean_time_per_token_duration",
        metrics::Unit::Seconds,
        "Mean time per token per request"
    );
    metrics::describe_histogram!(
        "tgi_request_generated_tokens",
        metrics::Unit::Count,
        "Generated tokens per request"
    );
    metrics::describe_counter!(
        "tgi_batch_inference_count",
        metrics::Unit::Count,
        "Inference calls per method (prefill or decode)"
    );
    metrics::describe_counter!(
        "tgi_request_count",
        metrics::Unit::Count,
        "Total number of requests"
    );
    metrics::describe_counter!(
        "tgi_batch_inference_success",
        metrics::Unit::Count,
        "Number of successful inference calls per method (prefill or decode)"
    );
    metrics::describe_gauge!(
        "tgi_batch_current_size",
        metrics::Unit::Count,
        "Current batch size"
    );
    metrics::describe_gauge!("tgi_queue_size", metrics::Unit::Count, "Current queue size");
    metrics::describe_gauge!(
        "tgi_batch_current_max_tokens",
        metrics::Unit::Count,
        "Maximum tokens for the current batch"
    );
1940
1941
1942
1943
1944
    metrics::describe_gauge!(
        "tgi_batch_total_tokens",
        metrics::Unit::Count,
        "Maximum amount of tokens in total."
    );
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
    metrics::describe_histogram!(
        "tgi_request_max_new_tokens",
        metrics::Unit::Count,
        "Maximum new tokens per request"
    );
    metrics::describe_histogram!(
        "tgi_batch_inference_duration",
        metrics::Unit::Seconds,
        "Batch inference duration"
    );
    metrics::describe_histogram!(
        "tgi_batch_forward_duration",
        metrics::Unit::Seconds,
        "Batch forward duration per method (prefill or decode)"
    );
    metrics::describe_histogram!(
        "tgi_request_skipped_tokens",
        metrics::Unit::Count,
        "Speculated tokens per request"
    );
    metrics::describe_histogram!(
        "tgi_batch_filter_duration",
        metrics::Unit::Seconds,
        "Time spent filtering batches and sending generated tokens per method (prefill or decode)"
    );
    metrics::describe_histogram!(
        "tgi_request_queue_duration",
        metrics::Unit::Seconds,
        "Time spent in the queue per request"
    );
    metrics::describe_histogram!(
        "tgi_request_validation_duration",
        metrics::Unit::Seconds,
        "Time spent validating the request"
    );
    metrics::describe_histogram!(
        "tgi_request_duration",
        metrics::Unit::Seconds,
        "Total time spent processing the request"
    );
    metrics::describe_histogram!(
        "tgi_batch_decode_duration",
        metrics::Unit::Seconds,
        "Time spent decoding a batch per method (prefill or decode)"
    );
    metrics::describe_histogram!(
        "tgi_request_input_length",
        metrics::Unit::Count,
        "Input token length per request"
    );
    metrics::describe_histogram!(
        "tgi_batch_next_size",
        metrics::Unit::Count,
        "Batch size of the next batch"
    );

2001
2002
2003
2004
2005
2006
2007
    // CORS layer
    let allow_origin = allow_origin.unwrap_or(AllowOrigin::any());
    let cors_layer = CorsLayer::new()
        .allow_methods([Method::GET, Method::POST])
        .allow_headers([http::header::CONTENT_TYPE])
        .allow_origin(allow_origin);

