server.rs 71.7 KB
Newer Older
1
/// HTTP Server logic
OlivierDehaene's avatar
OlivierDehaene committed
2
3
4
5
6
use crate::config::Config;
use crate::infer::v2::SchedulerV2;
use crate::infer::v3::SchedulerV3;
use crate::infer::{HealthCheck, Scheduler};
use crate::infer::{Infer, InferError, InferResponse, InferStreamResponse, ToolGrammar};
7
8
9
10
11
#[cfg(feature = "kserve")]
use crate::kserve::{
    kerve_server_metadata, kserve_health_live, kserve_health_ready, kserve_model_infer,
    kserve_model_metadata, kserve_model_metadata_ready,
};
12
use crate::validation::ValidationError;
13
use crate::{
14
    BestOfSequence, Details, ErrorResponse, FinishReason, GenerateParameters, GenerateRequest,
15
16
17
    GenerateResponse, GrammarType, HubModelInfo, HubProcessorConfig, HubTokenizerConfig, Info,
    Message, PrefillToken, SimpleToken, StreamDetails, StreamResponse, Token, TokenizeResponse,
    Usage, Validation,
18
19
20
21
};
use crate::{
    ChatCompletion, ChatCompletionChoice, ChatCompletionChunk, ChatCompletionComplete,
    ChatCompletionDelta, ChatCompletionLogprob, ChatCompletionLogprobs, ChatCompletionTopLogprob,
22
    ChatRequest, Chunk, CompatGenerateRequest, Completion, CompletionComplete, CompletionFinal,
23
24
    CompletionRequest, CompletionType, DeltaToolCall, Function, Tool, VertexRequest,
    VertexResponse,
25
};
26
use crate::{FunctionDefinition, HubPreprocessorConfig, ToolCall, ToolType};
27
use async_stream::__private::AsyncStream;
Olivier Dehaene's avatar
Olivier Dehaene committed
28
use axum::extract::Extension;
29
use axum::http::{HeaderMap, Method, StatusCode};
30
use axum::response::sse::{Event, KeepAlive, Sse};
31
use axum::response::{IntoResponse, Response};
Olivier Dehaene's avatar
Olivier Dehaene committed
32
use axum::routing::{get, post};
33
use axum::{http, Json, Router};
Nicolas Patry's avatar
Nicolas Patry committed
34
use axum_tracing_opentelemetry::middleware::OtelAxumLayer;
35
use futures::stream::StreamExt;
36
use futures::stream::{FuturesOrdered, FuturesUnordered};
37
use futures::Stream;
drbh's avatar
drbh committed
38
use futures::TryStreamExt;
39
use metrics_exporter_prometheus::{Matcher, PrometheusBuilder, PrometheusHandle};
drbh's avatar
drbh committed
40
use serde_json::Value;
41
use std::convert::Infallible;
Olivier Dehaene's avatar
Olivier Dehaene committed
42
use std::net::SocketAddr;
43
44
use std::sync::atomic::AtomicBool;
use std::sync::Arc;
OlivierDehaene's avatar
OlivierDehaene committed
45
46
use text_generation_client::{v2, v3, ClientError, ShardInfo};
use thiserror::Error;
Olivier Dehaene's avatar
Olivier Dehaene committed
47
use tokenizers::Tokenizer;
48
use tokio::select;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
49
use tokio::signal;
50
use tokio::sync::oneshot;
Olivier Dehaene's avatar
Olivier Dehaene committed
51
use tokio::time::Instant;
52
use tower_http::cors::{AllowOrigin, CorsLayer};
53
use tracing::{info_span, instrument, Instrument};
54
55
use utoipa::OpenApi;
use utoipa_swagger_ui::SwaggerUi;
Olivier Dehaene's avatar
Olivier Dehaene committed
56

57
58
/// Generate tokens if `stream == false` or a stream of token if `stream == true`
#[utoipa::path(
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
post,
tag = "Text Generation Inference",
path = "/",
request_body = CompatGenerateRequest,
responses(
(status = 200, description = "Generated Text",
content(
("application/json" = GenerateResponse),
("text/event-stream" = StreamResponse),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
78
)]
79
#[instrument(skip(infer, req))]
80
async fn compat_generate(
81
    Extension(default_return_full_text): Extension<bool>,
82
    infer: Extension<Infer>,
83
    compute_type: Extension<ComputeType>,
84
    Json(mut req): Json<CompatGenerateRequest>,
85
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
86
87
    // default return_full_text given the pipeline_tag
    if req.parameters.return_full_text.is_none() {
88
        req.parameters.return_full_text = Some(default_return_full_text)
89
90
    }

91
92
    // switch on stream
    if req.stream {
93
        Ok(generate_stream(infer, compute_type, Json(req.into()))
94
95
96
            .await
            .into_response())
    } else {
97
        let (headers, Json(generation)) = generate(infer, compute_type, Json(req.into())).await?;
98
        // wrap generation inside a Vec to match api-inference
99
        Ok((headers, Json(vec![generation])).into_response())
100
101
102
    }
}

103
104
/// Text Generation Inference endpoint info
#[utoipa::path(
105
106
107
108
get,
tag = "Text Generation Inference",
path = "/info",
responses((status = 200, description = "Served model info", body = Info))
109
110
)]
#[instrument]
111
112
async fn get_model_info(info: Extension<Info>) -> Json<Info> {
    Json(info.0)
113
114
}

115
#[utoipa::path(
116
117
118
119
120
121
122
123
get,
tag = "Text Generation Inference",
path = "/health",
responses(
(status = 200, description = "Everything is working fine"),
(status = 503, description = "Text generation inference is down", body = ErrorResponse,
example = json ! ({"error": "unhealthy", "error_type": "healthcheck"})),
)
124
125
)]
#[instrument(skip(health))]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
126
/// Health check method
OlivierDehaene's avatar
OlivierDehaene committed
127
128
129
async fn health(
    mut health: Extension<HealthCheck>,
) -> Result<(), (StatusCode, Json<ErrorResponse>)> {
130
131
132
133
134
135
136
137
138
139
    match health.check().await {
        true => Ok(()),
        false => Err((
            StatusCode::SERVICE_UNAVAILABLE,
            Json(ErrorResponse {
                error: "unhealthy".to_string(),
                error_type: "healthcheck".to_string(),
            }),
        )),
    }
Olivier Dehaene's avatar
Olivier Dehaene committed
140
141
}

142
143
/// Generate tokens
#[utoipa::path(
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
post,
tag = "Text Generation Inference",
path = "/generate",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = GenerateResponse),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
159
)]
160
#[instrument(
161
162
skip_all,
fields(
163
parameters = ? req.parameters,
164
165
166
167
168
169
170
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
171
)]
Olivier Dehaene's avatar
Olivier Dehaene committed
172
async fn generate(
173
    infer: Extension<Infer>,
174
    Extension(ComputeType(compute_type)): Extension<ComputeType>,
175
    Json(req): Json<GenerateRequest>,
176
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
177
    let span = tracing::Span::current();
178
179
180
    generate_internal(infer, ComputeType(compute_type), Json(req), span).await
}

181
pub(crate) async fn generate_internal(
182
183
184
185
186
    infer: Extension<Infer>,
    ComputeType(compute_type): ComputeType,
    Json(req): Json<GenerateRequest>,
    span: tracing::Span,
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
187
    let start_time = Instant::now();
188
    metrics::increment_counter!("tgi_request_count");
189

190
191
    // Do not long ultra long inputs, like image payloads.
    tracing::debug!("Input: {}", &req.inputs[..1000.min(req.inputs.len())]);
192

193
    let compute_characters = req.inputs.chars().count();
194
    let mut add_prompt = None;
195
196
    if req.parameters.return_full_text.unwrap_or(false) {
        add_prompt = Some(req.inputs.clone());
197
198
    }

Nicolas Patry's avatar
Nicolas Patry committed
199
    let details: bool = req.parameters.details || req.parameters.decoder_input_details;
200
201

    // Inference
202
    let (response, best_of_responses) = match req.parameters.best_of {
203
        Some(best_of) if best_of > 1 => {
204
            let (response, best_of_responses) = infer.generate_best_of(req, best_of).await?;
205
206
            (response, Some(best_of_responses))
        }
207
        _ => (infer.generate(req).await?, None),
208
    };
Olivier Dehaene's avatar
Olivier Dehaene committed
209

