server.rs 84.8 KB
Newer Older
1
/// HTTP Server logic
OlivierDehaene's avatar
OlivierDehaene committed
2
use crate::config::Config;
Nicolas Patry's avatar
Nicolas Patry committed
3
4
use crate::infer::tool_grammar::ToolGrammar;
use crate::infer::{Backend, Infer, InferError, InferResponse, InferStreamResponse};
5
6
7
8
9
#[cfg(feature = "kserve")]
use crate::kserve::{
    kerve_server_metadata, kserve_health_live, kserve_health_ready, kserve_model_infer,
    kserve_model_metadata, kserve_model_metadata_ready,
};
10
use crate::validation::ValidationError;
11
use crate::ChatTokenizeResponse;
12
use crate::{
13
14
15
16
17
    usage_stats, BestOfSequence, Details, ErrorResponse, FinishReason, FunctionName,
    GenerateParameters, GenerateRequest, GenerateResponse, GrammarType, HubModelInfo,
    HubProcessorConfig, HubTokenizerConfig, Info, Message, MessageChunk, MessageContent,
    OutputMessage, PrefillToken, SimpleToken, StreamDetails, StreamResponse, TextMessage, Token,
    TokenizeResponse, ToolCallDelta, ToolCallMessage, Url, Usage, Validation,
18
19
20
21
};
use crate::{
    ChatCompletion, ChatCompletionChoice, ChatCompletionChunk, ChatCompletionComplete,
    ChatCompletionDelta, ChatCompletionLogprob, ChatCompletionLogprobs, ChatCompletionTopLogprob,
22
23
    ChatRequest, Chunk, CompatGenerateRequest, Completion, CompletionComplete, CompletionFinal,
    CompletionRequest, CompletionType, DeltaToolCall, Function, Prompt, Tool, VertexRequest,
24
    VertexResponse,
25
};
26
use crate::{FunctionDefinition, HubPreprocessorConfig, ToolCall, ToolChoice, ToolType, Tools};
27
use async_stream::__private::AsyncStream;
Olivier Dehaene's avatar
Olivier Dehaene committed
28
use axum::extract::Extension;
Nicolas Patry's avatar
Nicolas Patry committed
29
use axum::http::{HeaderMap, HeaderValue, Method, StatusCode};
30
use axum::response::sse::{Event, KeepAlive, Sse};
31
use axum::response::{IntoResponse, Response};
Olivier Dehaene's avatar
Olivier Dehaene committed
32
use axum::routing::{get, post};
33
use axum::{http, Json, Router};
Nicolas Patry's avatar
Nicolas Patry committed
34
use axum_tracing_opentelemetry::middleware::OtelAxumLayer;
35
use futures::stream::StreamExt;
36
use futures::stream::{FuturesOrdered, FuturesUnordered};
37
use futures::Stream;
drbh's avatar
drbh committed
38
use futures::TryStreamExt;
Nicolas Patry's avatar
Nicolas Patry committed
39
40
use hf_hub::api::tokio::{Api, ApiBuilder, ApiRepo};
use hf_hub::{Cache, Repo, RepoType};
Erik Kaunismäki's avatar
Erik Kaunismäki committed
41
use http::header::AUTHORIZATION;
42
use metrics_exporter_prometheus::{Matcher, PrometheusBuilder, PrometheusHandle};
drbh's avatar
drbh committed
43
use serde_json::Value;
44
use std::convert::Infallible;
Nicolas Patry's avatar
Nicolas Patry committed
45
46
47
48
use std::fs::File;
use std::io::BufReader;
use std::net::{IpAddr, Ipv4Addr, SocketAddr};
use std::path::{Path, PathBuf};
OlivierDehaene's avatar
OlivierDehaene committed
49
use thiserror::Error;
Nicolas Patry's avatar
Nicolas Patry committed
50
use tokenizers::processors::template::TemplateProcessing;
Olivier Dehaene's avatar
Olivier Dehaene committed
51
use tokenizers::Tokenizer;
52
use tokio::select;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
53
use tokio::signal;
54
use tokio::sync::oneshot;
Olivier Dehaene's avatar
Olivier Dehaene committed
55
use tokio::time::Instant;
56
use tower_http::cors::{AllowOrigin, CorsLayer};
57
use tracing::{info_span, instrument, Instrument};
58
59
use utoipa::OpenApi;
use utoipa_swagger_ui::SwaggerUi;
Olivier Dehaene's avatar
Olivier Dehaene committed
60

61
62
/// Generate tokens if `stream == false` or a stream of token if `stream == true`
#[utoipa::path(
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
post,
tag = "Text Generation Inference",
path = "/",
request_body = CompatGenerateRequest,
responses(
(status = 200, description = "Generated Text",
content(
("application/json" = GenerateResponse),
("text/event-stream" = StreamResponse),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
82
)]
83
#[instrument(skip(infer, req))]
84
async fn compat_generate(
85
    Extension(default_return_full_text): Extension<bool>,
86
    infer: Extension<Infer>,
87
    compute_type: Extension<ComputeType>,
88
    Json(mut req): Json<CompatGenerateRequest>,
89
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
90
91
    // default return_full_text given the pipeline_tag
    if req.parameters.return_full_text.is_none() {
92
        req.parameters.return_full_text = Some(default_return_full_text)
93
94
    }

95
96
    // switch on stream
    if req.stream {
97
        Ok(generate_stream(infer, compute_type, Json(req.into()))
98
99
100
            .await
            .into_response())
    } else {
101
        let (headers, Json(generation)) = generate(infer, compute_type, Json(req.into())).await?;
102
        // wrap generation inside a Vec to match api-inference
103
        Ok((headers, Json(vec![generation])).into_response())
104
105
106
    }
}

