server.rs 82.2 KB
Newer Older
1
/// HTTP Server logic
OlivierDehaene's avatar
OlivierDehaene committed
2
use crate::config::Config;
Nicolas Patry's avatar
Nicolas Patry committed
3
4
use crate::infer::tool_grammar::ToolGrammar;
use crate::infer::{Backend, Infer, InferError, InferResponse, InferStreamResponse};
5
6
7
8
9
#[cfg(feature = "kserve")]
use crate::kserve::{
    kerve_server_metadata, kserve_health_live, kserve_health_ready, kserve_model_infer,
    kserve_model_metadata, kserve_model_metadata_ready,
};
Nicolas Patry's avatar
Nicolas Patry committed
10
use crate::usage_stats;
11
use crate::validation::ValidationError;
12
use crate::{
13
14
15
16
17
    BestOfSequence, Details, ErrorResponse, FinishReason, FunctionName, GenerateParameters,
    GenerateRequest, GenerateResponse, GrammarType, HubModelInfo, HubProcessorConfig,
    HubTokenizerConfig, Info, Message, MessageChunk, MessageContent, OutputMessage, PrefillToken,
    SimpleToken, StreamDetails, StreamResponse, TextMessage, Token, TokenizeResponse,
    ToolCallDelta, ToolCallMessage, Url, Usage, Validation,
18
19
20
21
};
use crate::{
    ChatCompletion, ChatCompletionChoice, ChatCompletionChunk, ChatCompletionComplete,
    ChatCompletionDelta, ChatCompletionLogprob, ChatCompletionLogprobs, ChatCompletionTopLogprob,
22
23
    ChatRequest, Chunk, CompatGenerateRequest, Completion, CompletionComplete, CompletionFinal,
    CompletionRequest, CompletionType, DeltaToolCall, Function, Prompt, Tool, VertexRequest,
24
    VertexResponse,
25
};
drbh's avatar
drbh committed
26
use crate::{FunctionDefinition, HubPreprocessorConfig, ToolCall, ToolChoice, ToolType};
27
use async_stream::__private::AsyncStream;
Olivier Dehaene's avatar
Olivier Dehaene committed
28
use axum::extract::Extension;
Nicolas Patry's avatar
Nicolas Patry committed
29
use axum::http::{HeaderMap, HeaderValue, Method, StatusCode};
30
use axum::response::sse::{Event, KeepAlive, Sse};
31
use axum::response::{IntoResponse, Response};
Olivier Dehaene's avatar
Olivier Dehaene committed
32
use axum::routing::{get, post};
33
use axum::{http, Json, Router};
Nicolas Patry's avatar
Nicolas Patry committed
34
use axum_tracing_opentelemetry::middleware::OtelAxumLayer;
35
use futures::stream::StreamExt;
36
use futures::stream::{FuturesOrdered, FuturesUnordered};
37
use futures::Stream;
drbh's avatar
drbh committed
38
use futures::TryStreamExt;
Nicolas Patry's avatar
Nicolas Patry committed
39
40
use hf_hub::api::tokio::{Api, ApiBuilder, ApiRepo};
use hf_hub::{Cache, Repo, RepoType};
Erik Kaunismäki's avatar
Erik Kaunismäki committed
41
use http::header::AUTHORIZATION;
42
use metrics_exporter_prometheus::{Matcher, PrometheusBuilder, PrometheusHandle};
drbh's avatar
drbh committed
43
use serde_json::Value;
44
use std::convert::Infallible;
Nicolas Patry's avatar
Nicolas Patry committed
45
46
47
48
use std::fs::File;
use std::io::BufReader;
use std::net::{IpAddr, Ipv4Addr, SocketAddr};
use std::path::{Path, PathBuf};
OlivierDehaene's avatar
OlivierDehaene committed
49
use thiserror::Error;
Nicolas Patry's avatar
Nicolas Patry committed
50
use tokenizers::processors::template::TemplateProcessing;
Olivier Dehaene's avatar
Olivier Dehaene committed
51
use tokenizers::Tokenizer;
52
use tokio::select;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
53
use tokio::signal;
54
use tokio::sync::oneshot;
Olivier Dehaene's avatar
Olivier Dehaene committed
55
use tokio::time::Instant;
56
use tower_http::cors::{AllowOrigin, CorsLayer};
57
use tracing::{info_span, instrument, Instrument};
58
59
use utoipa::OpenApi;
use utoipa_swagger_ui::SwaggerUi;
Olivier Dehaene's avatar
Olivier Dehaene committed
60

61
62
/// Generate tokens if `stream == false` or a stream of token if `stream == true`
#[utoipa::path(
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
post,
tag = "Text Generation Inference",
path = "/",
request_body = CompatGenerateRequest,
responses(
(status = 200, description = "Generated Text",
content(
("application/json" = GenerateResponse),
("text/event-stream" = StreamResponse),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
82
)]
83
#[instrument(skip(infer, req))]
84
async fn compat_generate(
85
    Extension(default_return_full_text): Extension<bool>,
86
    infer: Extension<Infer>,
87
    compute_type: Extension<ComputeType>,
88
    Json(mut req): Json<CompatGenerateRequest>,
89
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
90
91
    // default return_full_text given the pipeline_tag
    if req.parameters.return_full_text.is_none() {
92
        req.parameters.return_full_text = Some(default_return_full_text)
93
94
    }

95
96
    // switch on stream
    if req.stream {
97
        Ok(generate_stream(infer, compute_type, Json(req.into()))
98
99
100
            .await
            .into_response())
    } else {
101
        let (headers, Json(generation)) = generate(infer, compute_type, Json(req.into())).await?;
102
        // wrap generation inside a Vec to match api-inference
103
        Ok((headers, Json(vec![generation])).into_response())
104
105
106
    }
}

107
108
/// Text Generation Inference endpoint info
#[utoipa::path(
109
110
111
112
get,
tag = "Text Generation Inference",
path = "/info",
responses((status = 200, description = "Served model info", body = Info))
113
114
)]
#[instrument]
115
116
async fn get_model_info(info: Extension<Info>) -> Json<Info> {
    Json(info.0)
117
118
}

119
#[utoipa::path(
120
121
122
123
124
125
126
127
get,
tag = "Text Generation Inference",
path = "/health",
responses(
(status = 200, description = "Everything is working fine"),
(status = 503, description = "Text generation inference is down", body = ErrorResponse,
example = json ! ({"error": "unhealthy", "error_type": "healthcheck"})),
)
128
)]
Nicolas Patry's avatar
Nicolas Patry committed
129
#[instrument(skip(infer))]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
130
/// Health check method
Nicolas Patry's avatar
Nicolas Patry committed
131
132
async fn health(infer: Extension<Infer>) -> Result<(), (StatusCode, Json<ErrorResponse>)> {
    match infer.health().await {
133
134
135
136
137
138
139
140
141
        true => Ok(()),
        false => Err((
            StatusCode::SERVICE_UNAVAILABLE,
            Json(ErrorResponse {
                error: "unhealthy".to_string(),
                error_type: "healthcheck".to_string(),
            }),
        )),
    }
Olivier Dehaene's avatar
Olivier Dehaene committed
142
143
}

144
145
/// Generate tokens
#[utoipa::path(
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
post,
tag = "Text Generation Inference",
path = "/generate",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = GenerateResponse),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
161
)]
162
#[instrument(
163
164
skip_all,
fields(
165
parameters = ? req.parameters,
166
167
168
169
170
171
172
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
173
)]
Olivier Dehaene's avatar
Olivier Dehaene committed
174
async fn generate(
175
    infer: Extension<Infer>,
176
    Extension(ComputeType(compute_type)): Extension<ComputeType>,
177
    Json(req): Json<GenerateRequest>,
178
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
179
    let span = tracing::Span::current();
180
181
182
    generate_internal(infer, ComputeType(compute_type), Json(req), span).await
}

183
pub(crate) async fn generate_internal(
184
185
186
187
188
    infer: Extension<Infer>,
    ComputeType(compute_type): ComputeType,
    Json(req): Json<GenerateRequest>,
    span: tracing::Span,
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
189
    let start_time = Instant::now();
190
    metrics::counter!("tgi_request_count").increment(1);
191

192
193
    // Do not long ultra long inputs, like image payloads.
    tracing::debug!("Input: {}", &req.inputs[..1000.min(req.inputs.len())]);
194

195
    let compute_characters = req.inputs.chars().count();
196
    let mut add_prompt = None;
197
198
    if req.parameters.return_full_text.unwrap_or(false) {
        add_prompt = Some(req.inputs.clone());
199
200
    }

Nicolas Patry's avatar
Nicolas Patry committed
201
    let details: bool = req.parameters.details || req.parameters.decoder_input_details;
202
203

    // Inference
204
    let (response, best_of_responses) = match req.parameters.best_of {
205
        Some(best_of) if best_of > 1 => {
206
            let (response, best_of_responses) = infer.generate_best_of(req, best_of).await?;
207
208
            (response, Some(best_of_responses))
        }
209
        _ => (infer.generate(req).await?, None),
210
    };
Olivier Dehaene's avatar
Olivier Dehaene committed
211

OlivierDehaene's avatar
OlivierDehaene committed
212
    // Token details
213
    let input_length = response._input_length;
OlivierDehaene's avatar
OlivierDehaene committed
214
    let details = match details {
215
216
217
218
219
220
221
222
223
224
225
226
227
228
        true => {
            // convert best_of_responses
            let best_of_sequences = best_of_responses.map(|responses: Vec<InferResponse>| {
                responses
                    .into_iter()
                    .map(|response: InferResponse| {
                        // Add prompt if return_full_text
                        let mut output_text = response.generated_text.text;
                        if let Some(prompt) = &add_prompt {
                            output_text = prompt.clone() + &output_text;
                        }

                        BestOfSequence {
                            generated_text: output_text,
OlivierDehaene's avatar
OlivierDehaene committed
229
                            finish_reason: response.generated_text.finish_reason,
230
231
232
                            generated_tokens: response.generated_text.generated_tokens,
                            prefill: response.prefill,
                            tokens: response.tokens,
Nicolas Patry's avatar
Nicolas Patry committed
233
                            top_tokens: response.top_tokens,
234
235
236
237
238
239
240
                            seed: response.generated_text.seed,
                        }
                    })
                    .collect()
            });