OlivierDehaene's avatar
OlivierDehaene committed
210
    // Token details
211
    let input_length = response._input_length;
OlivierDehaene's avatar
OlivierDehaene committed
212
    let details = match details {
213
214
215
216
217
218
219
220
221
222
223
224
225
226
        true => {
            // convert best_of_responses
            let best_of_sequences = best_of_responses.map(|responses: Vec<InferResponse>| {
                responses
                    .into_iter()
                    .map(|response: InferResponse| {
                        // Add prompt if return_full_text
                        let mut output_text = response.generated_text.text;
                        if let Some(prompt) = &add_prompt {
                            output_text = prompt.clone() + &output_text;
                        }

                        BestOfSequence {
                            generated_text: output_text,
OlivierDehaene's avatar
OlivierDehaene committed
227
                            finish_reason: response.generated_text.finish_reason,
228
229
230
                            generated_tokens: response.generated_text.generated_tokens,
                            prefill: response.prefill,
                            tokens: response.tokens,
Nicolas Patry's avatar
Nicolas Patry committed
231
                            top_tokens: response.top_tokens,
232
233
234
235
236
237
238
                            seed: response.generated_text.seed,
                        }
                    })
                    .collect()
            });

            Some(Details {
OlivierDehaene's avatar
OlivierDehaene committed
239
                finish_reason: response.generated_text.finish_reason,
240
241
242
243
244
                generated_tokens: response.generated_text.generated_tokens,
                prefill: response.prefill,
                tokens: response.tokens,
                seed: response.generated_text.seed,
                best_of_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
245
                top_tokens: response.top_tokens,
246
247
            })
        }
OlivierDehaene's avatar
OlivierDehaene committed
248
249
250
        false => None,
    };

251
252
253
254
    // Timings
    let total_time = start_time.elapsed();
    let validation_time = response.queued - start_time;
    let queue_time = response.start - response.queued;
255
256
    let inference_time = Instant::now() - response.start;
    let time_per_token = inference_time / response.generated_text.generated_tokens;
257

258
259
260
261
262
263
264
265
    // Tracing metadata
    span.record("total_time", format!("{total_time:?}"));
    span.record("validation_time", format!("{validation_time:?}"));
    span.record("queue_time", format!("{queue_time:?}"));
    span.record("inference_time", format!("{inference_time:?}"));
    span.record("time_per_token", format!("{time_per_token:?}"));
    span.record("seed", format!("{:?}", response.generated_text.seed));

266
267
    // Headers
    let mut headers = HeaderMap::new();
268
    headers.insert("x-compute-type", compute_type.parse().unwrap());
269
270
    headers.insert(
        "x-compute-time",
Nicolas Patry's avatar
Nicolas Patry committed
271
        total_time.as_secs_f64().to_string().parse().unwrap(),
272
273
274
275
276
    );
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
277
278
279
280
281
282
283
284
285
286
287
    headers.insert(
        "x-total-time",
        total_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-validation-time",
        validation_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-queue-time",
        queue_time.as_millis().to_string().parse().unwrap(),
Olivier Dehaene's avatar
Olivier Dehaene committed
288
    );
289
290
291
292
293
294
295
296
    headers.insert(
        "x-inference-time",
        inference_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-time-per-token",
        time_per_token.as_millis().to_string().parse().unwrap(),
    );
297
298
299
300
301
    headers.insert("x-prompt-tokens", input_length.into());
    headers.insert(
        "x-generated-tokens",
        response.generated_text.generated_tokens.into(),
    );
302

303
304
    // Metrics
    metrics::increment_counter!("tgi_request_success");
305
306
307
308
309
310
311
312
313
314
315
316
317
318
    metrics::histogram!("tgi_request_duration", total_time.as_secs_f64());
    metrics::histogram!(
        "tgi_request_validation_duration",
        validation_time.as_secs_f64()
    );
    metrics::histogram!("tgi_request_queue_duration", queue_time.as_secs_f64());
    metrics::histogram!(
        "tgi_request_inference_duration",
        inference_time.as_secs_f64()
    );
    metrics::histogram!(
        "tgi_request_mean_time_per_token_duration",
        time_per_token.as_secs_f64()
    );
319
320
321
322
323
    metrics::histogram!(
        "tgi_request_generated_tokens",
        response.generated_text.generated_tokens as f64
    );

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
324
    // Send response
325
326
327
328
329
    let mut output_text = response.generated_text.text;
    if let Some(prompt) = add_prompt {
        output_text = prompt + &output_text;
    }

330
331
    tracing::debug!("Output: {}", output_text);
    tracing::info!("Success");
332

333
    let response = GenerateResponse {
334
        generated_text: output_text,
OlivierDehaene's avatar
OlivierDehaene committed
335
        details,
336
    };
337
    Ok((headers, Json(response)))
Olivier Dehaene's avatar
Olivier Dehaene committed
338
339
}

Yannic Kilcher's avatar
Yannic Kilcher committed
340
/// Generate a stream of token using Server-Sent Events
341
#[utoipa::path(
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
post,
tag = "Text Generation Inference",
path = "/generate_stream",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = StreamResponse,
content_type = "text/event-stream"),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"}),
content_type = "text/event-stream"),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"}),
content_type = "text/event-stream"),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"}),
content_type = "text/event-stream"),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"}),
content_type = "text/event-stream"),
)
362
)]
363
#[instrument(
364
365
skip_all,
fields(
366
parameters = ? req.parameters,
367
368
369
370
371
372
373
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
374
375
)]
async fn generate_stream(
376
    Extension(infer): Extension<Infer>,
377
    Extension(compute_type): Extension<ComputeType>,
378
    Json(req): Json<GenerateRequest>,
379
380
381
382
) -> (
    HeaderMap,
    Sse<impl Stream<Item = Result<Event, Infallible>>>,
) {
383
    let span = tracing::Span::current();
384
385
386
387
388
    let on_message_callback = |stream_token: StreamResponse| {
        let event = Event::default();
        event.json_data(stream_token).unwrap()
    };
    let (headers, response_stream) =
389
        generate_stream_internal(infer, compute_type, Json(req), on_message_callback, span).await;
390
391
392
393
394
395
    let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
    (headers, sse)
}

async fn generate_stream_internal(
    infer: Infer,
396
    ComputeType(compute_type): ComputeType,
397
398
    Json(req): Json<GenerateRequest>,
    on_message_callback: impl Fn(StreamResponse) -> Event,
399
    span: tracing::Span,
400
) -> (HeaderMap, impl Stream<Item = Result<Event, Infallible>>) {
401
    let start_time = Instant::now();
402
    metrics::increment_counter!("tgi_request_count");
403

404
    tracing::debug!("Input: {}", req.inputs);
405

406
    let compute_characters = req.inputs.chars().count();
407
408

    let mut headers = HeaderMap::new();
409
    headers.insert("x-compute-type", compute_type.parse().unwrap());
410
411
412
413
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
414
    headers.insert("X-Accel-Buffering", "no".parse().unwrap());
415

416
417
418
419
    let stream = async_stream::stream! {
        // Inference
        let mut end_reached = false;
        let mut error = false;
420
421

        let mut add_prompt = None;
422
423
        if req.parameters.return_full_text.unwrap_or(false) {
            add_prompt = Some(req.inputs.clone());
424
        }
425
        let details = req.parameters.details;
426

427
        let best_of = req.parameters.best_of.unwrap_or(1);
428
429
430
431
432
        if best_of != 1 {
            let err = InferError::from(ValidationError::BestOfStream);
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            yield Ok(Event::from(err));
433
        } else if req.parameters.decoder_input_details {
434
435
436
437
438
            let err = InferError::from(ValidationError::PrefillDetailsStream);
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            yield Ok(Event::from(err));
        } else {
439
            match infer.generate_stream(req).instrument(info_span!(parent: &span, "async_stream")).await {
440
                // Keep permit as long as generate_stream lives
441
                Ok((_permit, _input_length, mut response_stream)) => {
442
                    let mut index = 0;
443
444
                    // Server-Sent Event stream
                    while let Some(response) = response_stream.next().await {
445
                        index += 1;
446
447
448
449
450
451
                        match response {
                            Ok(response) => {
                                match response {
                                    // Prefill is ignored
                                    InferStreamResponse::Prefill(_) => {}
                                    // Yield event for every new token
Nicolas Patry's avatar
Nicolas Patry committed
452
453
454
455
                                    InferStreamResponse::Intermediate{
                                        token,
                                        top_tokens,
                                    } => {
456
457
                                        tracing::debug!(parent: &span, "Token: {:?}", token);