2008
2009
2010
2011
    // Endpoint info
    let info = Info {
        model_id: model_info.model_id,
        model_sha: model_info.sha,
Nicolas Patry's avatar
Nicolas Patry committed
2012
2013
        // model_dtype: shard_info.dtype,
        // model_device_type: shard_info.device_type,
2014
2015
2016
2017
        model_pipeline_tag: model_info.pipeline_tag,
        max_concurrent_requests,
        max_best_of,
        max_stop_sequences,
OlivierDehaene's avatar
OlivierDehaene committed
2018
        max_input_tokens,
2019
        max_total_tokens,
Nicolas Patry's avatar
Nicolas Patry committed
2020
2021
2022
2023
        // waiting_served_ratio,
        // max_batch_total_tokens,
        // max_waiting_tokens,
        // max_batch_size,
2024
        validation_workers,
2025
        max_client_batch_size,
2026
        router: env!("CARGO_PKG_NAME"),
2027
2028
        version: env!("CARGO_PKG_VERSION"),
        sha: option_env!("VERGEN_GIT_SHA"),
2029
        docker_label: option_env!("DOCKER_LABEL"),
2030
2031
    };

2032
2033
2034
2035
2036
    #[allow(unused_mut)] // mut is needed for conditional compilation
    let mut doc = ApiDoc::openapi();

    #[cfg(feature = "google")]
    {
2037
2038
        use crate::vertex::__path_vertex_compatibility;
        use crate::vertex::{VertexInstance, VertexRequest, VertexResponse};
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069

        #[derive(OpenApi)]
        #[openapi(
            paths(vertex_compatibility),
            components(schemas(VertexInstance, VertexRequest, VertexResponse))
        )]
        struct VertexApiDoc;

        doc.merge(VertexApiDoc::openapi());
    }

    #[cfg(feature = "kserve")]
    {
        use crate::kserve::{
            InferenceOutput, InferenceRequest, LiveResponse, MetadataServerResponse, OutputChunk,
            ReadyResponse,
        };
        use crate::kserve::{
            __path_kerve_server_metadata, __path_kserve_health_live, __path_kserve_health_ready,
            __path_kserve_model_infer, __path_kserve_model_metadata,
            __path_kserve_model_metadata_ready,
        };

        #[derive(OpenApi)]
        #[openapi(
            paths(
                kserve_health_live,
                kserve_health_ready,
                kerve_server_metadata,
                kserve_model_metadata,
                kserve_model_metadata_ready,
2070
                kserve_model_infer,
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
            ),
            components(schemas(
                InferenceOutput,
                InferenceRequest,
                LiveResponse,
                MetadataServerResponse,
                OutputChunk,
                ReadyResponse,
            ))
        )]
        struct KServeApiDoc;

        doc.merge(KServeApiDoc::openapi());
    }
drbh's avatar
drbh committed
2085

2086
    // Configure Swagger UI
drbh's avatar
drbh committed
2087
    let swagger_ui = SwaggerUi::new("/docs").url("/api-doc/openapi.json", doc);
2088
2089

    // Define base and health routes
Erik Kaunismäki's avatar
Erik Kaunismäki committed
2090
    let mut base_routes = Router::new()
2091
        .route("/", post(compat_generate))
Olivier Dehaene's avatar
Olivier Dehaene committed
2092
        .route("/generate", post(generate))
2093
        .route("/generate_stream", post(generate_stream))
2094
        .route("/v1/chat/completions", post(chat_completions))
2095
        .route("/v1/completions", post(completions))
drbh's avatar
drbh committed
2096
        .route("/vertex", post(vertex_compatibility))
Erik Kaunismäki's avatar
Erik Kaunismäki committed
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
        .route("/tokenize", post(tokenize));

    if let Some(api_key) = api_key {
        let mut prefix = "Bearer ".to_string();
        prefix.push_str(&api_key);

        // Leak to allow FnMut
        let api_key: &'static str = prefix.leak();

        let auth = move |headers: HeaderMap,
                         request: axum::extract::Request,
                         next: axum::middleware::Next| async move {
            match headers.get(AUTHORIZATION) {
                Some(token) => match token.to_str() {
                    Ok(token_str) if token_str.to_lowercase() == api_key.to_lowercase() => {
                        let response = next.run(request).await;
                        Ok(response)
                    }
                    _ => Err(StatusCode::UNAUTHORIZED),
                },
                None => Err(StatusCode::UNAUTHORIZED),
            }
        };

        base_routes = base_routes.layer(axum::middleware::from_fn(auth))
    }
    let info_routes = Router::new()
        .route("/", get(health))
2125
        .route("/chat_tokenize", post(get_chat_tokenize))
Erik Kaunismäki's avatar
Erik Kaunismäki committed
2126
        .route("/info", get(get_model_info))
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
2127
        .route("/health", get(health))
2128
        .route("/ping", get(health))
drbh's avatar
drbh committed
2129
2130
        .route("/metrics", get(metrics))
        .route("/v1/models", get(openai_get_model_info));
2131
2132