            Some(Details {
OlivierDehaene's avatar
OlivierDehaene committed
241
                finish_reason: response.generated_text.finish_reason,
242
243
244
245
246
                generated_tokens: response.generated_text.generated_tokens,
                prefill: response.prefill,
                tokens: response.tokens,
                seed: response.generated_text.seed,
                best_of_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
247
                top_tokens: response.top_tokens,
248
249
            })
        }
OlivierDehaene's avatar
OlivierDehaene committed
250
251
252
        false => None,
    };

253
254
255
256
    // Timings
    let total_time = start_time.elapsed();
    let validation_time = response.queued - start_time;
    let queue_time = response.start - response.queued;
257
258
    let inference_time = Instant::now() - response.start;
    let time_per_token = inference_time / response.generated_text.generated_tokens;
259

260
261
262
263
264
265
266
267
    // Tracing metadata
    span.record("total_time", format!("{total_time:?}"));
    span.record("validation_time", format!("{validation_time:?}"));
    span.record("queue_time", format!("{queue_time:?}"));
    span.record("inference_time", format!("{inference_time:?}"));
    span.record("time_per_token", format!("{time_per_token:?}"));
    span.record("seed", format!("{:?}", response.generated_text.seed));

268
269
    // Headers
    let mut headers = HeaderMap::new();
270
    headers.insert("x-compute-type", compute_type.parse().unwrap());
271
272
    headers.insert(
        "x-compute-time",
Nicolas Patry's avatar
Nicolas Patry committed
273
        total_time.as_secs_f64().to_string().parse().unwrap(),
274
275
276
277
278
    );
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
279
280
281
282
283
284
285
286
287
288
289
    headers.insert(
        "x-total-time",
        total_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-validation-time",
        validation_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-queue-time",
        queue_time.as_millis().to_string().parse().unwrap(),
Olivier Dehaene's avatar
Olivier Dehaene committed
290
    );
291
292
293
294
295
296
297
298
    headers.insert(
        "x-inference-time",
        inference_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-time-per-token",
        time_per_token.as_millis().to_string().parse().unwrap(),
    );
299
300
301
302
303
    headers.insert("x-prompt-tokens", input_length.into());
    headers.insert(
        "x-generated-tokens",
        response.generated_text.generated_tokens.into(),
    );
304

305
    // Metrics
306
307
308
309
310
311
312
313
314
    metrics::counter!("tgi_request_success").increment(1);
    metrics::histogram!("tgi_request_duration").record(total_time.as_secs_f64());
    metrics::histogram!("tgi_request_validation_duration").record(validation_time.as_secs_f64());
    metrics::histogram!("tgi_request_queue_duration").record(queue_time.as_secs_f64());
    metrics::histogram!("tgi_request_inference_duration").record(inference_time.as_secs_f64());
    metrics::histogram!("tgi_request_mean_time_per_token_duration")
        .record(time_per_token.as_secs_f64());
    metrics::histogram!("tgi_request_generated_tokens")
        .record(response.generated_text.generated_tokens as f64);
315

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
316
    // Send response
317
318
319
320
321
    let mut output_text = response.generated_text.text;
    if let Some(prompt) = add_prompt {
        output_text = prompt + &output_text;
    }

322
323
    tracing::debug!("Output: {}", output_text);
    tracing::info!("Success");
324

325
    let response = GenerateResponse {
326
        generated_text: output_text,
OlivierDehaene's avatar
OlivierDehaene committed
327
        details,
328
    };
329
    Ok((headers, Json(response)))
Olivier Dehaene's avatar
Olivier Dehaene committed
330
331
}

Yannic Kilcher's avatar
Yannic Kilcher committed
332
/// Generate a stream of token using Server-Sent Events
333
#[utoipa::path(
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
post,
tag = "Text Generation Inference",
path = "/generate_stream",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = StreamResponse,
content_type = "text/event-stream"),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"}),
content_type = "text/event-stream"),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"}),
content_type = "text/event-stream"),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"}),
content_type = "text/event-stream"),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"}),
content_type = "text/event-stream"),
)
354
)]
355
#[instrument(
356
357
skip_all,
fields(
358
parameters = ? req.parameters,
359
360
361
362
363
364
365
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
366
367
)]
async fn generate_stream(
368
    Extension(infer): Extension<Infer>,
369
    Extension(compute_type): Extension<ComputeType>,
370
    Json(req): Json<GenerateRequest>,
371
372
373
374
) -> (
    HeaderMap,
    Sse<impl Stream<Item = Result<Event, Infallible>>>,
) {
375
    let span = tracing::Span::current();
376
377
378
379
380
    let on_message_callback = |stream_token: StreamResponse| {
        let event = Event::default();
        event.json_data(stream_token).unwrap()
    };
    let (headers, response_stream) =
381
        generate_stream_internal(infer, compute_type, Json(req), on_message_callback, span).await;
382
383
384
385
386
387
    let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
    (headers, sse)
}

async fn generate_stream_internal(
    infer: Infer,
388
    ComputeType(compute_type): ComputeType,
389
390
    Json(req): Json<GenerateRequest>,
    on_message_callback: impl Fn(StreamResponse) -> Event,
391
    span: tracing::Span,
392
) -> (HeaderMap, impl Stream<Item = Result<Event, Infallible>>) {
393
    let start_time = Instant::now();
394
    metrics::counter!("tgi_request_count").increment(1);
395

396
    tracing::debug!("Input: {}", req.inputs);
397

398
    let compute_characters = req.inputs.chars().count();
399
400

    let mut headers = HeaderMap::new();
401
    headers.insert("x-compute-type", compute_type.parse().unwrap());
402
403
404
405
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
406
    headers.insert("X-Accel-Buffering", "no".parse().unwrap());
407

408
409
410
411
    let stream = async_stream::stream! {
        // Inference
        let mut end_reached = false;
        let mut error = false;
412
413

        let mut add_prompt = None;
414
415
        if req.parameters.return_full_text.unwrap_or(false) {
            add_prompt = Some(req.inputs.clone());
416
        }
417
        let details = req.parameters.details;
418

419
        let best_of = req.parameters.best_of.unwrap_or(1);
420
421
        if best_of != 1 {
            let err = InferError::from(ValidationError::BestOfStream);
422
            metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
423
424
            tracing::error!("{err}");
            yield Ok(Event::from(err));
425
        } else if req.parameters.decoder_input_details {
426
            let err = InferError::from(ValidationError::PrefillDetailsStream);
427
            metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
428
429
430
            tracing::error!("{err}");
            yield Ok(Event::from(err));
        } else {
431
            match infer.generate_stream(req).instrument(info_span!(parent: &span, "async_stream")).await {
432
                // Keep permit as long as generate_stream lives
Nicolas Patry's avatar
Nicolas Patry committed
433
                Ok((_permit, _input_length, response_stream)) => {
434
                    let mut index = 0;
Nicolas Patry's avatar
Nicolas Patry committed
435
                    let mut response_stream = Box::pin(response_stream);
436
437
                    // Server-Sent Event stream
                    while let Some(response) = response_stream.next().await {
438
                        index += 1;
439
440
441
442
443
444
                        match response {
                            Ok(response) => {
                                match response {
                                    // Prefill is ignored
                                    InferStreamResponse::Prefill(_) => {}
                                    // Yield event for every new token
Nicolas Patry's avatar
Nicolas Patry committed
445
446
447
448
                                    InferStreamResponse::Intermediate{
                                        token,
                                        top_tokens,
                                    } => {
449
450
                                        tracing::debug!(parent: &span, "Token: {:?}", token);

451
452
                                        // StreamResponse
                                        let stream_token = StreamResponse {
453
                                            index,
454
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
455
                                            top_tokens,
456
457
458
                                            generated_text: None,
                                            details: None,
                                        };
459
460
                                        let event = on_message_callback(stream_token);
                                        yield Ok(event);
461
                                    }
462
463
                                    // Yield event for last token and compute timings
                                    InferStreamResponse::End {
464
                                        token,
465
466
467
                                        generated_text,
                                        start,
                                        queued,
Nicolas Patry's avatar
Nicolas Patry committed
468
                                        top_tokens,
469
470
471
472
                                    } => {
                                        // Token details
                                        let details = match details {
                                            true => Some(StreamDetails {
OlivierDehaene's avatar
OlivierDehaene committed
473
                                                finish_reason: generated_text.finish_reason,
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
                                                generated_tokens: generated_text.generated_tokens,
                                                seed: generated_text.seed,
                                            }),
                                            false => None,
                                        };

                                        // Timings
                                        let total_time = start_time.elapsed();
                                        let validation_time = queued - start_time;
                                        let queue_time = start - queued;
                                        let inference_time = Instant::now() - start;
                                        let time_per_token = inference_time / generated_text.generated_tokens;

                                        // Tracing metadata
                                        span.record("total_time", format!("{total_time:?}"));
                                        span.record("validation_time", format!("{validation_time:?}"));
                                        span.record("queue_time", format!("{queue_time:?}"));
                                        span.record("inference_time", format!("{inference_time:?}"));
                                        span.record("time_per_token", format!("{time_per_token:?}"));
                                        span.record("seed", format!("{:?}", generated_text.seed));

                                        // Metrics
496
497
498
499
500
501
502
                                        metrics::counter!("tgi_request_success").increment(1);
                                        metrics::histogram!("tgi_request_duration").record(total_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_validation_duration").record(validation_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_queue_duration").record(queue_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_inference_duration").record(inference_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_mean_time_per_token_duration").record(time_per_token.as_secs_f64());
                                        metrics::histogram!("tgi_request_generated_tokens").record(generated_text.generated_tokens as f64);
503
504
505
506
507
508
509
510
511

                                        // StreamResponse
                                        end_reached = true;

                                        let mut output_text = generated_text.text;
                                        if let Some(prompt) = add_prompt {
                                            output_text = prompt + &output_text;
                                        }

512
513
                                        tracing::debug!(parent: &span, "Output: {}", output_text);
                                        tracing::info!(parent: &span, "Success");
514