107
108
/// Text Generation Inference endpoint info
#[utoipa::path(
109
110
111
112
get,
tag = "Text Generation Inference",
path = "/info",
responses((status = 200, description = "Served model info", body = Info))
113
114
)]
#[instrument]
115
116
async fn get_model_info(info: Extension<Info>) -> Json<Info> {
    Json(info.0)
117
118
}

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
#[utoipa::path(
    post,
    tag = "Text Generation Inference",
    path = "/chat_tokenize",
    request_body = ChatRequest,
    responses((status = 200, description = "Templated and tokenized ChatRequest", body = ChatTokenizeResponse))
)]
async fn get_chat_tokenize(
    Extension(infer): Extension<Infer>,
    Json(req): Json<ChatRequest>,
) -> Result<(HeaderMap, Json<ChatTokenizeResponse>), (StatusCode, Json<ErrorResponse>)> {
    metrics::counter!("tgi_request_count").increment(1);

    let ChatRequest {
        model,
        max_tokens,
        messages,
        seed,
        stop,
        stream,
        tools,
        tool_choice,
        tool_prompt,
        temperature,
        response_format,
144
        guideline,
145
146
147
148
149
150
151
152
153
154
        ..
    } = req;

    let tool_prompt = tool_prompt.unwrap_or_default();
    let (inputs, _grammar, _tool_grammar) = prepare_chat_input(
        &infer,
        response_format,
        tools,
        tool_choice,
        &tool_prompt,
155
        guideline,
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
        messages,
    )?;

    let generate_request = GenerateRequest {
        inputs,
        parameters: GenerateParameters {
            best_of: None,
            temperature,
            repetition_penalty: None,
            frequency_penalty: None,
            top_k: None,
            top_p: None,
            typical_p: None,
            do_sample: true,
            max_new_tokens: max_tokens,
            return_full_text: None,
            stop: stop.unwrap_or_default(),
            truncate: None,
            watermark: false,
            details: false,
            decoder_input_details: !stream,
            seed,
            top_n_tokens: None,
            grammar: _grammar,
            adapter_id: model.as_ref().filter(|m| *m != "tgi").map(String::from),
        },
    };

    let input = generate_request.inputs.clone();
    let encoding = infer.tokenize(generate_request).await?;
    if let Some(encoding) = encoding {
        let tokens: Vec<SimpleToken> = encoding
            .get_ids()
            .iter()
            .zip(encoding.get_offsets())
            .map(|(&id, &(start, stop))| {
                let text = input
                    .chars()
                    .skip(start)
                    .take(stop - start)
                    .collect::<String>();
                SimpleToken {
                    id,
                    text,
                    start,
                    stop,
                }
            })
            .collect();

        let resp = ChatTokenizeResponse {
            tokenize_response: TokenizeResponse(tokens),
            templated_text: input,
        };
        Ok((HeaderMap::new(), Json(resp)))
    } else {
        Err((
            StatusCode::NOT_FOUND,
            Json(ErrorResponse {
                error: "No fast tokenizer or tokenizer.json for this model".to_string(),
                error_type: "no fast tokenizer".to_string(),
            }),
        ))
    }
}

222
#[utoipa::path(
223
224
225
226
227
228
229
230
get,
tag = "Text Generation Inference",
path = "/health",
responses(
(status = 200, description = "Everything is working fine"),
(status = 503, description = "Text generation inference is down", body = ErrorResponse,
example = json ! ({"error": "unhealthy", "error_type": "healthcheck"})),
)
231
)]
Nicolas Patry's avatar
Nicolas Patry committed
232
#[instrument(skip(infer))]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
233
/// Health check method
Nicolas Patry's avatar
Nicolas Patry committed
234
235
async fn health(infer: Extension<Infer>) -> Result<(), (StatusCode, Json<ErrorResponse>)> {
    match infer.health().await {
236
237
238
239
240
241
242
243
244
        true => Ok(()),
        false => Err((
            StatusCode::SERVICE_UNAVAILABLE,
            Json(ErrorResponse {
                error: "unhealthy".to_string(),
                error_type: "healthcheck".to_string(),
            }),
        )),
    }
Olivier Dehaene's avatar
Olivier Dehaene committed
245
246
}

247
248
/// Generate tokens
#[utoipa::path(
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
post,
tag = "Text Generation Inference",
path = "/generate",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = GenerateResponse),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
264
)]
265
#[instrument(
266
267
skip_all,
fields(
268
parameters = ? req.parameters,
269
270
271
272
273
274
275
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
276
)]
Olivier Dehaene's avatar
Olivier Dehaene committed
277
async fn generate(
278
    infer: Extension<Infer>,
279
    Extension(ComputeType(compute_type)): Extension<ComputeType>,
280
    Json(req): Json<GenerateRequest>,
281
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
282
    let span = tracing::Span::current();
283
284
285
    generate_internal(infer, ComputeType(compute_type), Json(req), span).await
}

286
pub(crate) async fn generate_internal(
287
288
289
290
291
    infer: Extension<Infer>,
    ComputeType(compute_type): ComputeType,
    Json(req): Json<GenerateRequest>,
    span: tracing::Span,
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
292
    let start_time = Instant::now();
293
    metrics::counter!("tgi_request_count").increment(1);
294

295
296
    // Do not long ultra long inputs, like image payloads.
    tracing::debug!("Input: {}", &req.inputs[..1000.min(req.inputs.len())]);
297

298
    let compute_characters = req.inputs.chars().count();
299
    let mut add_prompt = None;
300
301
    if req.parameters.return_full_text.unwrap_or(false) {
        add_prompt = Some(req.inputs.clone());
302
303
    }

Nicolas Patry's avatar
Nicolas Patry committed
304
    let details: bool = req.parameters.details || req.parameters.decoder_input_details;
305
306

    // Inference
307
    let (response, best_of_responses) = match req.parameters.best_of {
308
        Some(best_of) if best_of > 1 => {
309
            let (response, best_of_responses) = infer.generate_best_of(req, best_of).await?;
310
311
            (response, Some(best_of_responses))
        }
312
        _ => (infer.generate(req).await?, None),
313
    };
Olivier Dehaene's avatar
Olivier Dehaene committed
314