    // Conditional AWS Sagemaker route
2133
    let aws_sagemaker_route = if messages_api_enabled {
2134
2135
2136
2137
2138
        Router::new().route("/invocations", post(chat_completions)) // Use 'chat_completions' for OAI_ENABLED
    } else {
        Router::new().route("/invocations", post(compat_generate)) // Use 'compat_generate' otherwise
    };

2139
2140
    let compute_type =
        ComputeType(std::env::var("COMPUTE_TYPE").unwrap_or("gpu+optimized".to_string()));
2141

2142
    // Combine routes and layers
drbh's avatar
drbh committed
2143
    let mut app = Router::new()
2144
2145
        .merge(swagger_ui)
        .merge(base_routes)
Erik Kaunismäki's avatar
Erik Kaunismäki committed
2146
        .merge(info_routes)
drbh's avatar
drbh committed
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
        .merge(aws_sagemaker_route);

    #[cfg(feature = "google")]
    {
        tracing::info!("Built with `google` feature");
        tracing::info!(
            "Environment variables `AIP_PREDICT_ROUTE` and `AIP_HEALTH_ROUTE` will be respected."
        );
        if let Ok(env_predict_route) = std::env::var("AIP_PREDICT_ROUTE") {
            app = app.route(&env_predict_route, post(vertex_compatibility));
        }
        if let Ok(env_health_route) = std::env::var("AIP_HEALTH_ROUTE") {
            app = app.route(&env_health_route, get(health));
        }
    }

2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
    #[cfg(feature = "kserve")]
    {
        tracing::info!("Built with `kserve` feature");
        app = app
            .route(
                "/v2/models/:model_name/versions/:model_version/infer",
                post(kserve_model_infer),
            )
            .route(
                "/v2/models/:model_name/versions/:model_version",
                get(kserve_model_metadata),
            )
            .route("/v2/health/ready", get(kserve_health_ready))
            .route("/v2/health/live", get(kserve_health_live))
            .route("/v2", get(kerve_server_metadata))
            .route(
                "/v2/models/:model_name/versions/:model_version/ready",
                get(kserve_model_metadata_ready),
            );
    }

drbh's avatar
drbh committed
2184
2185
    // add layers after routes
    app = app
2186
        .layer(Extension(info))
2187
2188
        .layer(Extension(compat_return_full_text))
        .layer(Extension(infer))
2189
        .layer(Extension(compute_type))
2190
        .layer(Extension(prom_handle.clone()))
Nicolas Patry's avatar
Nicolas Patry committed
2191
        .layer(OtelAxumLayer::default())
2192
        .layer(cors_layer);
Olivier Dehaene's avatar
Olivier Dehaene committed
2193

OlivierDehaene's avatar
OlivierDehaene committed
2194
2195
    tracing::info!("Connected");

2196
2197
2198
    if ngrok {
        #[cfg(feature = "ngrok")]
        {
2199
            panic!("ngrok feature is not functional with axum=0.7 and hyper=1, waiting on https://github.com/ngrok/ngrok-rust/pull/137/files to re-enable.");
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