515
                                        let stream_token = StreamResponse {
516
                                            index,
517
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
518
                                            top_tokens,
519
520
521
522
                                            generated_text: Some(output_text),
                                            details
                                        };

523
524
525

                                        let event = on_message_callback(stream_token);
                                        yield Ok(event);
526
527
                                        break;
                                    }
528
529
                                }
                            }
530
531
532
533
534
535
                            // yield error
                            Err(err) => {
                                error = true;
                                yield Ok(Event::from(err));
                                break;
                            }
536
537
                        }
                    }
538
539
540
541
542
                },
                // yield error
                Err(err) => {
                    error = true;
                    yield Ok(Event::from(err));
543
                }
544
545
546
547
548
            }
            // Check if generation reached the end
            // Skip if we already sent an error
            if !end_reached && !error {
                let err = InferError::IncompleteGeneration;
549
                metrics::counter!("tgi_request_failure", "err" => "incomplete").increment(1);
550
                tracing::error!("{err}");
551
                yield Ok(Event::from(err));
552
553
554
555
            }
        }
    };

556
557
558
    (headers, stream)
}

559
560
/// Generate tokens
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
561
562
563
564
565
566
567
post,
tag = "Text Generation Inference",
path = "/v1/completions",
request_body = CompletionRequest,
responses(
(status = 200, description = "Generated Chat Completion",
content(
568
569
("application/json" = CompletionFinal),
("text/event-stream" = Chunk),
OlivierDehaene's avatar
OlivierDehaene committed
570
571
572
573
574
575
576
577
578
579
580
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
581
#[instrument(
OlivierDehaene's avatar
OlivierDehaene committed
582
583
584
585
586
587
588
589
590
591
592
skip_all,
fields(
// parameters = ? req.parameters,
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
)]
593
594
595
596
597
598
async fn completions(
    Extension(infer): Extension<Infer>,
    Extension(compute_type): Extension<ComputeType>,
    Extension(info): Extension<Info>,
    Json(req): Json<CompletionRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
599
    let span = tracing::Span::current();
600
    metrics::counter!("tgi_request_count").increment(1);
601

602
    let CompletionRequest {
603
        model,
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
        max_tokens,
        seed,
        stop,
        stream,
        temperature,
        ..
    } = req;

    let max_new_tokens = max_tokens.or(Some(100));
    let stop = stop.unwrap_or_default();
    // enable greedy only when temperature is 0
    let (do_sample, temperature) = match temperature {
        Some(temperature) if temperature == 0.0 => (false, None),
        other => (true, other),
    };
619
620
621

    // if suffix is present throw an error
    if req.suffix.is_some() {
622
        metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
623
624
625
626
627
628
629
630
631
632
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: "Suffix is not supported and can be achieved by preprocessing the prompt."
                    .to_string(),
                error_type: "suffix not supported".to_string(),
            }),
        ));
    }

633
    if req.prompt.0.len() > info.max_client_batch_size {
634
        metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
635
636
637
638
639
640
641
642
643
644
645
646
647
648
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: format!(
                    "Number of prompts exceeds the maximum allowed batch size of {}",
                    info.max_client_batch_size
                ),
                error_type: "batch size exceeded".to_string(),
            }),
        ));
    }

    let generate_requests: Vec<GenerateRequest> = req
        .prompt
649
        .0
650
651
652
653
654
        .iter()
        .map(|prompt| GenerateRequest {
            inputs: prompt.to_string(),
            parameters: GenerateParameters {
                best_of: None,
655
                temperature,
656
657
658
659
660
                repetition_penalty: req.repetition_penalty,
                frequency_penalty: req.frequency_penalty,
                top_k: None,
                top_p: req.top_p,
                typical_p: None,
661
                do_sample,
662
663
                max_new_tokens,
                return_full_text: None,
664
                stop: stop.clone(),
665
666
667
668
669
670
671
                truncate: None,
                watermark: false,
                details: true,
                decoder_input_details: !stream,
                seed,
                top_n_tokens: None,
                grammar: None,
672
                adapter_id: model.as_ref().filter(|m| *m != "tgi").map(String::from),
673
674
675
676
677
678
679
            },
        })
        .collect();

    let mut x_compute_type = None;
    let mut x_compute_characters = 0u32;
    let mut x_accel_buffering = None;
680
681

    if stream {
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
        let mut response_streams = FuturesOrdered::new();
        for (index, generate_request) in generate_requests.into_iter().enumerate() {
            let model_id = info.model_id.clone();
            let system_fingerprint =
                format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));
            let infer_clone = infer.clone();
            let compute_type_clone = compute_type.clone();
            let span_clone = span.clone();

            // Create a future for each generate_stream_internal call.
            let generate_future = async move {
                let on_message_callback = move |stream_token: StreamResponse| {
                    let event = Event::default();

                    let current_time = std::time::SystemTime::now()
                        .duration_since(std::time::UNIX_EPOCH)
                        .unwrap_or_else(|_| std::time::Duration::from_secs(0))
                        .as_secs();

                    event
702
                        .json_data(Completion::Chunk(Chunk {
703
704
705
706
707
708
709
710
711
712
713
714
                            id: "".to_string(),
                            created: current_time,

                            choices: vec![CompletionComplete {
                                finish_reason: "".to_string(),
                                index: index as u32,
                                logprobs: None,
                                text: stream_token.token.text,
                            }],

                            model: model_id.clone(),
                            system_fingerprint: system_fingerprint.clone(),
715
                        }))
716
                        .unwrap_or_else(|_e| Event::default())
717
718
719
720
721
722
723
724
725
726
727
728
729
730
                };

                let (header_tx, header_rx) = oneshot::channel();
                let (sse_tx, sse_rx) = tokio::sync::mpsc::unbounded_channel();

                tokio::spawn(async move {
                    let (header_map, sse) = generate_stream_internal(
                        infer_clone.clone(),
                        compute_type_clone.clone(),
                        Json(generate_request),
                        on_message_callback,
                        span_clone.clone(),
                    )
                    .await;
731

732
733
                    // send and dont wait for response
                    let _ = header_tx.send(header_map);
734

735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
                    // pin an emit messages to the sse_tx
                    let mut sse = Box::pin(sse);
                    while let Some(event) = sse.next().await {
                        if sse_tx.send(event).is_err() {
                            tracing::error!("Failed to send event. Receiver dropped.");
                            break;
                        }
                    }
                });

                (header_rx, sse_rx)
            };
            response_streams.push_back(generate_future);
        }

        let mut all_rxs = vec![];

        while let Some((header_rx, sse_rx)) = response_streams.next().await {
            all_rxs.push(sse_rx);

            // get the headers from the first response of each stream
            let headers = header_rx.await.map_err(|e| {
                tracing::error!("Failed to get headers: {:?}", e);
                (
                    StatusCode::INTERNAL_SERVER_ERROR,
                    Json(ErrorResponse {
                        error: "Failed to get headers".to_string(),
                        error_type: "headers".to_string(),
                    }),
764
                )
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
            })?;
            if x_compute_type.is_none() {
                x_compute_type = headers
                    .get("x-compute-type")
                    .and_then(|v| v.to_str().ok())
                    .map(|v| v.to_string());

                x_accel_buffering = headers
                    .get("x-accel-buffering")
                    .and_then(|v| v.to_str().ok())
                    .map(|v| v.to_string());
            }
            x_compute_characters += headers
                .get("x-compute-characters")
                .and_then(|v| v.to_str().ok())
                .and_then(|v| v.parse().ok())
                .unwrap_or(0);
        }
783

784
785
786
787
788
789
790
791
        let mut headers = HeaderMap::new();
        if let Some(x_compute_type) = x_compute_type {
            headers.insert("x-compute-type", x_compute_type.parse().unwrap());
        }
        headers.insert("x-compute-characters", x_compute_characters.into());
        if let Some(x_accel_buffering) = x_accel_buffering {
            headers.insert("x-accel-buffering", x_accel_buffering.parse().unwrap());
        }
792

793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
        // now sink the sse streams into a single stream and remove the ones that are done
        let stream: AsyncStream<Result<Event, Infallible>, _> = async_stream::stream! {
            loop {
                let mut i = 0;
                while i < all_rxs.len() {
                    let rx = &mut all_rxs[i];
                    select! {
                        Some(event) = rx.recv() => {
                            yield event;
                        }
                        else => {
                            all_rxs.remove(i);
                            continue; // skip the increment to handle the next element at the same index
                        }
                    }
                    i += 1; // only increment when no element was removed
                }

                if all_rxs.is_empty() {
                    break;
                }
            }
        };

817
818
819
820
        let stream = stream.chain(futures::stream::once(async {
            Ok(Event::default().data("[DONE]"))
        }));

821
        let sse = Sse::new(stream).keep_alive(KeepAlive::default());
822
823
824
825
826
827
828
        Ok((headers, sse).into_response())
    } else {
        let current_time = std::time::SystemTime::now()
            .duration_since(std::time::UNIX_EPOCH)
            .unwrap_or_else(|_| std::time::Duration::from_secs(0))
            .as_secs();

829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
        let responses = FuturesUnordered::new();
        for (index, generate_request) in generate_requests.into_iter().enumerate() {
            let infer_clone = infer.clone();
            let compute_type_clone = compute_type.clone();
            let span_clone = span.clone();
            let response_future = async move {
                let result = generate_internal(
                    Extension(infer_clone),
                    compute_type_clone,
                    Json(generate_request),
                    span_clone,
                )
                .await;
                result.map(|(headers, generation)| (index, headers, generation))
            };
            responses.push(response_future);
        }
        let generate_responses = responses.try_collect::<Vec<_>>().await?;

        let mut prompt_tokens = 0u32;
        let mut completion_tokens = 0u32;
        let mut total_tokens = 0u32;

        let mut x_compute_time = 0u32;
        let mut x_total_time = 0u32;
        let mut x_validation_time = 0u32;
        let mut x_queue_time = 0u32;
        let mut x_inference_time = 0u32;
        let mut x_time_per_token = 0u32;
        let mut x_prompt_tokens = 0u32;
        let mut x_generated_tokens = 0u32;

        let choices = generate_responses
            .into_iter()
            .map(|(index, headers, Json(generation))| {
                let details = generation.details.ok_or((
                    // this should never happen but handle if details are missing unexpectedly
                    StatusCode::INTERNAL_SERVER_ERROR,
                    Json(ErrorResponse {
                        error: "No details in generation".to_string(),
                        error_type: "no details".to_string(),
                    }),
                ))?;

                if x_compute_type.is_none() {
                    x_compute_type = headers
                        .get("x-compute-type")
                        .and_then(|v| v.to_str().ok())
                        .map(|v| v.to_string());
                }