OlivierDehaene's avatar
OlivierDehaene committed
315
    // Token details
316
    let input_length = response._input_length;
OlivierDehaene's avatar
OlivierDehaene committed
317
    let details = match details {
318
319
320
321
322
323
324
325
326
327
328
329
330
331
        true => {
            // convert best_of_responses
            let best_of_sequences = best_of_responses.map(|responses: Vec<InferResponse>| {
                responses
                    .into_iter()
                    .map(|response: InferResponse| {
                        // Add prompt if return_full_text
                        let mut output_text = response.generated_text.text;
                        if let Some(prompt) = &add_prompt {
                            output_text = prompt.clone() + &output_text;
                        }

                        BestOfSequence {
                            generated_text: output_text,
OlivierDehaene's avatar
OlivierDehaene committed
332
                            finish_reason: response.generated_text.finish_reason,
333
334
335
                            generated_tokens: response.generated_text.generated_tokens,
                            prefill: response.prefill,
                            tokens: response.tokens,
Nicolas Patry's avatar
Nicolas Patry committed
336
                            top_tokens: response.top_tokens,
337
338
339
340
341
342
343
                            seed: response.generated_text.seed,
                        }
                    })
                    .collect()
            });

            Some(Details {
OlivierDehaene's avatar
OlivierDehaene committed
344
                finish_reason: response.generated_text.finish_reason,
345
346
347
348
349
                generated_tokens: response.generated_text.generated_tokens,
                prefill: response.prefill,
                tokens: response.tokens,
                seed: response.generated_text.seed,
                best_of_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
350
                top_tokens: response.top_tokens,
351
352
            })
        }
OlivierDehaene's avatar
OlivierDehaene committed
353
354
355
        false => None,
    };

356
357
358
359
    // Timings
    let total_time = start_time.elapsed();
    let validation_time = response.queued - start_time;
    let queue_time = response.start - response.queued;
360
361
    let inference_time = Instant::now() - response.start;
    let time_per_token = inference_time / response.generated_text.generated_tokens;
362

363
364
365
366
367
368
369
370
    // Tracing metadata
    span.record("total_time", format!("{total_time:?}"));
    span.record("validation_time", format!("{validation_time:?}"));
    span.record("queue_time", format!("{queue_time:?}"));
    span.record("inference_time", format!("{inference_time:?}"));
    span.record("time_per_token", format!("{time_per_token:?}"));
    span.record("seed", format!("{:?}", response.generated_text.seed));

371
372
    // Headers
    let mut headers = HeaderMap::new();
373
    headers.insert("x-compute-type", compute_type.parse().unwrap());
374
375
    headers.insert(
        "x-compute-time",
Nicolas Patry's avatar
Nicolas Patry committed
376
        total_time.as_secs_f64().to_string().parse().unwrap(),
377
378
379
380
381
    );
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
382
383
384
385
386
387
388
389
390
391
392
    headers.insert(
        "x-total-time",
        total_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-validation-time",
        validation_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-queue-time",
        queue_time.as_millis().to_string().parse().unwrap(),
Olivier Dehaene's avatar
Olivier Dehaene committed
393
    );
394
395
396
397
398
399
400
401
    headers.insert(
        "x-inference-time",
        inference_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-time-per-token",
        time_per_token.as_millis().to_string().parse().unwrap(),
    );
402
403
404
405
406
    headers.insert("x-prompt-tokens", input_length.into());
    headers.insert(
        "x-generated-tokens",
        response.generated_text.generated_tokens.into(),
    );
407

408
    // Metrics
409
410
411
412
413
414
415
416
417
    metrics::counter!("tgi_request_success").increment(1);
    metrics::histogram!("tgi_request_duration").record(total_time.as_secs_f64());
    metrics::histogram!("tgi_request_validation_duration").record(validation_time.as_secs_f64());
    metrics::histogram!("tgi_request_queue_duration").record(queue_time.as_secs_f64());
    metrics::histogram!("tgi_request_inference_duration").record(inference_time.as_secs_f64());
    metrics::histogram!("tgi_request_mean_time_per_token_duration")
        .record(time_per_token.as_secs_f64());
    metrics::histogram!("tgi_request_generated_tokens")
        .record(response.generated_text.generated_tokens as f64);
418

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
419
    // Send response
420
421
422
423
424
    let mut output_text = response.generated_text.text;
    if let Some(prompt) = add_prompt {
        output_text = prompt + &output_text;
    }

425
426
    tracing::debug!("Output: {}", output_text);
    tracing::info!("Success");
427

428
    let response = GenerateResponse {
429
        generated_text: output_text,
OlivierDehaene's avatar
OlivierDehaene committed
430
        details,
431
    };
432
    Ok((headers, Json(response)))
Olivier Dehaene's avatar
Olivier Dehaene committed
433
434
}