            // Run server
        }
        #[cfg(not(feature = "ngrok"))]
        {
            let _ngrok_authtoken = ngrok_authtoken;
            let _ngrok_domain = ngrok_domain;
            let _ngrok_username = ngrok_username;
            let _ngrok_password = ngrok_password;

            panic!("`text-generation-router` was compiled without the `ngrok` feature");
        }
    } else {
        // Run server
2214
2215
2216

        let listener = tokio::net::TcpListener::bind(&addr).await.unwrap();
        axum::serve(listener, app)
2217
            .with_graceful_shutdown(shutdown_signal())
OlivierDehaene's avatar
OlivierDehaene committed
2218
2219
            .await
            .map_err(|err| WebServerError::Axum(Box::new(err)))?;
2220
    }
2221
    Ok(())
Olivier Dehaene's avatar
Olivier Dehaene committed
2222
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
2223

Nicolas Patry's avatar
Nicolas Patry committed
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
/// get model info from the Huggingface Hub
pub async fn get_hub_model_info(api: &ApiRepo) -> Option<HubModelInfo> {
    let response = api.info_request().send().await.ok()?;

    if response.status().is_success() {
        let hub_model_info: HubModelInfo =
            serde_json::from_str(&response.text().await.ok()?).ok()?;
        if let Some(sha) = &hub_model_info.sha {
            tracing::info!(
                "Serving revision {sha} of model {}",
                hub_model_info.model_id
            );
        }
        Some(hub_model_info)
    } else {
        None
    }
}

/// get base tokenizer
pub async fn get_base_tokenizer(api: &Api, api_repo: &ApiRepo) -> Option<PathBuf> {
    let config_filename = api_repo.get("config.json").await.ok()?;

    // Open the file in read-only mode with buffer.
    let file = File::open(config_filename).ok()?;
    let reader = BufReader::new(file);

    // Read the JSON contents of the file as an instance of `User`.
    let config: serde_json::Value = serde_json::from_reader(reader).ok()?;

    if let Some(serde_json::Value::String(base_model_id)) = config.get("base_model_name_or_path") {
        let api_base_repo = api.repo(Repo::with_revision(
            base_model_id.to_string(),
            RepoType::Model,
            "main".to_string(),
        ));

        api_base_repo.get("tokenizer.json").await.ok()
    } else {
        None
    }
}

/// get tokenizer_config from the Huggingface Hub
pub async fn get_tokenizer_config(api_repo: &ApiRepo) -> Option<HubTokenizerConfig> {
    let tokenizer_config_filename = api_repo.get("tokenizer_config.json").await.ok()?;

    // Open the file in read-only mode with buffer.
    let file = File::open(tokenizer_config_filename).ok()?;
    let reader = BufReader::new(file);

    // Read the JSON contents of the file as an instance of 'HubTokenizerConfig'.
    let tokenizer_config: HubTokenizerConfig = serde_json::from_reader(reader)
        .map_err(|e| {
            tracing::warn!("Unable to parse tokenizer config: {}", e);
            e
        })
        .ok()?;

    Some(tokenizer_config)
}

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
/// Shutdown signal handler
async fn shutdown_signal() {
    let ctrl_c = async {
        signal::ctrl_c()
            .await
            .expect("failed to install Ctrl+C handler");
    };

    #[cfg(unix)]
    let terminate = async {
        signal::unix::signal(signal::unix::SignalKind::terminate())
            .expect("failed to install signal handler")
            .recv()
            .await;
    };

    #[cfg(not(unix))]
    let terminate = std::future::pending::<()>();

    tokio::select! {
        _ = ctrl_c => {},
        _ = terminate => {},
    }

    tracing::info!("signal received, starting graceful shutdown");
2311
    opentelemetry::global::shutdown_tracer_provider();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
2312
}
2313
2314
2315
2316
2317
2318
2319
2320
2321