                // accumulate headers and usage from each response
                x_compute_time += headers
                    .get("x-compute-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_compute_characters += headers
                    .get("x-compute-characters")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_total_time += headers
                    .get("x-total-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_validation_time += headers
                    .get("x-validation-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_queue_time += headers
                    .get("x-queue-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_inference_time += headers
                    .get("x-inference-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_time_per_token += headers
                    .get("x-time-per-token")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_prompt_tokens += headers
                    .get("x-prompt-tokens")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_generated_tokens += headers
                    .get("x-generated-tokens")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);

                prompt_tokens += details.prefill.len() as u32;
                completion_tokens += details.generated_tokens;
                total_tokens += details.prefill.len() as u32 + details.generated_tokens;

                Ok(CompletionComplete {
                    finish_reason: details.finish_reason.to_string(),
                    index: index as u32,
                    logprobs: None,
                    text: generation.generated_text,
                })
            })
            .collect::<Result<Vec<_>, _>>()
            .map_err(|(status, Json(err))| (status, Json(err)))?;
931

932
        let response = Completion::Final(CompletionFinal {
933
934
935
936
937
938
939
940
            id: "".to_string(),
            created: current_time,
            model: info.model_id.clone(),
            system_fingerprint: format!(
                "{}-{}",
                info.version,
                info.docker_label.unwrap_or("native")
            ),
941
            choices,
942
            usage: Usage {
943
944
945
                prompt_tokens,
                completion_tokens,
                total_tokens,
946
            },
947
        });
948

949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
        // headers similar to `generate` but aggregated
        let mut headers = HeaderMap::new();
        if let Some(x_compute_type) = x_compute_type {
            headers.insert("x-compute-type", x_compute_type.parse().unwrap());
        }
        headers.insert("x-compute-characters", x_compute_characters.into());
        headers.insert("x-total-time", x_total_time.into());
        headers.insert("x-validation-time", x_validation_time.into());
        headers.insert("x-queue-time", x_queue_time.into());
        headers.insert("x-inference-time", x_inference_time.into());
        headers.insert("x-time-per-token", x_time_per_token.into());
        headers.insert("x-prompt-tokens", x_prompt_tokens.into());
        headers.insert("x-generated-tokens", x_generated_tokens.into());
        if let Some(x_accel_buffering) = x_accel_buffering {
            headers.insert("x-accel-buffering", x_accel_buffering.parse().unwrap());
        }
965
966
967
968
        Ok((headers, Json(response)).into_response())
    }
}

969
970
/// Generate tokens
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
post,
tag = "Text Generation Inference",
path = "/v1/chat/completions",
request_body = ChatRequest,
responses(
(status = 200, description = "Generated Chat Completion",
content(
("application/json" = ChatCompletion),
("text/event-stream" = ChatCompletionChunk),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
991
#[instrument(
OlivierDehaene's avatar
OlivierDehaene committed
992
993
994
995
996
997
998
999
1000
1001
1002
skip_all,
fields(
// parameters = ? req.parameters,
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
)]
1003
1004
async fn chat_completions(
    Extension(infer): Extension<Infer>,
1005
    Extension(compute_type): Extension<ComputeType>,
1006
1007
1008
    Extension(info): Extension<Info>,
    Json(req): Json<ChatRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
1009
    let span = tracing::Span::current();
1010
    metrics::counter!("tgi_request_count").increment(1);
1011
    let ChatRequest {
1012
        model,
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
        logprobs,
        max_tokens,
        messages,
        presence_penalty,
        seed,
        stop,
        stream,
        tools,
        tool_choice,
        tool_prompt,
1023
        temperature,
drbh's avatar
drbh committed
1024
        response_format,
1025
1026
1027
1028
1029
1030
1031
1032
        ..
    } = req;

    let repetition_penalty = presence_penalty.map(|x| x + 2.0);
    let max_new_tokens = max_tokens.or(Some(100));
    let logprobs = logprobs.unwrap_or(false);
    let tool_prompt = tool_prompt.unwrap_or_default();
    let stop = stop.unwrap_or_default();
1033
1034
1035
1036
1037
    // enable greedy only when temperature is 0
    let (do_sample, temperature) = match temperature {
        Some(temperature) if temperature == 0.0 => (false, None),
        other => (true, other),
    };
1038

drbh's avatar
drbh committed
1039
1040
    // response_format and tools are mutually exclusive
    if response_format.is_some() && tools.as_ref().is_some() {
1041
        metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
drbh's avatar
drbh committed
1042
1043
1044
1045
1046
1047
1048
1049
1050
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: "Grammar and tools are mutually exclusive".to_string(),
                error_type: "grammar and tools".to_string(),
            }),
        ));
    }

1051
1052
1053
    // extract tool grammar if present
    let tool_grammar = match ToolGrammar::apply(tools, tool_choice) {
        Ok(grammar) => grammar,
1054
        Err(err) => {
1055
            metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
            tracing::error!("{err}");
            return Err((
                StatusCode::UNPROCESSABLE_ENTITY,
                Json(ErrorResponse {
                    error: err.to_string(),
                    error_type: err.error_type().to_string(),
                }),
            ));
        }
    };

drbh's avatar
drbh committed
1067
1068
    // determine the appropriate arguments for apply_chat_template
    let tools_grammar_prompt = tool_grammar
1069
1070
        .as_ref()
        .map(|t| (GrammarType::Json(serde_json::json!(t)), tool_prompt));
drbh's avatar
drbh committed
1071

drbh's avatar
drbh committed
1072
1073
1074
1075
1076
1077
1078
    let (tools_grammar_prompt, grammar) = match response_format {
        Some(response_format) => (None, Some(response_format)),
        None => (
            tools_grammar_prompt.clone(),
            tools_grammar_prompt.map(|(grammar, _)| grammar.clone()),
        ),
    };
drbh's avatar
drbh committed
1079

1080
    // apply chat template to flatten the request into a single input
drbh's avatar
drbh committed
1081
    let inputs = match infer.apply_chat_template(messages, tools_grammar_prompt) {
1082
1083
        Ok(inputs) => inputs,
        Err(err) => {
1084
            metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
1085
1086
            tracing::error!("{err}");
            return Err((
drbh's avatar
drbh committed
1087
1088
                StatusCode::UNPROCESSABLE_ENTITY,
                Json(ErrorResponse {
1089
1090
                    error: err.to_string(),
                    error_type: err.error_type().to_string(),
drbh's avatar
drbh committed
1091
                }),
1092
1093
            ));
        }
drbh's avatar
drbh committed
1094
1095
    };

1096
1097
1098
1099
1100
    // build the request passing some parameters
    let generate_request = GenerateRequest {
        inputs: inputs.to_string(),
        parameters: GenerateParameters {
            best_of: None,
1101
            temperature,
1102
            repetition_penalty,
1103
            frequency_penalty: req.frequency_penalty,
1104
            top_k: None,
1105
            top_p: req.top_p,
1106
            typical_p: None,
1107
            do_sample,
1108
1109
            max_new_tokens,
            return_full_text: None,
1110
            stop,
1111
1112
1113
            truncate: None,
            watermark: false,
            details: true,
1114
            decoder_input_details: !stream,
1115
            seed,
1116
            top_n_tokens: req.top_logprobs,
drbh's avatar
drbh committed
1117
            grammar,
1118
            adapter_id: model.filter(|m| *m != "tgi").map(String::from),
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
        },
    };

    // static values that will be returned in all cases
    let model_id = info.model_id.clone();
    let system_fingerprint = format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));

    // switch on stream
    if stream {
        // pass this callback to the stream generation and build the required event structure
        let on_message_callback = move |stream_token: StreamResponse| {
            let event = Event::default();

            let current_time = std::time::SystemTime::now()
                .duration_since(std::time::UNIX_EPOCH)
                .unwrap_or_else(|_| std::time::Duration::from_secs(0))
                .as_secs();

1137
1138
1139
1140
            let logprobs = logprobs.then(|| {
                ChatCompletionLogprobs::from((stream_token.token.clone(), stream_token.top_tokens))
            });

drbh's avatar
drbh committed
1141
1142
1143
1144
            // replace the content with the tool calls if grammar is present
            let (content, tool_calls) = if tool_grammar.is_some() {
                (None, Some(vec![stream_token.token.text]))
            } else {
1145
1146
1147
1148
1149
1150
1151
                let content = if !stream_token.token.special {
                    Some(stream_token.token.text)
                } else {
                    None
                };

                (content, None)
drbh's avatar
drbh committed
1152
1153
            };

1154
            event
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
                .json_data(CompletionType::ChatCompletionChunk(
                    ChatCompletionChunk::new(
                        model_id.clone(),
                        system_fingerprint.clone(),
                        content,
                        tool_calls,
                        current_time,
                        logprobs,
                        stream_token.details.map(|d| d.finish_reason.to_string()),
                    ),
1165
                ))
1166
1167
1168
1169
                .unwrap_or_else(|e| {
                    println!("Failed to serialize ChatCompletionChunk: {:?}", e);
                    Event::default()
                })
1170
1171
        };

1172
1173
1174
1175
1176
        let (headers, response_stream) = generate_stream_internal(
            infer,
            compute_type,
            Json(generate_request),
            on_message_callback,
1177
            span,
1178
1179
        )
        .await;
1180
1181
1182
1183
1184

        let response_stream = response_stream.chain(futures::stream::once(async {
            Ok(Event::default().data("[DONE]"))
        }));