458
459
                                        // StreamResponse
                                        let stream_token = StreamResponse {
460
                                            index,
461
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
462
                                            top_tokens,
463
464
465
                                            generated_text: None,
                                            details: None,
                                        };
466
467
                                        let event = on_message_callback(stream_token);
                                        yield Ok(event);
468
                                    }
469
470
                                    // Yield event for last token and compute timings
                                    InferStreamResponse::End {
471
                                        token,
472
473
474
                                        generated_text,
                                        start,
                                        queued,
Nicolas Patry's avatar
Nicolas Patry committed
475
                                        top_tokens,
476
477
478
479
                                    } => {
                                        // Token details
                                        let details = match details {
                                            true => Some(StreamDetails {
OlivierDehaene's avatar
OlivierDehaene committed
480
                                                finish_reason: generated_text.finish_reason,
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
                                                generated_tokens: generated_text.generated_tokens,
                                                seed: generated_text.seed,
                                            }),
                                            false => None,
                                        };

                                        // Timings
                                        let total_time = start_time.elapsed();
                                        let validation_time = queued - start_time;
                                        let queue_time = start - queued;
                                        let inference_time = Instant::now() - start;
                                        let time_per_token = inference_time / generated_text.generated_tokens;

                                        // Tracing metadata
                                        span.record("total_time", format!("{total_time:?}"));
                                        span.record("validation_time", format!("{validation_time:?}"));
                                        span.record("queue_time", format!("{queue_time:?}"));
                                        span.record("inference_time", format!("{inference_time:?}"));
                                        span.record("time_per_token", format!("{time_per_token:?}"));
                                        span.record("seed", format!("{:?}", generated_text.seed));

                                        // Metrics
                                        metrics::increment_counter!("tgi_request_success");
504
505
506
507
508
                                        metrics::histogram!("tgi_request_duration", total_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_validation_duration", validation_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_queue_duration", queue_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_inference_duration", inference_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_mean_time_per_token_duration", time_per_token.as_secs_f64());
509
510
511
512
513
514
515
516
517
518
                                        metrics::histogram!("tgi_request_generated_tokens", generated_text.generated_tokens as f64);

                                        // StreamResponse
                                        end_reached = true;

                                        let mut output_text = generated_text.text;
                                        if let Some(prompt) = add_prompt {
                                            output_text = prompt + &output_text;
                                        }

519
520
                                        tracing::debug!(parent: &span, "Output: {}", output_text);
                                        tracing::info!(parent: &span, "Success");
521

522
                                        let stream_token = StreamResponse {
523
                                            index,
524
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
525
                                            top_tokens,
526
527
528
529
                                            generated_text: Some(output_text),
                                            details
                                        };

530
531
532

                                        let event = on_message_callback(stream_token);
                                        yield Ok(event);
533
534
                                        break;
                                    }
535
536
                                }
                            }
537
538
539
540
541
542
                            // yield error
                            Err(err) => {
                                error = true;
                                yield Ok(Event::from(err));
                                break;
                            }
543
544
                        }
                    }
545
546
547
548
549
                },
                // yield error
                Err(err) => {
                    error = true;
                    yield Ok(Event::from(err));
550
                }
551
552
553
554
555
556
557
            }
            // Check if generation reached the end
            // Skip if we already sent an error
            if !end_reached && !error {
                let err = InferError::IncompleteGeneration;
                metrics::increment_counter!("tgi_request_failure", "err" => "incomplete");
                tracing::error!("{err}");
558
                yield Ok(Event::from(err));
559
560
561
562
            }
        }
    };

563
564
565
    (headers, stream)
}

566
567
/// Generate tokens
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
post,
tag = "Text Generation Inference",
path = "/v1/completions",
request_body = CompletionRequest,
responses(
(status = 200, description = "Generated Chat Completion",
content(
("application/json" = Completion),
("text/event-stream" = CompletionCompleteChunk),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
588
#[instrument(
OlivierDehaene's avatar
OlivierDehaene committed
589
590
591
592
593
594
595
596
597
598
599
skip_all,
fields(
// parameters = ? req.parameters,
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
)]
600
601
602
603
604
605
async fn completions(
    Extension(infer): Extension<Infer>,
    Extension(compute_type): Extension<ComputeType>,
    Extension(info): Extension<Info>,
    Json(req): Json<CompletionRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
606
    let span = tracing::Span::current();
607
608
    metrics::increment_counter!("tgi_request_count");

609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
    let CompletionRequest {
        max_tokens,
        seed,
        stop,
        stream,
        temperature,
        ..
    } = req;

    let max_new_tokens = max_tokens.or(Some(100));
    let stop = stop.unwrap_or_default();
    // enable greedy only when temperature is 0
    let (do_sample, temperature) = match temperature {
        Some(temperature) if temperature == 0.0 => (false, None),
        other => (true, other),
    };
625
626
627
628
629
630
631
632
633
634
635
636
637
638

    // if suffix is present throw an error
    if req.suffix.is_some() {
        metrics::increment_counter!("tgi_request_failure", "err" => "validation");
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: "Suffix is not supported and can be achieved by preprocessing the prompt."
                    .to_string(),
                error_type: "suffix not supported".to_string(),
            }),
        ));
    }

639
    if req.prompt.0.len() > info.max_client_batch_size {
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
        metrics::increment_counter!("tgi_request_failure", "err" => "validation");
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: format!(
                    "Number of prompts exceeds the maximum allowed batch size of {}",
                    info.max_client_batch_size
                ),
                error_type: "batch size exceeded".to_string(),
            }),
        ));
    }

    let generate_requests: Vec<GenerateRequest> = req
        .prompt
655
        .0
656
657
658
659
660
        .iter()
        .map(|prompt| GenerateRequest {
            inputs: prompt.to_string(),
            parameters: GenerateParameters {
                best_of: None,
661
                temperature,
662
663
664
665
666
                repetition_penalty: req.repetition_penalty,
                frequency_penalty: req.frequency_penalty,
                top_k: None,
                top_p: req.top_p,
                typical_p: None,
667
                do_sample,
668
669
                max_new_tokens,
                return_full_text: None,
670
                stop: stop.clone(),
671
672
673
674
675
676
677
                truncate: None,
                watermark: false,
                details: true,
                decoder_input_details: !stream,
                seed,
                top_n_tokens: None,
                grammar: None,
drbh's avatar
drbh committed
678
                ..Default::default()
679
680
681
682
683
684
685
            },
        })
        .collect();

    let mut x_compute_type = None;
    let mut x_compute_characters = 0u32;
    let mut x_accel_buffering = None;
686
687

    if stream {
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
        let mut response_streams = FuturesOrdered::new();
        for (index, generate_request) in generate_requests.into_iter().enumerate() {
            let model_id = info.model_id.clone();
            let system_fingerprint =
                format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));
            let infer_clone = infer.clone();
            let compute_type_clone = compute_type.clone();
            let span_clone = span.clone();

            // Create a future for each generate_stream_internal call.
            let generate_future = async move {
                let on_message_callback = move |stream_token: StreamResponse| {
                    let event = Event::default();

                    let current_time = std::time::SystemTime::now()
                        .duration_since(std::time::UNIX_EPOCH)
                        .unwrap_or_else(|_| std::time::Duration::from_secs(0))
                        .as_secs();

                    event
708
                        .json_data(Completion::Chunk(Chunk {
709
710
711
712
713
714
715
716
717
718
719
720
                            id: "".to_string(),
                            created: current_time,

                            choices: vec![CompletionComplete {
                                finish_reason: "".to_string(),
                                index: index as u32,
                                logprobs: None,
                                text: stream_token.token.text,
                            }],

                            model: model_id.clone(),
                            system_fingerprint: system_fingerprint.clone(),
721
                        }))
722
                        .unwrap_or_else(|_e| Event::default())
723
724
725
726
727
728
729
730
731
732
733
734
735
736
                };

                let (header_tx, header_rx) = oneshot::channel();
                let (sse_tx, sse_rx) = tokio::sync::mpsc::unbounded_channel();

                tokio::spawn(async move {
                    let (header_map, sse) = generate_stream_internal(
                        infer_clone.clone(),
                        compute_type_clone.clone(),
                        Json(generate_request),
                        on_message_callback,
                        span_clone.clone(),
                    )
                    .await;
737

738
739
                    // send and dont wait for response
                    let _ = header_tx.send(header_map);
740

741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
                    // pin an emit messages to the sse_tx
                    let mut sse = Box::pin(sse);
                    while let Some(event) = sse.next().await {
                        if sse_tx.send(event).is_err() {
                            tracing::error!("Failed to send event. Receiver dropped.");
                            break;
                        }
                    }
                });