/// Convert to Axum supported formats
impl From<InferError> for (StatusCode, Json<ErrorResponse>) {
    fn from(err: InferError) -> Self {
        let status_code = match err {
            InferError::GenerationError(_) => StatusCode::FAILED_DEPENDENCY,
            InferError::Overloaded(_) => StatusCode::TOO_MANY_REQUESTS,
            InferError::ValidationError(_) => StatusCode::UNPROCESSABLE_ENTITY,
            InferError::IncompleteGeneration => StatusCode::INTERNAL_SERVER_ERROR,
2322
            InferError::IncompleteGenerationStream => StatusCode::INTERNAL_SERVER_ERROR,
2323
            InferError::TemplateError(_) => StatusCode::UNPROCESSABLE_ENTITY,
2324
            InferError::MissingTemplateVariable(_) => StatusCode::UNPROCESSABLE_ENTITY,
2325
            InferError::ToolError(_) => StatusCode::UNPROCESSABLE_ENTITY,
2326
2327
2328
2329
2330
2331
        };

        (
            status_code,
            Json(ErrorResponse {
                error: err.to_string(),
2332
                error_type: err.error_type().to_string(),
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
            }),
        )
    }
}

impl From<InferError> for Event {
    fn from(err: InferError) -> Self {
        Event::default()
            .json_data(ErrorResponse {
                error: err.to_string(),
2343
                error_type: err.error_type().to_string(),
2344
2345
2346
2347
            })
            .unwrap()
    }
}
OlivierDehaene's avatar
OlivierDehaene committed
2348
2349
2350
2351
2352
2353

#[derive(Debug, Error)]
pub enum WebServerError {
    #[error("Axum error: {0}")]
    Axum(#[from] axum::BoxError),
}
Nicolas Patry's avatar
Nicolas Patry committed
2354

drbh's avatar
drbh committed
2355
type PreparedInput = (String, Option<GrammarType>, bool);
2356

Nicolas Patry's avatar
Nicolas Patry committed
2357
pub(crate) fn prepare_chat_input(
2358
2359
2360
2361
2362
    infer: &Infer,
    response_format: Option<GrammarType>,
    tools: Option<Vec<Tool>>,
    tool_choice: ToolChoice,
    tool_prompt: &str,
2363
    guideline: Option<String>,
2364
2365
2366
2367
2368
2369
2370
2371
    messages: Vec<Message>,
) -> Result<PreparedInput, InferError> {
    if response_format.is_some() && tools.is_some() {
        return Err(InferError::ToolError(
            "Grammar and tools are mutually exclusive".into(),
        ));
    }

drbh's avatar
drbh committed
2372
    // when response_format is set, tools are not included when applying the chat template to generate inputs
2373
    if let Some(format) = response_format {
2374
        let inputs = infer.apply_chat_template(guideline, messages, None)?;
drbh's avatar
drbh committed
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
        return Ok((inputs, Some(format), false));
    }

    // when no response_format is set and tools are included, apply the chat template with the tools
    // to generate inputs
    if let Some(tools) = tools {
        let (updated_tools, tool_schema) = ToolGrammar::apply(tools, tool_choice)?;

        let grammar = tool_schema
            .as_ref()
            .map(|t| GrammarType::Json(serde_json::json!(t)));

        let inputs: String = infer.apply_chat_template(
            guideline,
            messages,
            Some((updated_tools, tool_prompt.into())),
        )?;
        return Ok((inputs, grammar, tool_schema.is_some()));
2393
2394
    }

drbh's avatar
drbh committed
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
    // if no response_format or tools are set simply apply the chat template to generate inputs
    let inputs = infer.apply_chat_template(guideline, messages, None)?;
    Ok((inputs, None, false))
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::ChatTemplateVersions;
    use crate::HubTokenizerConfig;
    use crate::TokenizerConfigToken;
    use crate::Tool;

    use serde_json::json;

    #[test]
    fn test_prepare_chat_input() {
        // Mock Backend to avoid network requests
        struct MockBackend;

        impl Backend for MockBackend {
            fn schedule(
                &self,
                _request: crate::validation::ValidGenerateRequest,
            ) -> Result<
                tokio_stream::wrappers::UnboundedReceiverStream<
                    Result<InferStreamResponse, InferError>,
                >,
                InferError,
            > {
                unimplemented!("Never called in this test");
            }
            fn health<'a, 'async_trait>(
                &'a self,
                _current_health: bool,
            ) -> core::pin::Pin<
                Box<dyn core::future::Future<Output = bool> + core::marker::Send + 'async_trait>,
            >
            where
                'a: 'async_trait,
                Self: 'async_trait,
            {
                unimplemented!("Never called in this test");
            }
        }

        let backend = MockBackend {};

        let mut tokenizer_config = HubTokenizerConfig::default();