1185
1186
1187
        let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
        Ok((headers, sse).into_response())
    } else {
1188
1189
        let (headers, Json(generation)) =
            generate_internal(Extension(infer), compute_type, Json(generate_request), span).await?;
1190
1191
1192
1193
1194
1195

        let current_time = std::time::SystemTime::now()
            .duration_since(std::time::UNIX_EPOCH)
            .unwrap_or_else(|_| std::time::Duration::from_secs(0))
            .as_secs();

drbh's avatar
drbh committed
1196
        let (tool_calls, output) = if tool_grammar.is_some() {
drbh's avatar
drbh committed
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
            let gen_text_value: Value = serde_json::from_str(&generation.generated_text)
                .map_err(|e| InferError::ToolError(e.to_string()))?;

            let function = gen_text_value.get("function").ok_or(InferError::ToolError(
                "No function found in generated text".to_string(),
            ))?;

            let name = function
                .get("_name")
                .and_then(Value::as_str)
                .ok_or(InferError::ToolError(
                    "No _name found in generated text".to_string(),
                ))?
                .to_string();

            let mut arguments = function.clone();
            if let Value::Object(ref mut props) = arguments {
                props.remove("_name");
            }

1217
            let tool_calls = vec![ToolCall {
1218
                id: "0".to_string(),
drbh's avatar
drbh committed
1219
1220
1221
                r#type: "function".to_string(),
                function: FunctionDefinition {
                    description: None,
drbh's avatar
drbh committed
1222
1223
                    name,
                    arguments,
drbh's avatar
drbh committed
1224
                },
1225
1226
            }];
            (Some(tool_calls), None)
drbh's avatar
drbh committed
1227
1228
1229
        } else {
            (None, Some(generation.generated_text))
        };
1230
        // build the complete response object with the full text
1231
        let response = CompletionType::ChatCompletion(ChatCompletion::new(
1232
1233
            model_id,
            system_fingerprint,
drbh's avatar
drbh committed
1234
            output,
1235
1236
1237
            current_time,
            generation.details.unwrap(),
            logprobs,
drbh's avatar
drbh committed
1238
            tool_calls,
1239
        ));
1240
1241
1242
1243

        // wrap generation inside a Vec to match api-inference
        Ok((headers, Json(response)).into_response())
    }
1244
1245
}

drbh's avatar
drbh committed
1246
1247
/// Generate tokens from Vertex request
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
post,
tag = "Text Generation Inference",
path = "/vertex",
request_body = VertexRequest,
responses(
(status = 200, description = "Generated Text", body = VertexResponse),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
drbh's avatar
drbh committed
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
#[instrument(
    skip_all,
    fields(
        total_time,
        validation_time,
        queue_time,
        inference_time,
        time_per_token,
        seed,
    )
)]
async fn vertex_compatibility(
    Extension(infer): Extension<Infer>,
    Extension(compute_type): Extension<ComputeType>,
    Json(req): Json<VertexRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
1280
    let span = tracing::Span::current();
1281
    metrics::counter!("tgi_request_count").increment(1);
drbh's avatar
drbh committed
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311

    // check that theres at least one instance
    if req.instances.is_empty() {
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: "Input validation error".to_string(),
                error_type: "Input validation error".to_string(),
            }),
        ));
    }

    // Process all instances
    let predictions = req
        .instances
        .iter()
        .map(|instance| {
            let generate_request = GenerateRequest {
                inputs: instance.inputs.clone(),
                parameters: GenerateParameters {
                    do_sample: true,
                    max_new_tokens: instance.parameters.as_ref().and_then(|p| p.max_new_tokens),
                    seed: instance.parameters.as_ref().and_then(|p| p.seed),
                    details: true,
                    decoder_input_details: true,
                    ..Default::default()
                },
            };

            async {
1312
                generate_internal(
drbh's avatar
drbh committed
1313
                    Extension(infer.clone()),
1314
                    compute_type.clone(),
drbh's avatar
drbh committed
1315
                    Json(generate_request),
1316
                    span.clone(),
drbh's avatar
drbh committed
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
                )
                .await
                .map(|(_, Json(generation))| generation.generated_text)
                .map_err(|_| {
                    (
                        StatusCode::INTERNAL_SERVER_ERROR,
                        Json(ErrorResponse {
                            error: "Incomplete generation".into(),
                            error_type: "Incomplete generation".into(),
                        }),
                    )
                })
            }
        })
        .collect::<FuturesUnordered<_>>()
        .try_collect::<Vec<_>>()
        .await?;

    let response = VertexResponse { predictions };
    Ok((HeaderMap::new(), Json(response)).into_response())
}

1339
1340
/// Tokenize inputs
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
post,
tag = "Text Generation Inference",
path = "/tokenize",
request_body = GenerateRequest,
responses(
(status = 200, description = "Tokenized ids", body = TokenizeResponse),
(status = 404, description = "No tokenizer found", body = ErrorResponse,
example = json ! ({"error": "No fast tokenizer available"})),
)
)]
1351
1352
1353
1354
#[instrument(skip_all)]
async fn tokenize(
    Extension(infer): Extension<Infer>,
    Json(req): Json<GenerateRequest>,
1355
) -> Result<Json<TokenizeResponse>, (StatusCode, Json<ErrorResponse>)> {
1356
1357
1358
1359
1360
1361
1362
1363
    let input = req.inputs.clone();
    let encoding = infer.tokenize(req).await?;
    if let Some(encoding) = encoding {
        let tokens: Vec<SimpleToken> = encoding
            .get_ids()
            .iter()
            .zip(encoding.get_offsets())
            .map(|(&id, &(start, stop))| {
1364
1365
                let text: String =
                    String::from_utf8_lossy(&input.as_bytes()[start..stop]).to_string();
1366
1367
1368
1369
1370
1371
1372
1373
                SimpleToken {
                    id,
                    text,
                    start,
                    stop,
                }
            })
            .collect();
1374
        Ok(Json(TokenizeResponse(tokens)))
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
    } else {
        Err((
            StatusCode::NOT_FOUND,
            Json(ErrorResponse {
                error: "No fast tokenizer or tokenizer.json for this model".to_string(),
                error_type: "no fast tokenizer".to_string(),
            }),
        ))
    }
}

1386
1387
/// Prometheus metrics scrape endpoint
#[utoipa::path(
1388
1389
1390
1391
    get,
    tag = "Text Generation Inference",
    path = "/metrics",
    responses((status = 200, description = "Prometheus Metrics", body = String))
1392
1393
1394
1395
1396
)]
async fn metrics(prom_handle: Extension<PrometheusHandle>) -> String {
    prom_handle.render()
}

1397
1398
1399
#[derive(Clone, Debug)]
pub(crate) struct ComputeType(String);

Nicolas Patry's avatar
Nicolas Patry committed
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
// OpenAPI documentation
#[derive(OpenApi)]
#[openapi(
paths(
health,
get_model_info,
compat_generate,
generate,
generate_stream,
chat_completions,
completions,
tokenize,
metrics,
),
components(
schemas(
Info,
CompatGenerateRequest,
GenerateRequest,
GrammarType,
ChatRequest,
Message,
MessageContent,
MessageChunk,
Url,
FunctionName,
OutputMessage,
TextMessage,
ToolCallMessage,
ToolCallDelta,
ChatCompletionComplete,
ChatCompletionChoice,
ChatCompletionDelta,
ChatCompletionChunk,
ChatCompletionLogprob,
ChatCompletionLogprobs,
ChatCompletionTopLogprob,
ChatCompletion,
CompletionRequest,
CompletionComplete,
Chunk,
Completion,
CompletionFinal,
Prompt,
GenerateParameters,
PrefillToken,
Token,
GenerateResponse,
TokenizeResponse,
SimpleToken,
BestOfSequence,
Details,
FinishReason,
StreamResponse,
StreamDetails,
ErrorResponse,
GrammarType,
Usage,
DeltaToolCall,
ToolType,
Tool,
ToolCall,
Function,
FunctionDefinition,
ToolChoice,
)
),
tags(
(name = "Text Generation Inference", description = "Hugging Face Text Generation Inference API")
),
info(
title = "Text Generation Inference",
license(
name = "Apache 2.0",
url = "https://www.apache.org/licenses/LICENSE-2.0"
)
)
)]
pub struct ApiDoc;

pub fn schema() -> ApiDoc {
    ApiDoc
}

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1484
1485
1486
/// Serving method
#[allow(clippy::too_many_arguments)]
pub async fn run(
Nicolas Patry's avatar
Nicolas Patry committed
1487
    backend: impl Backend + Send + Sync + 'static,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1488
    max_concurrent_requests: usize,
1489
    max_best_of: usize,
1490
    max_stop_sequences: usize,
Nicolas Patry's avatar
Nicolas Patry committed
1491
    max_top_n_tokens: u32,
OlivierDehaene's avatar
OlivierDehaene committed
1492
    max_input_tokens: usize,
1493
    max_total_tokens: usize,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1494
    validation_workers: usize,
Erik Kaunismäki's avatar
Erik Kaunismäki committed
1495
    api_key: Option<String>,
Nicolas Patry's avatar
Nicolas Patry committed
1496
1497
1498
1499
1500
1501
    tokenizer_name: String,
    tokenizer_config_path: Option<String>,
    revision: Option<String>,
    hostname: String,
    port: u16,
    cors_allow_origin: Option<Vec<String>>,
1502
    ngrok: bool,
1503
1504
    _ngrok_authtoken: Option<String>,
    _ngrok_edge: Option<String>,
1505
    messages_api_enabled: bool,
Nicolas Patry's avatar
Nicolas Patry committed
1506
    disable_grammar_support: bool,
1507
    max_client_batch_size: usize,
Nicolas Patry's avatar
Nicolas Patry committed
1508
1509
    disable_usage_stats: bool,
    disable_crash_reports: bool,
OlivierDehaene's avatar
OlivierDehaene committed
1510
) -> Result<(), WebServerError> {
Nicolas Patry's avatar
Nicolas Patry committed
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
    // CORS allowed origins
    // map to go inside the option and then map to parse from String to HeaderValue
    // Finally, convert to AllowOrigin
    let allow_origin: Option<AllowOrigin> = cors_allow_origin.map(|cors_allow_origin| {
        AllowOrigin::list(
            cors_allow_origin
                .iter()
                .map(|origin| origin.parse::<HeaderValue>().unwrap()),
        )
    });
1521