                (header_rx, sse_rx)
            };
            response_streams.push_back(generate_future);
        }

        let mut all_rxs = vec![];

        while let Some((header_rx, sse_rx)) = response_streams.next().await {
            all_rxs.push(sse_rx);

            // get the headers from the first response of each stream
            let headers = header_rx.await.map_err(|e| {
                tracing::error!("Failed to get headers: {:?}", e);
                (
                    StatusCode::INTERNAL_SERVER_ERROR,
                    Json(ErrorResponse {
                        error: "Failed to get headers".to_string(),
                        error_type: "headers".to_string(),
                    }),
770
                )
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
            })?;
            if x_compute_type.is_none() {
                x_compute_type = headers
                    .get("x-compute-type")
                    .and_then(|v| v.to_str().ok())
                    .map(|v| v.to_string());

                x_accel_buffering = headers
                    .get("x-accel-buffering")
                    .and_then(|v| v.to_str().ok())
                    .map(|v| v.to_string());
            }
            x_compute_characters += headers
                .get("x-compute-characters")
                .and_then(|v| v.to_str().ok())
                .and_then(|v| v.parse().ok())
                .unwrap_or(0);
        }
789

790
791
792
793
794
795
796
797
        let mut headers = HeaderMap::new();
        if let Some(x_compute_type) = x_compute_type {
            headers.insert("x-compute-type", x_compute_type.parse().unwrap());
        }
        headers.insert("x-compute-characters", x_compute_characters.into());
        if let Some(x_accel_buffering) = x_accel_buffering {
            headers.insert("x-accel-buffering", x_accel_buffering.parse().unwrap());
        }
798

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
        // now sink the sse streams into a single stream and remove the ones that are done
        let stream: AsyncStream<Result<Event, Infallible>, _> = async_stream::stream! {
            loop {
                let mut i = 0;
                while i < all_rxs.len() {
                    let rx = &mut all_rxs[i];
                    select! {
                        Some(event) = rx.recv() => {
                            yield event;
                        }
                        else => {
                            all_rxs.remove(i);
                            continue; // skip the increment to handle the next element at the same index
                        }
                    }
                    i += 1; // only increment when no element was removed
                }

                if all_rxs.is_empty() {
                    break;
                }
            }
        };

        let sse = Sse::new(stream).keep_alive(KeepAlive::default());
824
825
826
827
828
829
830
        Ok((headers, sse).into_response())
    } else {
        let current_time = std::time::SystemTime::now()
            .duration_since(std::time::UNIX_EPOCH)
            .unwrap_or_else(|_| std::time::Duration::from_secs(0))
            .as_secs();

831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
        let responses = FuturesUnordered::new();
        for (index, generate_request) in generate_requests.into_iter().enumerate() {
            let infer_clone = infer.clone();
            let compute_type_clone = compute_type.clone();
            let span_clone = span.clone();
            let response_future = async move {
                let result = generate_internal(
                    Extension(infer_clone),
                    compute_type_clone,
                    Json(generate_request),
                    span_clone,
                )
                .await;
                result.map(|(headers, generation)| (index, headers, generation))
            };
            responses.push(response_future);
        }
        let generate_responses = responses.try_collect::<Vec<_>>().await?;

        let mut prompt_tokens = 0u32;
        let mut completion_tokens = 0u32;
        let mut total_tokens = 0u32;

        let mut x_compute_time = 0u32;
        let mut x_total_time = 0u32;
        let mut x_validation_time = 0u32;
        let mut x_queue_time = 0u32;
        let mut x_inference_time = 0u32;
        let mut x_time_per_token = 0u32;
        let mut x_prompt_tokens = 0u32;
        let mut x_generated_tokens = 0u32;

        let choices = generate_responses
            .into_iter()
            .map(|(index, headers, Json(generation))| {
                let details = generation.details.ok_or((
                    // this should never happen but handle if details are missing unexpectedly
                    StatusCode::INTERNAL_SERVER_ERROR,
                    Json(ErrorResponse {
                        error: "No details in generation".to_string(),
                        error_type: "no details".to_string(),
                    }),
                ))?;

                if x_compute_type.is_none() {
                    x_compute_type = headers
                        .get("x-compute-type")
                        .and_then(|v| v.to_str().ok())
                        .map(|v| v.to_string());
                }

                // accumulate headers and usage from each response
                x_compute_time += headers
                    .get("x-compute-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_compute_characters += headers
                    .get("x-compute-characters")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_total_time += headers
                    .get("x-total-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_validation_time += headers
                    .get("x-validation-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_queue_time += headers
                    .get("x-queue-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_inference_time += headers
                    .get("x-inference-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_time_per_token += headers
                    .get("x-time-per-token")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_prompt_tokens += headers
                    .get("x-prompt-tokens")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_generated_tokens += headers
                    .get("x-generated-tokens")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);

                prompt_tokens += details.prefill.len() as u32;
                completion_tokens += details.generated_tokens;
                total_tokens += details.prefill.len() as u32 + details.generated_tokens;

                Ok(CompletionComplete {
                    finish_reason: details.finish_reason.to_string(),
                    index: index as u32,
                    logprobs: None,
                    text: generation.generated_text,
                })
            })
            .collect::<Result<Vec<_>, _>>()
            .map_err(|(status, Json(err))| (status, Json(err)))?;
933

934
        let response = Completion::Final(CompletionFinal {
935
936
937
938
939
940
941
942
            id: "".to_string(),
            created: current_time,
            model: info.model_id.clone(),
            system_fingerprint: format!(
                "{}-{}",
                info.version,
                info.docker_label.unwrap_or("native")
            ),
943
            choices,
944
            usage: Usage {
945
946
947
                prompt_tokens,
                completion_tokens,
                total_tokens,
948
            },
949
        });
950

951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
        // headers similar to `generate` but aggregated
        let mut headers = HeaderMap::new();
        if let Some(x_compute_type) = x_compute_type {
            headers.insert("x-compute-type", x_compute_type.parse().unwrap());
        }
        headers.insert("x-compute-characters", x_compute_characters.into());
        headers.insert("x-total-time", x_total_time.into());
        headers.insert("x-validation-time", x_validation_time.into());
        headers.insert("x-queue-time", x_queue_time.into());
        headers.insert("x-inference-time", x_inference_time.into());
        headers.insert("x-time-per-token", x_time_per_token.into());
        headers.insert("x-prompt-tokens", x_prompt_tokens.into());
        headers.insert("x-generated-tokens", x_generated_tokens.into());
        if let Some(x_accel_buffering) = x_accel_buffering {
            headers.insert("x-accel-buffering", x_accel_buffering.parse().unwrap());
        }
967
968
969
970
        Ok((headers, Json(response)).into_response())
    }
}

971
972
/// Generate tokens
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
post,
tag = "Text Generation Inference",
path = "/v1/chat/completions",
request_body = ChatRequest,
responses(
(status = 200, description = "Generated Chat Completion",
content(
("application/json" = ChatCompletion),
("text/event-stream" = ChatCompletionChunk),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
993
#[instrument(
OlivierDehaene's avatar
OlivierDehaene committed
994
995
996
997
998
999
1000
1001
1002
1003
1004
skip_all,
fields(
// parameters = ? req.parameters,
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
)]
1005
1006
async fn chat_completions(
    Extension(infer): Extension<Infer>,
1007
    Extension(compute_type): Extension<ComputeType>,
1008
1009
1010
    Extension(info): Extension<Info>,
    Json(req): Json<ChatRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
1011
    let span = tracing::Span::current();
1012
    metrics::increment_counter!("tgi_request_count");
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
    let ChatRequest {
        logprobs,
        max_tokens,
        messages,
        presence_penalty,
        seed,
        stop,
        stream,
        tools,
        tool_choice,
        tool_prompt,
1024
        temperature,
drbh's avatar
drbh committed
1025
        response_format,
1026
1027
1028
1029
1030
1031
1032
1033
        ..
    } = req;

    let repetition_penalty = presence_penalty.map(|x| x + 2.0);
    let max_new_tokens = max_tokens.or(Some(100));
    let logprobs = logprobs.unwrap_or(false);
    let tool_prompt = tool_prompt.unwrap_or_default();
    let stop = stop.unwrap_or_default();
1034
1035
1036
1037
1038
    // enable greedy only when temperature is 0
    let (do_sample, temperature) = match temperature {
        Some(temperature) if temperature == 0.0 => (false, None),
        other => (true, other),
    };
1039

drbh's avatar
drbh committed
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
    // response_format and tools are mutually exclusive
    if response_format.is_some() && tools.as_ref().is_some() {
        metrics::increment_counter!("tgi_request_failure", "err" => "validation");
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: "Grammar and tools are mutually exclusive".to_string(),
                error_type: "grammar and tools".to_string(),
            }),
        ));
    }