Yannic Kilcher's avatar
Yannic Kilcher committed
435
/// Generate a stream of token using Server-Sent Events
436
#[utoipa::path(
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
post,
tag = "Text Generation Inference",
path = "/generate_stream",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = StreamResponse,
content_type = "text/event-stream"),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"}),
content_type = "text/event-stream"),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"}),
content_type = "text/event-stream"),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"}),
content_type = "text/event-stream"),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"}),
content_type = "text/event-stream"),
)
457
)]
458
#[instrument(
459
460
skip_all,
fields(
461
parameters = ? req.parameters,
462
463
464
465
466
467
468
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
469
470
)]
async fn generate_stream(
471
    Extension(infer): Extension<Infer>,
472
    Extension(compute_type): Extension<ComputeType>,
473
    Json(req): Json<GenerateRequest>,
474
475
476
477
) -> (
    HeaderMap,
    Sse<impl Stream<Item = Result<Event, Infallible>>>,
) {
478
    let span = tracing::Span::current();
479
480
481
482
483
    let on_message_callback = |stream_token: StreamResponse| {
        let event = Event::default();
        event.json_data(stream_token).unwrap()
    };
    let (headers, response_stream) =
484
        generate_stream_internal(infer, compute_type, Json(req), on_message_callback, span).await;
485
486
487
488
489
490
    let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
    (headers, sse)
}

async fn generate_stream_internal(
    infer: Infer,
491
    ComputeType(compute_type): ComputeType,
492
493
    Json(req): Json<GenerateRequest>,
    on_message_callback: impl Fn(StreamResponse) -> Event,
494
    span: tracing::Span,
495
) -> (HeaderMap, impl Stream<Item = Result<Event, Infallible>>) {
496
    let start_time = Instant::now();
497
    metrics::counter!("tgi_request_count").increment(1);
498

499
    tracing::debug!("Input: {}", req.inputs);
500

501
    let compute_characters = req.inputs.chars().count();
502
503

    let mut headers = HeaderMap::new();
504
    headers.insert("x-compute-type", compute_type.parse().unwrap());
505
506
507
508
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
509
    headers.insert("X-Accel-Buffering", "no".parse().unwrap());
510

511
512
513
514
    let stream = async_stream::stream! {
        // Inference
        let mut end_reached = false;
        let mut error = false;
515
516

        let mut add_prompt = None;
517
518
        if req.parameters.return_full_text.unwrap_or(false) {
            add_prompt = Some(req.inputs.clone());
519
        }
520
        let details = req.parameters.details;
521

522
        let best_of = req.parameters.best_of.unwrap_or(1);
523
524
        if best_of != 1 {
            let err = InferError::from(ValidationError::BestOfStream);
525
            metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
526
527
            tracing::error!("{err}");
            yield Ok(Event::from(err));
528
        } else if req.parameters.decoder_input_details {
529
            let err = InferError::from(ValidationError::PrefillDetailsStream);
530
            metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
531
532
533
            tracing::error!("{err}");
            yield Ok(Event::from(err));
        } else {
534
            match infer.generate_stream(req).instrument(info_span!(parent: &span, "async_stream")).await {
535
                // Keep permit as long as generate_stream lives
Nicolas Patry's avatar
Nicolas Patry committed
536
                Ok((_permit, _input_length, response_stream)) => {
537
                    let mut index = 0;
Nicolas Patry's avatar
Nicolas Patry committed
538
                    let mut response_stream = Box::pin(response_stream);
539
540
                    // Server-Sent Event stream
                    while let Some(response) = response_stream.next().await {
541
                        index += 1;
542
543
544
545
546
547
                        match response {
                            Ok(response) => {
                                match response {
                                    // Prefill is ignored
                                    InferStreamResponse::Prefill(_) => {}
                                    // Yield event for every new token
Nicolas Patry's avatar
Nicolas Patry committed
548
549
550
551
                                    InferStreamResponse::Intermediate{
                                        token,
                                        top_tokens,
                                    } => {
552
553
                                        tracing::debug!(parent: &span, "Token: {:?}", token);

554
555
                                        // StreamResponse
                                        let stream_token = StreamResponse {
556
                                            index,
557
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
558
                                            top_tokens,
559
560
561
                                            generated_text: None,
                                            details: None,
                                        };
562
563
                                        let event = on_message_callback(stream_token);
                                        yield Ok(event);
564
                                    }
565
566
                                    // Yield event for last token and compute timings
                                    InferStreamResponse::End {
567
                                        token,
568
569
570
                                        generated_text,
                                        start,
                                        queued,
Nicolas Patry's avatar
Nicolas Patry committed
571
                                        top_tokens,
572
573
574
575
                                    } => {
                                        // Token details
                                        let details = match details {
                                            true => Some(StreamDetails {
OlivierDehaene's avatar
OlivierDehaene committed
576
                                                finish_reason: generated_text.finish_reason,
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
                                                generated_tokens: generated_text.generated_tokens,
                                                seed: generated_text.seed,
                                            }),
                                            false => None,
                                        };

                                        // Timings
                                        let total_time = start_time.elapsed();
                                        let validation_time = queued - start_time;
                                        let queue_time = start - queued;
                                        let inference_time = Instant::now() - start;
                                        let time_per_token = inference_time / generated_text.generated_tokens;

                                        // Tracing metadata
                                        span.record("total_time", format!("{total_time:?}"));
                                        span.record("validation_time", format!("{validation_time:?}"));
                                        span.record("queue_time", format!("{queue_time:?}"));
                                        span.record("inference_time", format!("{inference_time:?}"));
                                        span.record("time_per_token", format!("{time_per_token:?}"));
                                        span.record("seed", format!("{:?}", generated_text.seed));

                                        // Metrics
599
600
601
602
603
604
605
                                        metrics::counter!("tgi_request_success").increment(1);
                                        metrics::histogram!("tgi_request_duration").record(total_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_validation_duration").record(validation_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_queue_duration").record(queue_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_inference_duration").record(inference_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_mean_time_per_token_duration").record(time_per_token.as_secs_f64());
                                        metrics::histogram!("tgi_request_generated_tokens").record(generated_text.generated_tokens as f64);
606
607
608
609
610
611
612
613
614

                                        // StreamResponse
                                        end_reached = true;

                                        let mut output_text = generated_text.text;
                                        if let Some(prompt) = add_prompt {
                                            output_text = prompt + &output_text;
                                        }

615
616
                                        tracing::debug!(parent: &span, "Output: {}", output_text);
                                        tracing::info!(parent: &span, "Success");
617

618
                                        let stream_token = StreamResponse {
619
                                            index,
620
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
621
                                            top_tokens,
622
623
624
625
                                            generated_text: Some(output_text),
                                            details
                                        };