Nicolas Patry's avatar
Nicolas Patry committed
1522
1523
1524
1525
    // Parse Huggingface hub token
    let authorization_token = std::env::var("HF_TOKEN")
        .or_else(|_| std::env::var("HUGGING_FACE_HUB_TOKEN"))
        .ok();
OlivierDehaene's avatar
OlivierDehaene committed
1526

Nicolas Patry's avatar
Nicolas Patry committed
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
    // Tokenizer instance
    // This will only be used to validate payloads
    let local_path = Path::new(&tokenizer_name);

    // Shared API builder initialization
    let api_builder = || {
        let mut builder = ApiBuilder::new()
            .with_progress(false)
            .with_token(authorization_token);

        if let Ok(cache_dir) = std::env::var("HUGGINGFACE_HUB_CACHE") {
            builder = builder.with_cache_dir(cache_dir.into());
        }

        builder
    };

    // Decide if we need to use the API based on the revision and local path
    let use_api = revision.is_some() || !local_path.exists() || !local_path.is_dir();

    // Initialize API if needed
    #[derive(Clone)]
    enum Type {
        Api(Api),
        Cache(Cache),
        None,
    }
    let api = if use_api {
        if std::env::var("HF_HUB_OFFLINE") == Ok("1".to_string()) {
            let cache = std::env::var("HUGGINGFACE_HUB_CACHE")
                .map_err(|_| ())
                .map(|cache_dir| Cache::new(cache_dir.into()))
                .unwrap_or_else(|_| Cache::default());
            tracing::warn!("Offline mode active using cache defaults");
            Type::Cache(cache)
        } else {
            tracing::info!("Using the Hugging Face API");
            match api_builder().build() {
                Ok(api) => Type::Api(api),
                Err(_) => {
                    tracing::warn!("Unable to build the Hugging Face API");
                    Type::None
OlivierDehaene's avatar
OlivierDehaene committed
1569
                }
Nicolas Patry's avatar
Nicolas Patry committed
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
            }
        }
    } else {
        Type::None
    };

    // Load tokenizer and model info
    let (
        tokenizer_filename,
        config_filename,
        tokenizer_config_filename,
        preprocessor_config_filename,
        processor_config_filename,
        model_info,
    ) = match api {
        Type::None => (
            Some(local_path.join("tokenizer.json")),
            Some(local_path.join("config.json")),
            Some(local_path.join("tokenizer_config.json")),
            Some(local_path.join("preprocessor_config.json")),
            Some(local_path.join("processor_config.json")),
            None,
        ),
        Type::Api(api) => {
            let api_repo = api.repo(Repo::with_revision(
                tokenizer_name.to_string(),
                RepoType::Model,
                revision.clone().unwrap_or_else(|| "main".to_string()),
            ));

            let tokenizer_filename = match api_repo.get("tokenizer.json").await {
                Ok(tokenizer_filename) => Some(tokenizer_filename),
                Err(_) => get_base_tokenizer(&api, &api_repo).await,
            };
            let config_filename = api_repo.get("config.json").await.ok();
            let tokenizer_config_filename = api_repo.get("tokenizer_config.json").await.ok();
            let preprocessor_config_filename = api_repo.get("preprocessor_config.json").await.ok();
            let processor_config_filename = api_repo.get("processor_config.json").await.ok();
OlivierDehaene's avatar
OlivierDehaene committed
1608

Nicolas Patry's avatar
Nicolas Patry committed
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
            let model_info = if let Some(model_info) = get_hub_model_info(&api_repo).await {
                Some(model_info)
            } else {
                tracing::warn!("Could not retrieve model info from the Hugging Face hub.");
                None
            };
            (
                tokenizer_filename,
                config_filename,
                tokenizer_config_filename,
                preprocessor_config_filename,
                processor_config_filename,
                model_info,
            )
        }
        Type::Cache(cache) => {
            let repo = cache.repo(Repo::with_revision(
                tokenizer_name.to_string(),
                RepoType::Model,
                revision.clone().unwrap_or_else(|| "main".to_string()),
            ));
            (
                repo.get("tokenizer.json"),
                repo.get("config.json"),
                repo.get("tokenizer_config.json"),
                repo.get("preprocessor_config.json"),
                repo.get("processor_config.json"),
                None,
            )
        }
    };

    // Read the JSON contents of the file as an instance of 'HubTokenizerConfig'.
    let tokenizer_config: Option<HubTokenizerConfig> = if let Some(filename) = tokenizer_config_path
    {
        HubTokenizerConfig::from_file(filename)
    } else {
        tokenizer_config_filename.and_then(HubTokenizerConfig::from_file)
    };
    let tokenizer_config = tokenizer_config.unwrap_or_else(|| {
        tracing::warn!("Could not find tokenizer config locally and no API specified");
        HubTokenizerConfig::default()
    });

    let tokenizer: Option<Tokenizer> = tokenizer_filename.and_then(|filename| {
        let mut tokenizer = Tokenizer::from_file(filename).ok();
        if let Some(tokenizer) = &mut tokenizer {
            if let Some(class) = &tokenizer_config.tokenizer_class {
                if class == "LlamaTokenizer" || class == "LlamaTokenizerFast"{
                    if let Ok(post_processor) = create_post_processor(tokenizer, &tokenizer_config) {
                        tracing::info!("Overriding LlamaTokenizer with TemplateProcessing to follow python override defined in https://github.com/huggingface/transformers/blob/4aa17d00690b7f82c95bb2949ea57e22c35b4336/src/transformers/models/llama/tokenization_llama_fast.py#L203-L205");
                        tokenizer.with_post_processor(post_processor);
                    }
OlivierDehaene's avatar
OlivierDehaene committed
1662
1663
                }
            }
Nicolas Patry's avatar
Nicolas Patry committed
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
        }
        tokenizer
    });

    let config: Option<Config> = config_filename.and_then(|filename| {
        std::fs::read_to_string(filename)
            .ok()
            .as_ref()
            .and_then(|c| {
                let config: Result<Config, _> = serde_json::from_str(c);
                if let Err(err) = &config {
                    tracing::warn!("Could not parse config {err:?}");
                }
                config.ok()
            })
    });
    let model_info = model_info.unwrap_or_else(|| HubModelInfo {
        model_id: tokenizer_name.to_string(),
        sha: None,
        pipeline_tag: None,
    });

    let processor_config = processor_config_filename
        .and_then(HubProcessorConfig::from_file)
        .unwrap_or_default();

    let preprocessor_config: Option<HubPreprocessorConfig> =
        preprocessor_config_filename.and_then(HubPreprocessorConfig::from_file);

    tracing::info!("Using config {config:?}");
    if tokenizer.is_none() {
        tracing::warn!("Could not find a fast tokenizer implementation for {tokenizer_name}");
        tracing::warn!("Rust input length validation and truncation is disabled");
    }
OlivierDehaene's avatar
OlivierDehaene committed
1698

Nicolas Patry's avatar
Nicolas Patry committed
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
    // Only send usage stats when TGI is run in container and the function returns Some
    let is_container = matches!(usage_stats::is_container(), Ok(true));

    let user_agent = if !disable_usage_stats && is_container {
        let reduced_args = usage_stats::Args::new(
            config.clone(),
            tokenizer_config.tokenizer_class.clone(),
            max_concurrent_requests,
            max_best_of,
            max_stop_sequences,
            max_top_n_tokens,
            max_input_tokens,
            max_total_tokens,
            // waiting_served_ratio,
            // max_batch_prefill_tokens,
            // max_batch_total_tokens,
            // max_waiting_tokens,
            // max_batch_size,
            revision.clone(),
            validation_workers,
            messages_api_enabled,
            disable_grammar_support,
            max_client_batch_size,
            disable_usage_stats,
            disable_crash_reports,
        );
        Some(usage_stats::UserAgent::new(reduced_args))
    } else {
        None
    };

    if let Some(ref ua) = user_agent {
        let start_event =
            usage_stats::UsageStatsEvent::new(ua.clone(), usage_stats::EventType::Start, None);
        tokio::spawn(async move {
            start_event.send().await;
        });
    };
    let compat_return_full_text = match &model_info.pipeline_tag {
        None => {
            tracing::warn!("no pipeline tag found for model {tokenizer_name}");
            true
        }
        Some(pipeline_tag) => pipeline_tag.as_str() == "text-generation",
    };
    let result = start(
        backend,
        max_concurrent_requests,
        max_best_of,
        max_stop_sequences,
        max_top_n_tokens,
        max_input_tokens,
        max_total_tokens,
        validation_workers,
        api_key,
        config,
        (tokenizer, tokenizer_config),
        (preprocessor_config, processor_config),
        hostname,
        port,
        ngrok,
        _ngrok_authtoken,
        _ngrok_edge,
        messages_api_enabled,
        disable_grammar_support,
        max_client_batch_size,
        model_info,
        compat_return_full_text,
        allow_origin,
    )
    .await;

    if let Some(ua) = user_agent {
        match result {
            Ok(_) => {
                let stop_event = usage_stats::UsageStatsEvent::new(
                    ua.clone(),
                    usage_stats::EventType::Stop,
                    None,
                );
                stop_event.send().await;
                Ok(())
OlivierDehaene's avatar
OlivierDehaene committed
1781
            }
Nicolas Patry's avatar
Nicolas Patry committed
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
            Err(e) => {
                if !disable_crash_reports {
                    let error_event = usage_stats::UsageStatsEvent::new(
                        ua.clone(),
                        usage_stats::EventType::Error,
                        Some(e.to_string()),
                    );
                    error_event.send().await;
                } else {
                    let unknow_error_event = usage_stats::UsageStatsEvent::new(
                        ua.clone(),
                        usage_stats::EventType::Error,
                        Some("unknow_error".to_string()),
                    );
                    unknow_error_event.send().await;
                }
                Err(e)
OlivierDehaene's avatar
OlivierDehaene committed
1799
1800
            }
        }
Nicolas Patry's avatar
Nicolas Patry committed
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
    } else {
        result
    }
}