1052
1053
1054
    // extract tool grammar if present
    let tool_grammar = match ToolGrammar::apply(tools, tool_choice) {
        Ok(grammar) => grammar,
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
        Err(err) => {
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            return Err((
                StatusCode::UNPROCESSABLE_ENTITY,
                Json(ErrorResponse {
                    error: err.to_string(),
                    error_type: err.error_type().to_string(),
                }),
            ));
        }
    };

drbh's avatar
drbh committed
1068
1069
    // determine the appropriate arguments for apply_chat_template
    let tools_grammar_prompt = tool_grammar
1070
1071
        .as_ref()
        .map(|t| (GrammarType::Json(serde_json::json!(t)), tool_prompt));
drbh's avatar
drbh committed
1072

drbh's avatar
drbh committed
1073
1074
1075
1076
1077
1078
1079
    let (tools_grammar_prompt, grammar) = match response_format {
        Some(response_format) => (None, Some(response_format)),
        None => (
            tools_grammar_prompt.clone(),
            tools_grammar_prompt.map(|(grammar, _)| grammar.clone()),
        ),
    };
drbh's avatar
drbh committed
1080

1081
    // apply chat template to flatten the request into a single input
drbh's avatar
drbh committed
1082
    let inputs = match infer.apply_chat_template(messages, tools_grammar_prompt) {
1083
1084
1085
1086
1087
        Ok(inputs) => inputs,
        Err(err) => {
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            return Err((
drbh's avatar
drbh committed
1088
1089
                StatusCode::UNPROCESSABLE_ENTITY,
                Json(ErrorResponse {
1090
1091
                    error: err.to_string(),
                    error_type: err.error_type().to_string(),
drbh's avatar
drbh committed
1092
                }),
1093
1094
            ));
        }
drbh's avatar
drbh committed
1095
1096
    };

1097
1098
1099
1100
1101
    // build the request passing some parameters
    let generate_request = GenerateRequest {
        inputs: inputs.to_string(),
        parameters: GenerateParameters {
            best_of: None,
1102
            temperature,
1103
            repetition_penalty,
1104
            frequency_penalty: req.frequency_penalty,
1105
            top_k: None,
1106
            top_p: req.top_p,
1107
            typical_p: None,
1108
            do_sample,
1109
1110
            max_new_tokens,
            return_full_text: None,
1111
            stop,
1112
1113
1114
            truncate: None,
            watermark: false,
            details: true,
1115
            decoder_input_details: !stream,
1116
            seed,
1117
            top_n_tokens: req.top_logprobs,
drbh's avatar
drbh committed
1118
            grammar,
drbh's avatar
drbh committed
1119
            ..Default::default()
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
        },
    };

    // static values that will be returned in all cases
    let model_id = info.model_id.clone();
    let system_fingerprint = format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));

    // switch on stream
    if stream {
        // pass this callback to the stream generation and build the required event structure
        let on_message_callback = move |stream_token: StreamResponse| {
            let event = Event::default();

            let current_time = std::time::SystemTime::now()
                .duration_since(std::time::UNIX_EPOCH)
                .unwrap_or_else(|_| std::time::Duration::from_secs(0))
                .as_secs();

1138
1139
1140
1141
            let logprobs = logprobs.then(|| {
                ChatCompletionLogprobs::from((stream_token.token.clone(), stream_token.top_tokens))
            });

drbh's avatar
drbh committed
1142
1143
1144
1145
            // replace the content with the tool calls if grammar is present
            let (content, tool_calls) = if tool_grammar.is_some() {
                (None, Some(vec![stream_token.token.text]))
            } else {
1146
1147
1148
1149
1150
1151
1152
                let content = if !stream_token.token.special {
                    Some(stream_token.token.text)
                } else {
                    None
                };

                (content, None)
drbh's avatar
drbh committed
1153
1154
            };

1155
            event
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
                .json_data(CompletionType::ChatCompletionChunk(
                    ChatCompletionChunk::new(
                        model_id.clone(),
                        system_fingerprint.clone(),
                        content,
                        tool_calls,
                        current_time,
                        logprobs,
                        stream_token.details.map(|d| d.finish_reason.to_string()),
                    ),
1166
                ))
1167
1168
1169
1170
                .unwrap_or_else(|e| {
                    println!("Failed to serialize ChatCompletionChunk: {:?}", e);
                    Event::default()
                })
1171
1172
        };

1173
1174
1175
1176
1177
        let (headers, response_stream) = generate_stream_internal(
            infer,
            compute_type,
            Json(generate_request),
            on_message_callback,
1178
            span,
1179
1180
        )
        .await;
1181
1182
1183
        let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
        Ok((headers, sse).into_response())
    } else {
1184
1185
        let (headers, Json(generation)) =
            generate_internal(Extension(infer), compute_type, Json(generate_request), span).await?;
1186
1187
1188
1189
1190
1191

        let current_time = std::time::SystemTime::now()
            .duration_since(std::time::UNIX_EPOCH)
            .unwrap_or_else(|_| std::time::Duration::from_secs(0))
            .as_secs();

drbh's avatar
drbh committed
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
        let (tool_calls, output) = if tool_grammar.is_some() {
            // gen_text should be valid json
            let gen_text_value: Value =
                serde_json::from_str(&generation.generated_text).map_err(|e| {
                    (
                        StatusCode::UNPROCESSABLE_ENTITY,
                        Json(ErrorResponse {
                            error: e.to_string(),
                            error_type: "Input validation error".to_string(),
                        }),
                    )
                })?;
1204
            let tool_calls = vec![ToolCall {
1205
                id: "0".to_string(),
drbh's avatar
drbh committed
1206
1207
1208
                r#type: "function".to_string(),
                function: FunctionDefinition {
                    description: None,
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
                    name: gen_text_value
                        .get("function")
                        .and_then(|f| f.get("_name"))
                        .and_then(|name| name.as_str())
                        .unwrap_or("default_function_name")
                        .to_string(),
                    // Serialize the JSON object obtained from "function" to an escaped JSON string
                    arguments: gen_text_value
                        .get("function")
                        .map(|f| {
                            let mut f_cloned = f.clone();
                            if let Value::Object(ref mut props) = f_cloned {
                                props.remove("_name");
                            }
                            f_cloned
                        })
                        .unwrap_or_default(),
drbh's avatar
drbh committed
1226
                },
1227
1228
            }];
            (Some(tool_calls), None)
drbh's avatar
drbh committed
1229
1230
1231
        } else {
            (None, Some(generation.generated_text))
        };
1232
        // build the complete response object with the full text
1233
        let response = CompletionType::ChatCompletion(ChatCompletion::new(
1234
1235
            model_id,
            system_fingerprint,
drbh's avatar
drbh committed
1236
            output,
1237
1238
1239
            current_time,
            generation.details.unwrap(),
            logprobs,
drbh's avatar
drbh committed
1240
            tool_calls,
1241
        ));
1242
1243
1244
1245

        // wrap generation inside a Vec to match api-inference
        Ok((headers, Json(response)).into_response())
    }
1246
1247
}

drbh's avatar
drbh committed
1248
1249
/// Generate tokens from Vertex request
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
post,
tag = "Text Generation Inference",
path = "/vertex",
request_body = VertexRequest,
responses(
(status = 200, description = "Generated Text", body = VertexResponse),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
drbh's avatar
drbh committed
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
#[instrument(
    skip_all,
    fields(
        total_time,
        validation_time,
        queue_time,
        inference_time,
        time_per_token,
        seed,
    )
)]
async fn vertex_compatibility(
    Extension(infer): Extension<Infer>,
    Extension(compute_type): Extension<ComputeType>,
    Json(req): Json<VertexRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
1282
    let span = tracing::Span::current();
drbh's avatar
drbh committed
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
    metrics::increment_counter!("tgi_request_count");

    // check that theres at least one instance
    if req.instances.is_empty() {
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: "Input validation error".to_string(),
                error_type: "Input validation error".to_string(),
            }),
        ));
    }