626
627
628

                                        let event = on_message_callback(stream_token);
                                        yield Ok(event);
629
630
                                        break;
                                    }
631
632
                                }
                            }
633
634
635
636
637
638
                            // yield error
                            Err(err) => {
                                error = true;
                                yield Ok(Event::from(err));
                                break;
                            }
639
640
                        }
                    }
641
642
643
644
645
                },
                // yield error
                Err(err) => {
                    error = true;
                    yield Ok(Event::from(err));
646
                }
647
648
649
650
651
            }
            // Check if generation reached the end
            // Skip if we already sent an error
            if !end_reached && !error {
                let err = InferError::IncompleteGeneration;
652
                metrics::counter!("tgi_request_failure", "err" => "incomplete").increment(1);
653
                tracing::error!("{err}");
654
                yield Ok(Event::from(err));
655
656
657
658
            }
        }
    };

659
660
661
    (headers, stream)
}

662
663
/// Generate tokens
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
664
665
666
667
668
669
670
post,
tag = "Text Generation Inference",
path = "/v1/completions",
request_body = CompletionRequest,
responses(
(status = 200, description = "Generated Chat Completion",
content(
671
672
("application/json" = CompletionFinal),
("text/event-stream" = Chunk),
OlivierDehaene's avatar
OlivierDehaene committed
673
674
675
676
677
678
679
680
681
682
683
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
684
#[instrument(
OlivierDehaene's avatar
OlivierDehaene committed
685
686
687
688
689
690
691
692
693
694
695
skip_all,
fields(
// parameters = ? req.parameters,
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
)]
696
697
698
699
700
701
async fn completions(
    Extension(infer): Extension<Infer>,
    Extension(compute_type): Extension<ComputeType>,
    Extension(info): Extension<Info>,
    Json(req): Json<CompletionRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
702
    let span = tracing::Span::current();
703
    metrics::counter!("tgi_request_count").increment(1);
704

705
    let CompletionRequest {
706
        model,
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
        max_tokens,
        seed,
        stop,
        stream,
        temperature,
        ..
    } = req;

    let max_new_tokens = max_tokens.or(Some(100));
    let stop = stop.unwrap_or_default();
    // enable greedy only when temperature is 0
    let (do_sample, temperature) = match temperature {
        Some(temperature) if temperature == 0.0 => (false, None),
        other => (true, other),
    };
722
723
724

    // if suffix is present throw an error
    if req.suffix.is_some() {
725
        metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
726
727
728
729
730
731
732
733
734
735
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: "Suffix is not supported and can be achieved by preprocessing the prompt."
                    .to_string(),
                error_type: "suffix not supported".to_string(),
            }),
        ));
    }

736
    if req.prompt.0.len() > info.max_client_batch_size {
737
        metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
738
739
740
741
742
743
744
745
746
747
748
749
750
751
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: format!(
                    "Number of prompts exceeds the maximum allowed batch size of {}",
                    info.max_client_batch_size
                ),
                error_type: "batch size exceeded".to_string(),
            }),
        ));
    }

    let generate_requests: Vec<GenerateRequest> = req
        .prompt
752
        .0
753
754
755
756
757
        .iter()
        .map(|prompt| GenerateRequest {
            inputs: prompt.to_string(),
            parameters: GenerateParameters {
                best_of: None,
758
                temperature,
759
760
761
762
763
                repetition_penalty: req.repetition_penalty,
                frequency_penalty: req.frequency_penalty,
                top_k: None,
                top_p: req.top_p,
                typical_p: None,
764
                do_sample,
765
766
                max_new_tokens,
                return_full_text: None,
767
                stop: stop.clone(),
768
769
770
771
772
773
774
                truncate: None,
                watermark: false,
                details: true,
                decoder_input_details: !stream,
                seed,
                top_n_tokens: None,
                grammar: None,
775
                adapter_id: model.as_ref().filter(|m| *m != "tgi").map(String::from),
776
777
778
779
780
781
782
            },
        })
        .collect();

    let mut x_compute_type = None;
    let mut x_compute_characters = 0u32;
    let mut x_accel_buffering = None;
783
784

    if stream {
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
        let mut response_streams = FuturesOrdered::new();
        for (index, generate_request) in generate_requests.into_iter().enumerate() {
            let model_id = info.model_id.clone();
            let system_fingerprint =
                format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));
            let infer_clone = infer.clone();
            let compute_type_clone = compute_type.clone();
            let span_clone = span.clone();

            // Create a future for each generate_stream_internal call.
            let generate_future = async move {
                let on_message_callback = move |stream_token: StreamResponse| {
                    let event = Event::default();

                    let current_time = std::time::SystemTime::now()
                        .duration_since(std::time::UNIX_EPOCH)
                        .unwrap_or_else(|_| std::time::Duration::from_secs(0))
                        .as_secs();

                    event
805
                        .json_data(Completion::Chunk(Chunk {
806
807
808
809
810
811
812
813
814
815
816
817
                            id: "".to_string(),
                            created: current_time,

                            choices: vec![CompletionComplete {
                                finish_reason: "".to_string(),
                                index: index as u32,
                                logprobs: None,
                                text: stream_token.token.text,
                            }],

                            model: model_id.clone(),
                            system_fingerprint: system_fingerprint.clone(),
818
                        }))
819
                        .unwrap_or_else(|_e| Event::default())
820
821
822
823
824
825
826
827
828
829
830
831
832
833
                };

                let (header_tx, header_rx) = oneshot::channel();
                let (sse_tx, sse_rx) = tokio::sync::mpsc::unbounded_channel();

                tokio::spawn(async move {
                    let (header_map, sse) = generate_stream_internal(
                        infer_clone.clone(),
                        compute_type_clone.clone(),
                        Json(generate_request),
                        on_message_callback,
                        span_clone.clone(),
                    )
                    .await;
834