#[allow(clippy::too_many_arguments)]
async fn start(
    backend: impl Backend + Send + Sync + 'static,
    max_concurrent_requests: usize,
    max_best_of: usize,
    max_stop_sequences: usize,
    max_top_n_tokens: u32,
    max_input_tokens: usize,
    max_total_tokens: usize,
    validation_workers: usize,
    api_key: Option<String>,
    config: Option<Config>,
    (tokenizer, tokenizer_config): (Option<Tokenizer>, HubTokenizerConfig),
    (preprocessor_config, processor_config): (Option<HubPreprocessorConfig>, HubProcessorConfig),
    hostname: String,
    port: u16,
    ngrok: bool,
    _ngrok_authtoken: Option<String>,
    _ngrok_edge: Option<String>,
    messages_api_enabled: bool,
    disable_grammar_support: bool,
    max_client_batch_size: usize,
    model_info: HubModelInfo,
    compat_return_full_text: bool,
    allow_origin: Option<AllowOrigin>,
) -> Result<(), WebServerError> {
    // Determine the server port based on the feature and environment variable.
    let port = if cfg!(feature = "google") {
        std::env::var("AIP_HTTP_PORT")
            .map(|aip_http_port| aip_http_port.parse::<u16>().unwrap_or(port))
            .unwrap_or(port)
    } else {
        port
    };

    let addr = match hostname.parse() {
        Ok(ip) => SocketAddr::new(ip, port),
        Err(_) => {
            tracing::warn!("Invalid hostname, defaulting to 0.0.0.0");
            SocketAddr::new(IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)), port)
        }
OlivierDehaene's avatar
OlivierDehaene committed
1847
1848
    };

Nicolas Patry's avatar
Nicolas Patry committed
1849
    // Create state
1850
1851
1852
    let validation = Validation::new(
        validation_workers,
        tokenizer,
1853
        config,
1854
        preprocessor_config,
1855
        max_best_of,
1856
        max_stop_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
1857
        max_top_n_tokens,
OlivierDehaene's avatar
OlivierDehaene committed
1858
        max_input_tokens,
1859
        max_total_tokens,
Nicolas Patry's avatar
Nicolas Patry committed
1860
        disable_grammar_support,
1861
    );
OlivierDehaene's avatar
OlivierDehaene committed
1862

1863
    let infer = Infer::new(
Nicolas Patry's avatar
Nicolas Patry committed
1864
        backend,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1865
        validation,
1866
        max_concurrent_requests,
1867
        tokenizer_config,
drbh's avatar
drbh committed
1868
        processor_config,
1869
    );
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1870

1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
    // Duration buckets
    let duration_matcher = Matcher::Suffix(String::from("duration"));
    let n_duration_buckets = 35;
    let mut duration_buckets = Vec::with_capacity(n_duration_buckets);
    // Minimum duration in seconds
    let mut value = 0.0001;
    for _ in 0..n_duration_buckets {
        // geometric sequence
        value *= 1.5;
        duration_buckets.push(value);
    }
    // Input Length buckets
    let input_length_matcher = Matcher::Full(String::from("tgi_request_input_length"));
    let input_length_buckets: Vec<f64> = (0..100)
OlivierDehaene's avatar
OlivierDehaene committed
1885
        .map(|x| (max_input_tokens as f64 / 100.0) * (x + 1) as f64)
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
        .collect();
    // Generated tokens buckets
    let generated_tokens_matcher = Matcher::Full(String::from("tgi_request_generated_tokens"));
    let generated_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Input Length buckets
    let max_new_tokens_matcher = Matcher::Full(String::from("tgi_request_max_new_tokens"));
    let max_new_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Batch size buckets
    let batch_size_matcher = Matcher::Full(String::from("tgi_batch_next_size"));
1899
    let batch_size_buckets: Vec<f64> = (0..1024).map(|x| (x + 1) as f64).collect();
OlivierDehaene's avatar
OlivierDehaene committed
1900
    // Speculated tokens buckets
Nicolas Patry's avatar
Nicolas Patry committed
1901
1902
    // let skipped_matcher = Matcher::Full(String::from("tgi_request_skipped_tokens"));
    // let skipped_buckets: Vec<f64> = (0..shard_info.speculate + 1).map(|x| x as f64).collect();
1903

1904
    // Prometheus handler
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
    let builder = PrometheusBuilder::new()
        .set_buckets_for_metric(duration_matcher, &duration_buckets)
        .unwrap()
        .set_buckets_for_metric(input_length_matcher, &input_length_buckets)
        .unwrap()
        .set_buckets_for_metric(generated_tokens_matcher, &generated_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(max_new_tokens_matcher, &max_new_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(batch_size_matcher, &batch_size_buckets)
        .unwrap();
Nicolas Patry's avatar
Nicolas Patry committed
1916
1917
    // .set_buckets_for_metric(skipped_matcher, &skipped_buckets)
    // .unwrap();
1918
1919
1920
1921
    let prom_handle = builder
        .install_recorder()
        .expect("failed to install metrics recorder");

1922
1923
1924
1925
1926
1927
1928
    // CORS layer
    let allow_origin = allow_origin.unwrap_or(AllowOrigin::any());
    let cors_layer = CorsLayer::new()
        .allow_methods([Method::GET, Method::POST])
        .allow_headers([http::header::CONTENT_TYPE])
        .allow_origin(allow_origin);

1929
1930
1931
1932
    // Endpoint info
    let info = Info {
        model_id: model_info.model_id,
        model_sha: model_info.sha,
Nicolas Patry's avatar
Nicolas Patry committed
1933
1934
        // model_dtype: shard_info.dtype,
        // model_device_type: shard_info.device_type,
1935
1936
1937
1938
        model_pipeline_tag: model_info.pipeline_tag,
        max_concurrent_requests,
        max_best_of,
        max_stop_sequences,
OlivierDehaene's avatar
OlivierDehaene committed
1939
        max_input_tokens,
1940
        max_total_tokens,
Nicolas Patry's avatar
Nicolas Patry committed
1941
1942
1943
1944
        // waiting_served_ratio,
        // max_batch_total_tokens,
        // max_waiting_tokens,
        // max_batch_size,
1945
        validation_workers,
1946
        max_client_batch_size,
1947
        router: env!("CARGO_PKG_NAME"),
1948
1949
        version: env!("CARGO_PKG_VERSION"),
        sha: option_env!("VERGEN_GIT_SHA"),
1950
        docker_label: option_env!("DOCKER_LABEL"),
1951
1952
    };

1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
    #[allow(unused_mut)] // mut is needed for conditional compilation
    let mut doc = ApiDoc::openapi();

    #[cfg(feature = "google")]
    {
        use crate::VertexInstance;

        #[derive(OpenApi)]
        #[openapi(
            paths(vertex_compatibility),
            components(schemas(VertexInstance, VertexRequest, VertexResponse))
        )]
        struct VertexApiDoc;

        doc.merge(VertexApiDoc::openapi());
    }

    #[cfg(feature = "kserve")]
    {
        use crate::kserve::{
            InferenceOutput, InferenceRequest, LiveResponse, MetadataServerResponse, OutputChunk,
            ReadyResponse,
        };
        use crate::kserve::{
            __path_kerve_server_metadata, __path_kserve_health_live, __path_kserve_health_ready,
            __path_kserve_model_infer, __path_kserve_model_metadata,
            __path_kserve_model_metadata_ready,
        };

        #[derive(OpenApi)]
        #[openapi(
            paths(
                kserve_health_live,
                kserve_health_ready,
                kerve_server_metadata,
                kserve_model_metadata,
                kserve_model_metadata_ready,
1990
                kserve_model_infer,
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
            ),
            components(schemas(
                InferenceOutput,
                InferenceRequest,
                LiveResponse,
                MetadataServerResponse,
                OutputChunk,
                ReadyResponse,
            ))
        )]
        struct KServeApiDoc;

        doc.merge(KServeApiDoc::openapi());
    }
drbh's avatar
drbh committed
2005

2006
    // Configure Swagger UI
drbh's avatar
drbh committed
2007
    let swagger_ui = SwaggerUi::new("/docs").url("/api-doc/openapi.json", doc);
2008
2009

    // Define base and health routes
Erik Kaunismäki's avatar
Erik Kaunismäki committed
2010
    let mut base_routes = Router::new()
2011
        .route("/", post(compat_generate))
Olivier Dehaene's avatar
Olivier Dehaene committed
2012
        .route("/generate", post(generate))
2013
        .route("/generate_stream", post(generate_stream))
2014
        .route("/v1/chat/completions", post(chat_completions))
2015
        .route("/v1/completions", post(completions))
drbh's avatar
drbh committed
2016
        .route("/vertex", post(vertex_compatibility))
Erik Kaunismäki's avatar
Erik Kaunismäki committed
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
        .route("/tokenize", post(tokenize));

    if let Some(api_key) = api_key {
        let mut prefix = "Bearer ".to_string();
        prefix.push_str(&api_key);

        // Leak to allow FnMut
        let api_key: &'static str = prefix.leak();

        let auth = move |headers: HeaderMap,
                         request: axum::extract::Request,
                         next: axum::middleware::Next| async move {
            match headers.get(AUTHORIZATION) {
                Some(token) => match token.to_str() {
                    Ok(token_str) if token_str.to_lowercase() == api_key.to_lowercase() => {
                        let response = next.run(request).await;
                        Ok(response)
                    }
                    _ => Err(StatusCode::UNAUTHORIZED),
                },
                None => Err(StatusCode::UNAUTHORIZED),
            }
        };

        base_routes = base_routes.layer(axum::middleware::from_fn(auth))
    }
    let info_routes = Router::new()
        .route("/", get(health))
        .route("/info", get(get_model_info))
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
2046
        .route("/health", get(health))
2047
        .route("/ping", get(health))
2048
2049
2050
        .route("/metrics", get(metrics));

    // Conditional AWS Sagemaker route
2051
    let aws_sagemaker_route = if messages_api_enabled {
2052
2053
2054
2055
2056
        Router::new().route("/invocations", post(chat_completions)) // Use 'chat_completions' for OAI_ENABLED
    } else {
        Router::new().route("/invocations", post(compat_generate)) // Use 'compat_generate' otherwise
    };