    // Process all instances
    let predictions = req
        .instances
        .iter()
        .map(|instance| {
            let generate_request = GenerateRequest {
                inputs: instance.inputs.clone(),
                parameters: GenerateParameters {
                    do_sample: true,
                    max_new_tokens: instance.parameters.as_ref().and_then(|p| p.max_new_tokens),
                    seed: instance.parameters.as_ref().and_then(|p| p.seed),
                    details: true,
                    decoder_input_details: true,
                    ..Default::default()
                },
            };

            async {
1314
                generate_internal(
drbh's avatar
drbh committed
1315
                    Extension(infer.clone()),
1316
                    compute_type.clone(),
drbh's avatar
drbh committed
1317
                    Json(generate_request),
1318
                    span.clone(),
drbh's avatar
drbh committed
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
                )
                .await
                .map(|(_, Json(generation))| generation.generated_text)
                .map_err(|_| {
                    (
                        StatusCode::INTERNAL_SERVER_ERROR,
                        Json(ErrorResponse {
                            error: "Incomplete generation".into(),
                            error_type: "Incomplete generation".into(),
                        }),
                    )
                })
            }
        })
        .collect::<FuturesUnordered<_>>()
        .try_collect::<Vec<_>>()
        .await?;

    let response = VertexResponse { predictions };
    Ok((HeaderMap::new(), Json(response)).into_response())
}

1341
1342
/// Tokenize inputs
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
post,
tag = "Text Generation Inference",
path = "/tokenize",
request_body = GenerateRequest,
responses(
(status = 200, description = "Tokenized ids", body = TokenizeResponse),
(status = 404, description = "No tokenizer found", body = ErrorResponse,
example = json ! ({"error": "No fast tokenizer available"})),
)
)]
1353
1354
1355
1356
#[instrument(skip_all)]
async fn tokenize(
    Extension(infer): Extension<Infer>,
    Json(req): Json<GenerateRequest>,
1357
) -> Result<Json<TokenizeResponse>, (StatusCode, Json<ErrorResponse>)> {
1358
1359
1360
1361
1362
1363
1364
1365
    let input = req.inputs.clone();
    let encoding = infer.tokenize(req).await?;
    if let Some(encoding) = encoding {
        let tokens: Vec<SimpleToken> = encoding
            .get_ids()
            .iter()
            .zip(encoding.get_offsets())
            .map(|(&id, &(start, stop))| {
1366
1367
                let text: String =
                    String::from_utf8_lossy(&input.as_bytes()[start..stop]).to_string();
1368
1369
1370
1371
1372
1373
1374
1375
                SimpleToken {
                    id,
                    text,
                    start,
                    stop,
                }
            })
            .collect();
1376
        Ok(Json(TokenizeResponse(tokens)))
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
    } else {
        Err((
            StatusCode::NOT_FOUND,
            Json(ErrorResponse {
                error: "No fast tokenizer or tokenizer.json for this model".to_string(),
                error_type: "no fast tokenizer".to_string(),
            }),
        ))
    }
}

1388
1389
/// Prometheus metrics scrape endpoint
#[utoipa::path(
1390
1391
1392
1393
    get,
    tag = "Text Generation Inference",
    path = "/metrics",
    responses((status = 200, description = "Prometheus Metrics", body = String))
1394
1395
1396
1397
1398
)]
async fn metrics(prom_handle: Extension<PrometheusHandle>) -> String {
    prom_handle.render()
}

1399
1400
1401
#[derive(Clone, Debug)]
pub(crate) struct ComputeType(String);

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1402
1403
1404
/// Serving method
#[allow(clippy::too_many_arguments)]
pub async fn run(
OlivierDehaene's avatar
OlivierDehaene committed
1405
    master_shard_uds_path: String,
1406
    model_info: HubModelInfo,
1407
    compat_return_full_text: bool,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1408
    max_concurrent_requests: usize,
1409
    max_best_of: usize,
1410
    max_stop_sequences: usize,
Nicolas Patry's avatar
Nicolas Patry committed
1411
    max_top_n_tokens: u32,
OlivierDehaene's avatar
OlivierDehaene committed
1412
    max_input_tokens: usize,
1413
    max_total_tokens: usize,
1414
    waiting_served_ratio: f32,
1415
    max_batch_prefill_tokens: u32,
OlivierDehaene's avatar
OlivierDehaene committed
1416
    max_batch_total_tokens: Option<u32>,
1417
    max_waiting_tokens: usize,
1418
    max_batch_size: Option<usize>,
1419
    tokenizer: Option<Tokenizer>,
1420
    config: Option<Config>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1421
1422
    validation_workers: usize,
    addr: SocketAddr,
1423
    allow_origin: Option<AllowOrigin>,
1424
    ngrok: bool,
1425
1426
    _ngrok_authtoken: Option<String>,
    _ngrok_edge: Option<String>,
1427
    tokenizer_config: HubTokenizerConfig,
1428
    preprocessor_config: Option<HubPreprocessorConfig>,
drbh's avatar
drbh committed
1429
    processor_config: HubProcessorConfig,
1430
    messages_api_enabled: bool,
drbh's avatar
drbh committed
1431
    grammar_support: bool,
1432
    max_client_batch_size: usize,
1433
    print_schema_command: bool,
OlivierDehaene's avatar
OlivierDehaene committed
1434
) -> Result<(), WebServerError> {
1435
1436
1437
    // OpenAPI documentation
    #[derive(OpenApi)]
    #[openapi(
1438
1439
1440
1441
1442
1443
    paths(
    health,
    get_model_info,
    compat_generate,
    generate,
    generate_stream,
1444
    chat_completions,
1445
    completions,
1446
    tokenize,
1447
1448
1449
1450
1451
1452
1453
    metrics,
    ),
    components(
    schemas(
    Info,
    CompatGenerateRequest,
    GenerateRequest,
1454
    GrammarType,
1455
1456
    ChatRequest,
    Message,
1457
    ChatCompletionComplete,
1458
1459
1460
    ChatCompletionChoice,
    ChatCompletionDelta,
    ChatCompletionChunk,
1461
1462
1463
    ChatCompletionLogprob,
    ChatCompletionLogprobs,
    ChatCompletionTopLogprob,
1464
    ChatCompletion,
1465
1466
    CompletionRequest,
    CompletionComplete,
1467
1468
1469
    Chunk,
    Completion,
    CompletionFinal,
1470
1471
1472
1473
    GenerateParameters,
    PrefillToken,
    Token,
    GenerateResponse,
1474
1475
    TokenizeResponse,
    SimpleToken,
1476
1477
1478
1479
1480
1481
    BestOfSequence,
    Details,
    FinishReason,
    StreamResponse,
    StreamDetails,
    ErrorResponse,
drbh's avatar
drbh committed
1482
    GrammarType,
1483
    Usage,
OlivierDehaene's avatar
OlivierDehaene committed
1484
1485
1486
1487
1488
1489
    DeltaToolCall,
    ToolType,
    Tool,
    ToolCall,
    Function,
    FunctionDefinition,
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
    )
    ),
    tags(
    (name = "Text Generation Inference", description = "Hugging Face Text Generation Inference API")
    ),
    info(
    title = "Text Generation Inference",
    license(
    name = "Apache 2.0",
    url = "https://www.apache.org/licenses/LICENSE-2.0"
    )
    )
1502
1503
1504
    )]
    struct ApiDoc;

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1505
    // Create state
1506
1507
1508
1509
1510
1511
    if print_schema_command {
        let api_doc = ApiDoc::openapi();
        let api_doc = serde_json::to_string_pretty(&api_doc).unwrap();
        println!("{}", api_doc);
        std::process::exit(0);
    }
OlivierDehaene's avatar
OlivierDehaene committed
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646

    // Open connection, get model info and warmup
    let (scheduler, health_ext, shard_info, max_batch_total_tokens): (
        Arc<dyn Scheduler + Send + Sync>,
        HealthCheck,
        ShardInfo,
        u32,
    ) = {
        // Helper function to check both v2 and v3
        let check_max_batch_total_tokens = |max_supported_batch_total_tokens: Option<u32>| {
            match max_supported_batch_total_tokens {
                // Older models do not support automatic max-batch-total-tokens
                None => {
                    let max_batch_total_tokens = max_batch_total_tokens.unwrap_or(
                        16000.max((max_total_tokens as u32).max(max_batch_prefill_tokens)),
                    );
                    tracing::warn!("Model does not support automatic max batch total tokens");
                    Ok(max_batch_total_tokens)
                }
                // Flash attention models return their max supported total tokens
                Some(max_supported_batch_total_tokens) => {
                    // Warn if user added his own max-batch-total-tokens as we will ignore it
                    if max_batch_total_tokens.is_some() {
                        tracing::warn!(
                            "`--max-batch-total-tokens` is deprecated for Flash \
                        Attention models."
                        );
                        tracing::warn!(
                            "Inferred max batch total tokens: {max_supported_batch_total_tokens}"
                        );
                    }
                    if max_total_tokens as u32 > max_supported_batch_total_tokens {
                        return Err(WebServerError::NotEnoughMemory(max_total_tokens));
                    }