        // mock tokenizer config values
        tokenizer_config.bos_token = Some(TokenizerConfigToken::String("<s>".to_string()));
        tokenizer_config.eos_token = Some(TokenizerConfigToken::String("</s>".to_string()));
        tokenizer_config.chat_template = Some(
            ChatTemplateVersions::Single("{%- if messages[0][\"role\"] == \"system\" %}\n    {%- set system_message = messages[0][\"content\"] %}\n    {%- set loop_messages = messages[1:] %}\n{%- else %}\n    {%- set loop_messages = messages %}\n{%- endif %}\n{%- if not tools is defined %}\n    {%- set tools = none %}\n{%- endif %}\n{%- set user_messages = loop_messages | selectattr(\"role\", \"equalto\", \"user\") | list %}\n\n{#- This block checks for alternating user/assistant messages, skipping tool calling messages #}\n{%- set ns = namespace() %}\n{%- set ns.index = 0 %}\n{%- for message in loop_messages %}\n    {%- if not (message.role == \"tool\" or message.role == \"tool_results\" or (message.tool_calls is defined and message.tool_calls is not none)) %}\n        {%- if (message[\"role\"] == \"user\") != (ns.index % 2 == 0) %}\n            {{- raise_exception(\"After the optional system message, conversation roles must alternate user/assistant/user/assistant/...\") }}\n        {%- endif %}\n        {%- set ns.index = ns.index + 1 %}\n    {%- endif %}\n{%- endfor %}\n\n{{- bos_token }}\n{%- for message in loop_messages %}\n    {%- if message[\"role\"] == \"user\" %}\n        {%- if tools is not none and (message == user_messages[-1]) %}\n            {{- \"[AVAILABLE_TOOLS] [\" }}\n            {%- for tool in tools %}\n                {%- set tool = tool.function %}\n                {{- '{\"type\": \"function\", \"function\": {' }}\n                {%- for key, val in tool.items() if key != \"return\" %}\n                    {%- if val is string %}\n                        {{- '\"' + key + '\": \"' + val + '\"' }}\n                    {%- else %}\n                        {{- '\"' + key + '\": ' + val|tojson }}\n                    {%- endif %}\n                    {%- if not loop.last %}\n                        {{- \", \" }}\n                    {%- endif %}\n                {%- endfor %}\n                {{- \"}}\" }}\n                {%- if not loop.last %}\n                    {{- \", \" }}\n                {%- else %}\n                    {{- \"]\" }}\n                {%- endif %}\n            {%- endfor %}\n            {{- \"[/AVAILABLE_TOOLS]\" }}\n            {%- endif %}\n        {%- if loop.last and system_message is defined %}\n            {{- \"[INST] \" + system_message + \"\\n\\n\" + message[\"content\"] + \"[/INST]\" }}\n        {%- else %}\n            {{- \"[INST] \" + message[\"content\"] + \"[/INST]\" }}\n        {%- endif %}\n    {%- elif message.tool_calls is defined and message.tool_calls is not none %}\n        {{- \"[TOOL_CALLS] [\" }}\n        {%- for tool_call in message.tool_calls %}\n            {%- set out = tool_call.function|tojson %}\n            {{- out[:-1] }}\n            {%- if not tool_call.id is defined or tool_call.id|length != 9 %}\n                {{- raise_exception(\"Tool call IDs should be alphanumeric strings with length 9!\") }}\n            {%- endif %}\n            {{- ', \"id\": \"' + tool_call.id + '\"}' }}\n            {%- if not loop.last %}\n                {{- \", \" }}\n            {%- else %}\n                {{- \"]\" + eos_token }}\n            {%- endif %}\n        {%- endfor %}\n    {%- elif message[\"role\"] == \"assistant\" %}\n        {{- \" \" + message[\"content\"]|trim + eos_token}}\n    {%- elif message[\"role\"] == \"tool_results\" or message[\"role\"] == \"tool\" %}\n        {%- if message.content is defined and message.content.content is defined %}\n            {%- set content = message.content.content %}\n        {%- else %}\n            {%- set content = message.content %}\n        {%- endif %}\n        {{- '[TOOL_RESULTS] {\"content\": ' + content|string + \", \" }}\n        {%- if not message.tool_call_id is defined or message.tool_call_id|length != 9 %}\n            {{- raise_exception(\"Tool call IDs should be alphanumeric strings with length 9!\") }}\n        {%- endif %}\n        {{- '\"call_id\": \"' + message.tool_call_id + '\"}[/TOOL_RESULTS]' }}\n    {%- else %}\n        {{- raise_exception(\"Only user and assistant roles are supported, with the exception of an initial optional system message!\") }}\n    {%- endif %}\n{%- endfor %}\n".to_string())
        );