835
836
                    // send and dont wait for response
                    let _ = header_tx.send(header_map);
837

838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
                    // pin an emit messages to the sse_tx
                    let mut sse = Box::pin(sse);
                    while let Some(event) = sse.next().await {
                        if sse_tx.send(event).is_err() {
                            tracing::error!("Failed to send event. Receiver dropped.");
                            break;
                        }
                    }
                });

                (header_rx, sse_rx)
            };
            response_streams.push_back(generate_future);
        }

        let mut all_rxs = vec![];

        while let Some((header_rx, sse_rx)) = response_streams.next().await {
            all_rxs.push(sse_rx);

            // get the headers from the first response of each stream
            let headers = header_rx.await.map_err(|e| {
                tracing::error!("Failed to get headers: {:?}", e);
                (
                    StatusCode::INTERNAL_SERVER_ERROR,
                    Json(ErrorResponse {
                        error: "Failed to get headers".to_string(),
                        error_type: "headers".to_string(),
                    }),
867
                )
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
            })?;
            if x_compute_type.is_none() {
                x_compute_type = headers
                    .get("x-compute-type")
                    .and_then(|v| v.to_str().ok())
                    .map(|v| v.to_string());

                x_accel_buffering = headers
                    .get("x-accel-buffering")
                    .and_then(|v| v.to_str().ok())
                    .map(|v| v.to_string());
            }
            x_compute_characters += headers
                .get("x-compute-characters")
                .and_then(|v| v.to_str().ok())
                .and_then(|v| v.parse().ok())
                .unwrap_or(0);
        }
886

887
888
889
890
891
892
893
894
        let mut headers = HeaderMap::new();
        if let Some(x_compute_type) = x_compute_type {
            headers.insert("x-compute-type", x_compute_type.parse().unwrap());
        }
        headers.insert("x-compute-characters", x_compute_characters.into());
        if let Some(x_accel_buffering) = x_accel_buffering {
            headers.insert("x-accel-buffering", x_accel_buffering.parse().unwrap());
        }
895

896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
        // now sink the sse streams into a single stream and remove the ones that are done
        let stream: AsyncStream<Result<Event, Infallible>, _> = async_stream::stream! {
            loop {
                let mut i = 0;
                while i < all_rxs.len() {
                    let rx = &mut all_rxs[i];
                    select! {
                        Some(event) = rx.recv() => {
                            yield event;
                        }
                        else => {
                            all_rxs.remove(i);
                            continue; // skip the increment to handle the next element at the same index
                        }
                    }
                    i += 1; // only increment when no element was removed
                }

                if all_rxs.is_empty() {
                    break;
                }
            }
        };

920
921
922
923
        let stream = stream.chain(futures::stream::once(async {
            Ok(Event::default().data("[DONE]"))
        }));

924
        let sse = Sse::new(stream).keep_alive(KeepAlive::default());
925
926
927
928
929
930
931
        Ok((headers, sse).into_response())
    } else {
        let current_time = std::time::SystemTime::now()
            .duration_since(std::time::UNIX_EPOCH)
            .unwrap_or_else(|_| std::time::Duration::from_secs(0))
            .as_secs();

932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
        let responses = FuturesUnordered::new();
        for (index, generate_request) in generate_requests.into_iter().enumerate() {
            let infer_clone = infer.clone();
            let compute_type_clone = compute_type.clone();
            let span_clone = span.clone();
            let response_future = async move {
                let result = generate_internal(
                    Extension(infer_clone),
                    compute_type_clone,
                    Json(generate_request),
                    span_clone,
                )
                .await;
                result.map(|(headers, generation)| (index, headers, generation))
            };
            responses.push(response_future);
        }
        let generate_responses = responses.try_collect::<Vec<_>>().await?;

        let mut prompt_tokens = 0u32;
        let mut completion_tokens = 0u32;
        let mut total_tokens = 0u32;

        let mut x_compute_time = 0u32;
        let mut x_total_time = 0u32;
        let mut x_validation_time = 0u32;
        let mut x_queue_time = 0u32;
        let mut x_inference_time = 0u32;
        let mut x_time_per_token = 0u32;
        let mut x_prompt_tokens = 0u32;
        let mut x_generated_tokens = 0u32;

        let choices = generate_responses
            .into_iter()
            .map(|(index, headers, Json(generation))| {
                let details = generation.details.ok_or((
                    // this should never happen but handle if details are missing unexpectedly
                    StatusCode::INTERNAL_SERVER_ERROR,
                    Json(ErrorResponse {
                        error: "No details in generation".to_string(),
                        error_type: "no details".to_string(),
                    }),
                ))?;

                if x_compute_type.is_none() {
                    x_compute_type = headers
                        .get("x-compute-type")
                        .and_then(|v| v.to_str().ok())
                        .map(|v| v.to_string());
                }

                // accumulate headers and usage from each response
                x_compute_time += headers
                    .get("x-compute-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_compute_characters += headers
                    .get("x-compute-characters")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_total_time += headers
                    .get("x-total-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_validation_time += headers
                    .get("x-validation-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_queue_time += headers
                    .get("x-queue-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_inference_time += headers
                    .get("x-inference-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_time_per_token += headers
                    .get("x-time-per-token")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_prompt_tokens += headers
                    .get("x-prompt-tokens")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_generated_tokens += headers
                    .get("x-generated-tokens")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);

                prompt_tokens += details.prefill.len() as u32;
                completion_tokens += details.generated_tokens;
                total_tokens += details.prefill.len() as u32 + details.generated_tokens;

                Ok(CompletionComplete {
1026
                    finish_reason: details.finish_reason.format(true),
1027
1028
1029
1030
1031
1032
1033
                    index: index as u32,
                    logprobs: None,
                    text: generation.generated_text,
                })
            })
            .collect::<Result<Vec<_>, _>>()
            .map_err(|(status, Json(err))| (status, Json(err)))?;
1034