                    Ok(max_supported_batch_total_tokens)
                }
            }
        };

        let generation_health = Arc::new(AtomicBool::new(false));

        match v3::ShardedClient::connect_uds(master_shard_uds_path.clone()).await {
            Ok(mut sharded_client) => {
                // server is running on v3
                // Clear the cache; useful if the webserver rebooted
                sharded_client
                    .clear_cache(None)
                    .await
                    .map_err(WebServerError::Cache)?;
                // Get info from the shard
                let shard_info = sharded_client.info().await.map_err(WebServerError::Info)?;

                // Warmup model
                tracing::info!("Warming up model");
                let max_batch_total_tokens = check_max_batch_total_tokens(
                    sharded_client
                        .warmup(
                            max_input_tokens as u32,
                            max_batch_prefill_tokens,
                            max_total_tokens as u32,
                            max_batch_size,
                        )
                        .await
                        .map_err(WebServerError::Warmup)?,
                )?;

                let health_ext =
                    HealthCheck::new(Arc::new(sharded_client.clone()), generation_health.clone());
                let scheduler = Arc::new(SchedulerV3::new(
                    sharded_client,
                    waiting_served_ratio,
                    max_batch_prefill_tokens,
                    max_batch_total_tokens,
                    max_waiting_tokens,
                    max_batch_size,
                    shard_info.requires_padding,
                    shard_info.window_size,
                    shard_info.speculate,
                    generation_health,
                ));
                tracing::info!("Using scheduler V3");

                (scheduler, health_ext, shard_info, max_batch_total_tokens)
            }
            Err(_) => {
                let mut sharded_client = v2::ShardedClient::connect_uds(master_shard_uds_path)
                    .await
                    .map_err(WebServerError::Connection)?;

                // server is running on v2
                // Clear the cache; useful if the webserver rebooted
                sharded_client
                    .clear_cache(None)
                    .await
                    .map_err(WebServerError::Cache)?;
                // Get info from the shard
                let shard_info = sharded_client.info().await.map_err(WebServerError::Info)?;

                // Warmup model
                tracing::info!("Warming up model");
                let max_batch_total_tokens = check_max_batch_total_tokens(
                    sharded_client
                        .warmup(
                            max_input_tokens as u32,
                            max_batch_prefill_tokens,
                            max_total_tokens as u32,
                            max_batch_size,
                        )
                        .await
                        .map_err(WebServerError::Warmup)?,
                )?;

                let health_ext =
                    HealthCheck::new(Arc::new(sharded_client.clone()), generation_health.clone());
                let scheduler = Arc::new(SchedulerV2::new(
                    sharded_client,
                    waiting_served_ratio,
                    max_batch_prefill_tokens,
                    max_batch_total_tokens,
                    max_waiting_tokens,
                    max_batch_size,
                    shard_info.requires_padding,
                    shard_info.window_size,
                    shard_info.speculate,
                    generation_health,
                ));
                tracing::info!("Using scheduler V2");

                (scheduler, health_ext, shard_info, max_batch_total_tokens)
            }
        }
    };
    tracing::info!("Setting max batch total tokens to {max_batch_total_tokens}");

1647
1648
1649
    let validation = Validation::new(
        validation_workers,
        tokenizer,
1650
        config,
1651
        preprocessor_config,
1652
        max_best_of,
1653
        max_stop_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
1654
        max_top_n_tokens,
OlivierDehaene's avatar
OlivierDehaene committed
1655
        max_input_tokens,
1656
        max_total_tokens,
drbh's avatar
drbh committed
1657
        grammar_support,
1658
    );
OlivierDehaene's avatar
OlivierDehaene committed
1659

1660
    let infer = Infer::new(
OlivierDehaene's avatar
OlivierDehaene committed
1661
        scheduler,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1662
        validation,
1663
        max_concurrent_requests,
1664
        tokenizer_config,
drbh's avatar
drbh committed
1665
        processor_config,
1666
    );
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1667

1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
    // Duration buckets
    let duration_matcher = Matcher::Suffix(String::from("duration"));
    let n_duration_buckets = 35;
    let mut duration_buckets = Vec::with_capacity(n_duration_buckets);
    // Minimum duration in seconds
    let mut value = 0.0001;
    for _ in 0..n_duration_buckets {
        // geometric sequence
        value *= 1.5;
        duration_buckets.push(value);
    }
    // Input Length buckets
    let input_length_matcher = Matcher::Full(String::from("tgi_request_input_length"));
    let input_length_buckets: Vec<f64> = (0..100)
OlivierDehaene's avatar
OlivierDehaene committed
1682
        .map(|x| (max_input_tokens as f64 / 100.0) * (x + 1) as f64)
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
        .collect();
    // Generated tokens buckets
    let generated_tokens_matcher = Matcher::Full(String::from("tgi_request_generated_tokens"));
    let generated_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Input Length buckets
    let max_new_tokens_matcher = Matcher::Full(String::from("tgi_request_max_new_tokens"));
    let max_new_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Batch size buckets
    let batch_size_matcher = Matcher::Full(String::from("tgi_batch_next_size"));
1696
    let batch_size_buckets: Vec<f64> = (0..1024).map(|x| (x + 1) as f64).collect();
OlivierDehaene's avatar
OlivierDehaene committed
1697
1698
1699
    // Speculated tokens buckets
    let skipped_matcher = Matcher::Full(String::from("tgi_request_skipped_tokens"));
    let skipped_buckets: Vec<f64> = (0..shard_info.speculate + 1).map(|x| x as f64).collect();
1700

1701
    // Prometheus handler
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
    let builder = PrometheusBuilder::new()
        .set_buckets_for_metric(duration_matcher, &duration_buckets)
        .unwrap()
        .set_buckets_for_metric(input_length_matcher, &input_length_buckets)
        .unwrap()
        .set_buckets_for_metric(generated_tokens_matcher, &generated_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(max_new_tokens_matcher, &max_new_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(batch_size_matcher, &batch_size_buckets)
OlivierDehaene's avatar
OlivierDehaene committed
1712
1713
        .unwrap()
        .set_buckets_for_metric(skipped_matcher, &skipped_buckets)
1714
        .unwrap();
1715
1716
1717
1718
    let prom_handle = builder
        .install_recorder()
        .expect("failed to install metrics recorder");

1719
1720
1721
1722
1723
1724
1725
    // CORS layer
    let allow_origin = allow_origin.unwrap_or(AllowOrigin::any());
    let cors_layer = CorsLayer::new()
        .allow_methods([Method::GET, Method::POST])
        .allow_headers([http::header::CONTENT_TYPE])
        .allow_origin(allow_origin);

1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
    // Endpoint info
    let info = Info {
        model_id: model_info.model_id,
        model_sha: model_info.sha,
        model_dtype: shard_info.dtype,
        model_device_type: shard_info.device_type,
        model_pipeline_tag: model_info.pipeline_tag,
        max_concurrent_requests,
        max_best_of,
        max_stop_sequences,
OlivierDehaene's avatar
OlivierDehaene committed
1736
        max_input_tokens,
1737
1738
1739
1740
        max_total_tokens,
        waiting_served_ratio,
        max_batch_total_tokens,
        max_waiting_tokens,
1741
        max_batch_size,
1742
        validation_workers,
1743
        max_client_batch_size,
1744
        router: env!("CARGO_PKG_NAME"),
1745
1746
        version: env!("CARGO_PKG_VERSION"),
        sha: option_env!("VERGEN_GIT_SHA"),
1747
        docker_label: option_env!("DOCKER_LABEL"),
1748
1749
    };

1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
    #[allow(unused_mut)] // mut is needed for conditional compilation
    let mut doc = ApiDoc::openapi();

    #[cfg(feature = "google")]
    {
        use crate::VertexInstance;