        let infer = Infer::new(
            backend,
            Validation::new(1, None, None, None, 1, 1, 1, 1, 1, false),
            1,
            tokenizer_config,
            HubProcessorConfig::default(),
        );
        let response_format = None;
        let tools = Some(vec![Tool {
            r#type: "function".to_string(),
            function: FunctionDefinition {
                name: "get_current_weather".to_string(),
                description: Some("Get the current weather".to_string()),
                arguments: json!({
                    "type": "object",
                    "properties": {
                        "location": {
                            "type": "string",
                            "description": "The city and state, e.g. San Francisco, CA"
                        },
                        "format": {
                            "type": "string",
                            "enum": ["celsius", "fahrenheit"],
                            "description": "The temperature unit to use. Infer this from the users location."
                        }
                    },
                    "required": ["location", "format"]
                }),
            },
        }]);
        let tool_prompt = "Given the functions available, please respond with a JSON for a function call with its proper arguments that best answers the given prompt. Respond in the format {name: function name, parameters: dictionary of argument name and its value}.Do not use variables.";
        let guideline = None;
        let messages = vec![Message {
            name: None,
            role: "user".to_string(),
            content: MessageContent::SingleText(
                "What is the weather like in New York?".to_string(),
            ),
        }];

        let result = prepare_chat_input(
            &infer,
            response_format,
            tools,
            ToolChoice(None),
            tool_prompt,
            guideline,
            messages,
        );

        assert!(result.is_ok());
        let (inputs, _grammar, using_tools) = result.unwrap();
        assert_eq!(using_tools, true);
        assert_eq!(inputs, "<s>[AVAILABLE_TOOLS] [{\"type\": \"function\", \"function\": {\"arguments\": {\"properties\":{\"format\":{\"description\":\"The temperature unit to use. Infer this from the users location.\",\"enum\":[\"celsius\",\"fahrenheit\"],\"type\":\"string\"},\"location\":{\"description\":\"The city and state, e.g. San Francisco, CA\",\"type\":\"string\"}},\"required\":[\"location\",\"format\"],\"type\":\"object\"}, \"description\": \"Get the current weather\", \"name\": \"get_current_weather\"}}, {\"type\": \"function\", \"function\": {\"arguments\": {\"properties\":{\"error\":{\"description\":\"The error or issue to notify\",\"type\":\"string\"}},\"required\":[\"error\"],\"type\":\"object\"}, \"description\": \"Notify an error or issue\", \"name\": \"notify_error\"}}][/AVAILABLE_TOOLS][INST] What is the weather like in New York?\n---\nGiven the functions available, please respond with a JSON for a function call with its proper arguments that best answers the given prompt. Respond in the format {name: function name, parameters: dictionary of argument name and its value}.Do not use variables.[/INST]".to_string());
    }
2507
}