1035
        let response = Completion::Final(CompletionFinal {
1036
1037
1038
1039
1040
1041
1042
1043
            id: "".to_string(),
            created: current_time,
            model: info.model_id.clone(),
            system_fingerprint: format!(
                "{}-{}",
                info.version,
                info.docker_label.unwrap_or("native")
            ),
1044
            choices,
1045
            usage: Usage {
1046
1047
1048
                prompt_tokens,
                completion_tokens,
                total_tokens,
1049
            },
1050
        });
1051

1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
        // headers similar to `generate` but aggregated
        let mut headers = HeaderMap::new();
        if let Some(x_compute_type) = x_compute_type {
            headers.insert("x-compute-type", x_compute_type.parse().unwrap());
        }
        headers.insert("x-compute-characters", x_compute_characters.into());
        headers.insert("x-total-time", x_total_time.into());
        headers.insert("x-validation-time", x_validation_time.into());
        headers.insert("x-queue-time", x_queue_time.into());
        headers.insert("x-inference-time", x_inference_time.into());
        headers.insert("x-time-per-token", x_time_per_token.into());
        headers.insert("x-prompt-tokens", x_prompt_tokens.into());
        headers.insert("x-generated-tokens", x_generated_tokens.into());
        if let Some(x_accel_buffering) = x_accel_buffering {
            headers.insert("x-accel-buffering", x_accel_buffering.parse().unwrap());
        }
1068
1069
1070
1071
        Ok((headers, Json(response)).into_response())
    }
}

1072
1073
/// Generate tokens
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
post,
tag = "Text Generation Inference",
path = "/v1/chat/completions",
request_body = ChatRequest,
responses(
(status = 200, description = "Generated Chat Completion",
content(
("application/json" = ChatCompletion),
("text/event-stream" = ChatCompletionChunk),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
1094
#[instrument(
OlivierDehaene's avatar
OlivierDehaene committed
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
skip_all,
fields(
// parameters = ? req.parameters,
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
)]
1106
1107
async fn chat_completions(
    Extension(infer): Extension<Infer>,
1108
    Extension(compute_type): Extension<ComputeType>,
1109
1110
1111
    Extension(info): Extension<Info>,
    Json(req): Json<ChatRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
1112
    let span = tracing::Span::current();
1113
    metrics::counter!("tgi_request_count").increment(1);
1114
    let ChatRequest {
1115
        model,
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
        logprobs,
        max_tokens,
        messages,
        presence_penalty,
        seed,
        stop,
        stream,
        tools,
        tool_choice,
        tool_prompt,
1126
        temperature,
drbh's avatar
drbh committed
1127
        response_format,
1128
        guideline,
1129
1130
1131
1132
1133
1134
1135
1136
        ..
    } = req;

    let repetition_penalty = presence_penalty.map(|x| x + 2.0);
    let max_new_tokens = max_tokens.or(Some(100));
    let logprobs = logprobs.unwrap_or(false);
    let tool_prompt = tool_prompt.unwrap_or_default();
    let stop = stop.unwrap_or_default();
1137
1138
1139
1140
1141
    // enable greedy only when temperature is 0
    let (do_sample, temperature) = match temperature {
        Some(temperature) if temperature == 0.0 => (false, None),
        other => (true, other),
    };
1142
1143
1144
1145
1146
1147
    let (inputs, grammar, tool_grammar) = prepare_chat_input(
        &infer,
        response_format,
        tools,
        tool_choice,
        &tool_prompt,
1148
        guideline,
1149
1150
        messages,
    )?;
drbh's avatar
drbh committed
1151

1152
1153
1154
1155
1156
    // build the request passing some parameters
    let generate_request = GenerateRequest {
        inputs: inputs.to_string(),
        parameters: GenerateParameters {
            best_of: None,
1157
            temperature,
1158
            repetition_penalty,
1159
            frequency_penalty: req.frequency_penalty,
1160
            top_k: None,
1161
            top_p: req.top_p,
1162
            typical_p: None,
1163
            do_sample,
1164
1165
            max_new_tokens,
            return_full_text: None,
1166
            stop,
1167
1168
1169
            truncate: None,
            watermark: false,
            details: true,
1170
            decoder_input_details: !stream,
1171
            seed,
1172
            top_n_tokens: req.top_logprobs,
drbh's avatar
drbh committed
1173
            grammar,
1174
            adapter_id: model.filter(|m| *m != "tgi").map(String::from),
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
        },
    };

    // static values that will be returned in all cases
    let model_id = info.model_id.clone();
    let system_fingerprint = format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));

    // switch on stream
    if stream {
        // pass this callback to the stream generation and build the required event structure
        let on_message_callback = move |stream_token: StreamResponse| {
            let event = Event::default();

            let current_time = std::time::SystemTime::now()
                .duration_since(std::time::UNIX_EPOCH)
                .unwrap_or_else(|_| std::time::Duration::from_secs(0))
                .as_secs();

1193
1194
1195
1196
            let logprobs = logprobs.then(|| {
                ChatCompletionLogprobs::from((stream_token.token.clone(), stream_token.top_tokens))
            });

drbh's avatar
drbh committed
1197
1198
1199
1200
            // replace the content with the tool calls if grammar is present
            let (content, tool_calls) = if tool_grammar.is_some() {
                (None, Some(vec![stream_token.token.text]))
            } else {
1201
1202
1203
1204
1205
1206
1207
                let content = if !stream_token.token.special {
                    Some(stream_token.token.text)
                } else {
                    None
                };

                (content, None)
drbh's avatar
drbh committed
1208
1209
            };