        #[derive(OpenApi)]
        #[openapi(
            paths(vertex_compatibility),
            components(schemas(VertexInstance, VertexRequest, VertexResponse))
        )]
        struct VertexApiDoc;

        doc.merge(VertexApiDoc::openapi());
    }

    #[cfg(feature = "kserve")]
    {
        use crate::kserve::{
            InferenceOutput, InferenceRequest, LiveResponse, MetadataServerResponse, OutputChunk,
            ReadyResponse,
        };
        use crate::kserve::{
            __path_kerve_server_metadata, __path_kserve_health_live, __path_kserve_health_ready,
            __path_kserve_model_infer, __path_kserve_model_metadata,
            __path_kserve_model_metadata_ready,
        };

        #[derive(OpenApi)]
        #[openapi(
            paths(
                kserve_health_live,
                kserve_health_ready,
                kerve_server_metadata,
                kserve_model_metadata,
                kserve_model_metadata_ready,
1787
                kserve_model_infer,
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
            ),
            components(schemas(
                InferenceOutput,
                InferenceRequest,
                LiveResponse,
                MetadataServerResponse,
                OutputChunk,
                ReadyResponse,
            ))
        )]
        struct KServeApiDoc;

        doc.merge(KServeApiDoc::openapi());
    }
drbh's avatar
drbh committed
1802

1803
    // Configure Swagger UI
drbh's avatar
drbh committed
1804
    let swagger_ui = SwaggerUi::new("/docs").url("/api-doc/openapi.json", doc);
1805
1806
1807

    // Define base and health routes
    let base_routes = Router::new()
1808
        .route("/", post(compat_generate))
1809
        .route("/", get(health))
1810
        .route("/info", get(get_model_info))
Olivier Dehaene's avatar
Olivier Dehaene committed
1811
        .route("/generate", post(generate))
1812
        .route("/generate_stream", post(generate_stream))
1813
        .route("/v1/chat/completions", post(chat_completions))
1814
        .route("/v1/completions", post(completions))
drbh's avatar
drbh committed
1815
        .route("/vertex", post(vertex_compatibility))
1816
        .route("/tokenize", post(tokenize))
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1817
        .route("/health", get(health))
1818
        .route("/ping", get(health))
1819
1820
1821
        .route("/metrics", get(metrics));

    // Conditional AWS Sagemaker route
1822
    let aws_sagemaker_route = if messages_api_enabled {
1823
1824
1825
1826
1827
        Router::new().route("/invocations", post(chat_completions)) // Use 'chat_completions' for OAI_ENABLED
    } else {
        Router::new().route("/invocations", post(compat_generate)) // Use 'compat_generate' otherwise
    };

1828
1829
    let compute_type =
        ComputeType(std::env::var("COMPUTE_TYPE").unwrap_or("gpu+optimized".to_string()));
1830

1831
    // Combine routes and layers
drbh's avatar
drbh committed
1832
    let mut app = Router::new()
1833
1834
        .merge(swagger_ui)
        .merge(base_routes)
drbh's avatar
drbh committed
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
        .merge(aws_sagemaker_route);

    #[cfg(feature = "google")]
    {
        tracing::info!("Built with `google` feature");
        tracing::info!(
            "Environment variables `AIP_PREDICT_ROUTE` and `AIP_HEALTH_ROUTE` will be respected."
        );
        if let Ok(env_predict_route) = std::env::var("AIP_PREDICT_ROUTE") {
            app = app.route(&env_predict_route, post(vertex_compatibility));
        }
        if let Ok(env_health_route) = std::env::var("AIP_HEALTH_ROUTE") {
            app = app.route(&env_health_route, get(health));
        }
    }

1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
    #[cfg(feature = "kserve")]
    {
        tracing::info!("Built with `kserve` feature");
        app = app
            .route(
                "/v2/models/:model_name/versions/:model_version/infer",
                post(kserve_model_infer),
            )
            .route(
                "/v2/models/:model_name/versions/:model_version",
                get(kserve_model_metadata),
            )
            .route("/v2/health/ready", get(kserve_health_ready))
            .route("/v2/health/live", get(kserve_health_live))
            .route("/v2", get(kerve_server_metadata))
            .route(
                "/v2/models/:model_name/versions/:model_version/ready",
                get(kserve_model_metadata_ready),
            );
    }

drbh's avatar
drbh committed
1872
1873
    // add layers after routes
    app = app
1874
        .layer(Extension(info))
1875
        .layer(Extension(health_ext.clone()))
1876
1877
        .layer(Extension(compat_return_full_text))
        .layer(Extension(infer))
1878
        .layer(Extension(compute_type))
1879
        .layer(Extension(prom_handle.clone()))
Nicolas Patry's avatar
Nicolas Patry committed
1880
        .layer(OtelAxumLayer::default())
1881
        .layer(cors_layer);
Olivier Dehaene's avatar
Olivier Dehaene committed
1882

OlivierDehaene's avatar
OlivierDehaene committed
1883
1884
    tracing::info!("Connected");

1885
1886
1887
    if ngrok {
        #[cfg(feature = "ngrok")]
        {
1888
            panic!("ngrok feature is not functional with axum=0.7 and hyper=1, waiting on https://github.com/ngrok/ngrok-rust/pull/137/files to re-enable.");
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902

            // Run server
        }
        #[cfg(not(feature = "ngrok"))]
        {
            let _ngrok_authtoken = ngrok_authtoken;
            let _ngrok_domain = ngrok_domain;
            let _ngrok_username = ngrok_username;
            let _ngrok_password = ngrok_password;

            panic!("`text-generation-router` was compiled without the `ngrok` feature");
        }
    } else {
        // Run server
1903
1904
1905

        let listener = tokio::net::TcpListener::bind(&addr).await.unwrap();
        axum::serve(listener, app)
1906
            .with_graceful_shutdown(shutdown_signal())
OlivierDehaene's avatar
OlivierDehaene committed
1907
1908
            .await
            .map_err(|err| WebServerError::Axum(Box::new(err)))?;
1909
    }
1910
    Ok(())
Olivier Dehaene's avatar
Olivier Dehaene committed
1911
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937

/// Shutdown signal handler
async fn shutdown_signal() {
    let ctrl_c = async {
        signal::ctrl_c()
            .await
            .expect("failed to install Ctrl+C handler");
    };

    #[cfg(unix)]
    let terminate = async {
        signal::unix::signal(signal::unix::SignalKind::terminate())
            .expect("failed to install signal handler")
            .recv()
            .await;
    };

    #[cfg(not(unix))]
    let terminate = std::future::pending::<()>();

    tokio::select! {
        _ = ctrl_c => {},
        _ = terminate => {},
    }

    tracing::info!("signal received, starting graceful shutdown");
1938
    opentelemetry::global::shutdown_tracer_provider();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1939
}
1940
1941
1942
1943
1944
1945
1946
1947
1948

/// Convert to Axum supported formats
impl From<InferError> for (StatusCode, Json<ErrorResponse>) {
    fn from(err: InferError) -> Self {
        let status_code = match err {
            InferError::GenerationError(_) => StatusCode::FAILED_DEPENDENCY,
            InferError::Overloaded(_) => StatusCode::TOO_MANY_REQUESTS,
            InferError::ValidationError(_) => StatusCode::UNPROCESSABLE_ENTITY,
            InferError::IncompleteGeneration => StatusCode::INTERNAL_SERVER_ERROR,
1949
            InferError::TemplateError(_) => StatusCode::UNPROCESSABLE_ENTITY,
1950
            InferError::ToolError(_) => StatusCode::UNPROCESSABLE_ENTITY,
1951
1952
1953
1954
1955
1956
        };

        (
            status_code,
            Json(ErrorResponse {
                error: err.to_string(),
1957
                error_type: err.error_type().to_string(),
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
            }),
        )
    }
}

impl From<InferError> for Event {
    fn from(err: InferError) -> Self {
        Event::default()
            .json_data(ErrorResponse {
                error: err.to_string(),
1968
                error_type: err.error_type().to_string(),
1969
1970
1971
1972
            })
            .unwrap()
    }
}
OlivierDehaene's avatar
OlivierDehaene committed
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988

#[derive(Debug, Error)]
pub enum WebServerError {
    #[error("Unable to connect to the Python model shards: {0}")]
    Connection(ClientError),
    #[error("Unable to clear the Python model shards cache: {0}")]
    Cache(ClientError),
    #[error("Unable to get the Python model shards info: {0}")]
    Info(ClientError),
    #[error("Unable to warmup the Python model shards: {0}")]
    Warmup(ClientError),
    #[error("Not enough memory to handle `max_total_tokens={0}`")]
    NotEnoughMemory(usize),
    #[error("Axum error: {0}")]
    Axum(#[from] axum::BoxError),
}