2057
2058
    let compute_type =
        ComputeType(std::env::var("COMPUTE_TYPE").unwrap_or("gpu+optimized".to_string()));
2059

2060
    // Combine routes and layers
drbh's avatar
drbh committed
2061
    let mut app = Router::new()
2062
2063
        .merge(swagger_ui)
        .merge(base_routes)
Erik Kaunismäki's avatar
Erik Kaunismäki committed
2064
        .merge(info_routes)
drbh's avatar
drbh committed
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
        .merge(aws_sagemaker_route);

    #[cfg(feature = "google")]
    {
        tracing::info!("Built with `google` feature");
        tracing::info!(
            "Environment variables `AIP_PREDICT_ROUTE` and `AIP_HEALTH_ROUTE` will be respected."
        );
        if let Ok(env_predict_route) = std::env::var("AIP_PREDICT_ROUTE") {
            app = app.route(&env_predict_route, post(vertex_compatibility));
        }
        if let Ok(env_health_route) = std::env::var("AIP_HEALTH_ROUTE") {
            app = app.route(&env_health_route, get(health));
        }
    }

2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
    #[cfg(feature = "kserve")]
    {
        tracing::info!("Built with `kserve` feature");
        app = app
            .route(
                "/v2/models/:model_name/versions/:model_version/infer",
                post(kserve_model_infer),
            )
            .route(
                "/v2/models/:model_name/versions/:model_version",
                get(kserve_model_metadata),
            )
            .route("/v2/health/ready", get(kserve_health_ready))
            .route("/v2/health/live", get(kserve_health_live))
            .route("/v2", get(kerve_server_metadata))
            .route(
                "/v2/models/:model_name/versions/:model_version/ready",
                get(kserve_model_metadata_ready),
            );
    }

drbh's avatar
drbh committed
2102
2103
    // add layers after routes
    app = app
2104
        .layer(Extension(info))
2105
2106
        .layer(Extension(compat_return_full_text))
        .layer(Extension(infer))
2107
        .layer(Extension(compute_type))
2108
        .layer(Extension(prom_handle.clone()))
Nicolas Patry's avatar
Nicolas Patry committed
2109
        .layer(OtelAxumLayer::default())
2110
        .layer(cors_layer);
Olivier Dehaene's avatar
Olivier Dehaene committed
2111

OlivierDehaene's avatar
OlivierDehaene committed
2112
2113
    tracing::info!("Connected");

2114
2115
2116
    if ngrok {
        #[cfg(feature = "ngrok")]
        {
2117
            panic!("ngrok feature is not functional with axum=0.7 and hyper=1, waiting on https://github.com/ngrok/ngrok-rust/pull/137/files to re-enable.");
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131

            // Run server
        }
        #[cfg(not(feature = "ngrok"))]
        {
            let _ngrok_authtoken = ngrok_authtoken;
            let _ngrok_domain = ngrok_domain;
            let _ngrok_username = ngrok_username;
            let _ngrok_password = ngrok_password;

            panic!("`text-generation-router` was compiled without the `ngrok` feature");
        }
    } else {
        // Run server
2132
2133
2134

        let listener = tokio::net::TcpListener::bind(&addr).await.unwrap();
        axum::serve(listener, app)
2135
            .with_graceful_shutdown(shutdown_signal())
OlivierDehaene's avatar
OlivierDehaene committed
2136
2137
            .await
            .map_err(|err| WebServerError::Axum(Box::new(err)))?;
2138
    }
2139
    Ok(())
Olivier Dehaene's avatar
Olivier Dehaene committed
2140
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
2141

Nicolas Patry's avatar
Nicolas Patry committed
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
/// get model info from the Huggingface Hub
pub async fn get_hub_model_info(api: &ApiRepo) -> Option<HubModelInfo> {
    let response = api.info_request().send().await.ok()?;

    if response.status().is_success() {
        let hub_model_info: HubModelInfo =
            serde_json::from_str(&response.text().await.ok()?).ok()?;
        if let Some(sha) = &hub_model_info.sha {
            tracing::info!(
                "Serving revision {sha} of model {}",
                hub_model_info.model_id
            );
        }
        Some(hub_model_info)
    } else {
        None
    }
}

/// get base tokenizer
pub async fn get_base_tokenizer(api: &Api, api_repo: &ApiRepo) -> Option<PathBuf> {
    let config_filename = api_repo.get("config.json").await.ok()?;

    // Open the file in read-only mode with buffer.
    let file = File::open(config_filename).ok()?;
    let reader = BufReader::new(file);

    // Read the JSON contents of the file as an instance of `User`.
    let config: serde_json::Value = serde_json::from_reader(reader).ok()?;

    if let Some(serde_json::Value::String(base_model_id)) = config.get("base_model_name_or_path") {
        let api_base_repo = api.repo(Repo::with_revision(
            base_model_id.to_string(),
            RepoType::Model,
            "main".to_string(),
        ));

        api_base_repo.get("tokenizer.json").await.ok()
    } else {
        None
    }
}

/// get tokenizer_config from the Huggingface Hub
pub async fn get_tokenizer_config(api_repo: &ApiRepo) -> Option<HubTokenizerConfig> {
    let tokenizer_config_filename = api_repo.get("tokenizer_config.json").await.ok()?;

    // Open the file in read-only mode with buffer.
    let file = File::open(tokenizer_config_filename).ok()?;
    let reader = BufReader::new(file);

    // Read the JSON contents of the file as an instance of 'HubTokenizerConfig'.
    let tokenizer_config: HubTokenizerConfig = serde_json::from_reader(reader)
        .map_err(|e| {
            tracing::warn!("Unable to parse tokenizer config: {}", e);
            e
        })
        .ok()?;

    Some(tokenizer_config)
}

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
/// Shutdown signal handler
async fn shutdown_signal() {
    let ctrl_c = async {
        signal::ctrl_c()
            .await
            .expect("failed to install Ctrl+C handler");
    };

    #[cfg(unix)]
    let terminate = async {
        signal::unix::signal(signal::unix::SignalKind::terminate())
            .expect("failed to install signal handler")
            .recv()
            .await;
    };

    #[cfg(not(unix))]
    let terminate = std::future::pending::<()>();

    tokio::select! {
        _ = ctrl_c => {},
        _ = terminate => {},
    }

    tracing::info!("signal received, starting graceful shutdown");
2229
    opentelemetry::global::shutdown_tracer_provider();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
2230
}
2231
2232
2233
2234
2235
2236
2237
2238
2239

/// Convert to Axum supported formats
impl From<InferError> for (StatusCode, Json<ErrorResponse>) {
    fn from(err: InferError) -> Self {
        let status_code = match err {
            InferError::GenerationError(_) => StatusCode::FAILED_DEPENDENCY,
            InferError::Overloaded(_) => StatusCode::TOO_MANY_REQUESTS,
            InferError::ValidationError(_) => StatusCode::UNPROCESSABLE_ENTITY,
            InferError::IncompleteGeneration => StatusCode::INTERNAL_SERVER_ERROR,
2240
            InferError::TemplateError(_) => StatusCode::UNPROCESSABLE_ENTITY,
2241
            InferError::ToolError(_) => StatusCode::UNPROCESSABLE_ENTITY,
2242
2243
2244
2245
2246
2247
        };

        (
            status_code,
            Json(ErrorResponse {
                error: err.to_string(),
2248
                error_type: err.error_type().to_string(),
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
            }),
        )
    }
}

impl From<InferError> for Event {
    fn from(err: InferError) -> Self {
        Event::default()
            .json_data(ErrorResponse {
                error: err.to_string(),
2259
                error_type: err.error_type().to_string(),
2260
2261
2262
2263
            })
            .unwrap()
    }
}
OlivierDehaene's avatar
OlivierDehaene committed
2264
2265
2266
2267
2268
2269

#[derive(Debug, Error)]
pub enum WebServerError {
    #[error("Axum error: {0}")]
    Axum(#[from] axum::BoxError),
}
Nicolas Patry's avatar
Nicolas Patry committed
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340

/// Create a post_processor for the LlamaTokenizer
fn create_post_processor(
    tokenizer: &Tokenizer,
    tokenizer_config: &HubTokenizerConfig,
) -> Result<TemplateProcessing, tokenizers::processors::template::TemplateProcessingBuilderError> {
    let add_bos_token = tokenizer_config.add_bos_token.unwrap_or(true);
    let add_eos_token = tokenizer_config.add_eos_token.unwrap_or(false);

    let bos_token = tokenizer_config.bos_token.as_ref();
    let eos_token = tokenizer_config.eos_token.as_ref();

    if add_bos_token && bos_token.is_none() {
        panic!("add_bos_token = true but bos_token is None");
    }

    if add_eos_token && eos_token.is_none() {
        panic!("add_eos_token = true but eos_token is None");
    }

    let mut single = Vec::new();
    let mut pair = Vec::new();
    let mut special_tokens = Vec::new();

    if add_bos_token {
        if let Some(bos) = bos_token {
            let bos_token_id = tokenizer
                .token_to_id(bos.as_str())
                .expect("Should have found the bos token id");
            special_tokens.push((bos.as_str(), bos_token_id));
            single.push(format!("{}:0", bos.as_str()));
            pair.push(format!("{}:0", bos.as_str()));
        }
    }

    single.push("$A:0".to_string());
    pair.push("$A:0".to_string());

    if add_eos_token {
        if let Some(eos) = eos_token {
            let eos_token_id = tokenizer
                .token_to_id(eos.as_str())
                .expect("Should have found the eos token id");
            special_tokens.push((eos.as_str(), eos_token_id));
            single.push(format!("{}:0", eos.as_str()));
            pair.push(format!("{}:0", eos.as_str()));
        }
    }

    if add_bos_token {
        if let Some(bos) = bos_token {
            pair.push(format!("{}:1", bos.as_str()));
        }
    }

    pair.push("$B:1".to_string());

    if add_eos_token {
        if let Some(eos) = eos_token {
            pair.push(format!("{}:1", eos.as_str()));
        }
    }

    let post_processor = TemplateProcessing::builder()
        .try_single(single)?
        .try_pair(pair)?
        .special_tokens(special_tokens)
        .build()?;

    Ok(post_processor)
}