1210
            event
1211
1212
1213
1214
1215
1216
1217
1218
                .json_data(CompletionType::ChatCompletionChunk(
                    ChatCompletionChunk::new(
                        model_id.clone(),
                        system_fingerprint.clone(),
                        content,
                        tool_calls,
                        current_time,
                        logprobs,
1219
                        stream_token.details.map(|d| d.finish_reason.format(true)),
1220
                    ),
1221
                ))
1222
1223
1224
1225
                .unwrap_or_else(|e| {
                    println!("Failed to serialize ChatCompletionChunk: {:?}", e);
                    Event::default()
                })
1226
1227
        };

1228
1229
1230
1231
1232
        let (headers, response_stream) = generate_stream_internal(
            infer,
            compute_type,
            Json(generate_request),
            on_message_callback,
1233
            span,
1234
1235
        )
        .await;
1236
1237
1238
1239
1240

        let response_stream = response_stream.chain(futures::stream::once(async {
            Ok(Event::default().data("[DONE]"))
        }));

1241
1242
1243
        let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
        Ok((headers, sse).into_response())
    } else {
1244
1245
        let (headers, Json(generation)) =
            generate_internal(Extension(infer), compute_type, Json(generate_request), span).await?;
1246
1247
1248
1249
1250
1251

        let current_time = std::time::SystemTime::now()
            .duration_since(std::time::UNIX_EPOCH)
            .unwrap_or_else(|_| std::time::Duration::from_secs(0))
            .as_secs();

drbh's avatar
drbh committed
1252
        let (tool_calls, output) = if tool_grammar.is_some() {
1253
1254
1255
1256
1257
1258
1259
            let gen_text_value: Value =
                serde_json::from_str(&generation.generated_text).map_err(|e| {
                    InferError::ToolError(format!(
                        "Failed to parse generated text: {} {:?}",
                        e, generation.generated_text
                    ))
                })?;
drbh's avatar
drbh committed
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
            let function = gen_text_value.get("function").ok_or(InferError::ToolError(
                "No function found in generated text".to_string(),
            ))?;

            let name = function
                .get("_name")
                .and_then(Value::as_str)
                .ok_or(InferError::ToolError(
                    "No _name found in generated text".to_string(),
                ))?
                .to_string();

            let mut arguments = function.clone();
            if let Value::Object(ref mut props) = arguments {
                props.remove("_name");
            }

1277
            let tool_calls = vec![ToolCall {
1278
                id: "0".to_string(),
drbh's avatar
drbh committed
1279
1280
1281
                r#type: "function".to_string(),
                function: FunctionDefinition {
                    description: None,
drbh's avatar
drbh committed
1282
1283
                    name,
                    arguments,
drbh's avatar
drbh committed
1284
                },
1285
1286
            }];
            (Some(tool_calls), None)
drbh's avatar
drbh committed
1287
1288
1289
        } else {
            (None, Some(generation.generated_text))
        };
1290
        // build the complete response object with the full text
1291
        let response = CompletionType::ChatCompletion(ChatCompletion::new(
1292
1293
            model_id,
            system_fingerprint,
drbh's avatar
drbh committed
1294
            output,
1295
1296
1297
            current_time,
            generation.details.unwrap(),
            logprobs,
drbh's avatar
drbh committed
1298
            tool_calls,
1299
        ));
1300
1301
1302
1303

        // wrap generation inside a Vec to match api-inference
        Ok((headers, Json(response)).into_response())
    }
1304
1305
}

drbh's avatar
drbh committed
1306
1307
/// Generate tokens from Vertex request
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
post,
tag = "Text Generation Inference",
path = "/vertex",
request_body = VertexRequest,
responses(
(status = 200, description = "Generated Text", body = VertexResponse),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
drbh's avatar
drbh committed
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
#[instrument(
    skip_all,
    fields(
        total_time,
        validation_time,
        queue_time,
        inference_time,
        time_per_token,
        seed,
    )
)]
async fn vertex_compatibility(
    Extension(infer): Extension<Infer>,
    Extension(compute_type): Extension<ComputeType>,
    Json(req): Json<VertexRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
1340
    let span = tracing::Span::current();
1341
    metrics::counter!("tgi_request_count").increment(1);
drbh's avatar
drbh committed
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371

    // check that theres at least one instance
    if req.instances.is_empty() {
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: "Input validation error".to_string(),
                error_type: "Input validation error".to_string(),
            }),
        ));
    }

    // Process all instances
    let predictions = req
        .instances
        .iter()
        .map(|instance| {
            let generate_request = GenerateRequest {
                inputs: instance.inputs.clone(),
                parameters: GenerateParameters {
                    do_sample: true,
                    max_new_tokens: instance.parameters.as_ref().and_then(|p| p.max_new_tokens),
                    seed: instance.parameters.as_ref().and_then(|p| p.seed),
                    details: true,
                    decoder_input_details: true,
                    ..Default::default()
                },
            };

            async {
1372
                generate_internal(
drbh's avatar
drbh committed
1373
                    Extension(infer.clone()),
1374
                    compute_type.clone(),
drbh's avatar
drbh committed
1375
                    Json(generate_request),
1376
                    span.clone(),
drbh's avatar
drbh committed
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
                )
                .await
                .map(|(_, Json(generation))| generation.generated_text)
                .map_err(|_| {
                    (
                        StatusCode::INTERNAL_SERVER_ERROR,
                        Json(ErrorResponse {
                            error: "Incomplete generation".into(),
                            error_type: "Incomplete generation".into(),
                        }),
                    )
                })
            }
        })
        .collect::<FuturesUnordered<_>>()
        .try_collect::<Vec<_>>()
        .await?;

    let response = VertexResponse { predictions };
    Ok((HeaderMap::new(), Json(response)).into_response())
}

1399
1400
/// Tokenize inputs
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
post,
tag = "Text Generation Inference",
path = "/tokenize",
request_body = GenerateRequest,
responses(
(status = 200, description = "Tokenized ids", body = TokenizeResponse),
(status = 404, description = "No tokenizer found", body = ErrorResponse,
example = json ! ({"error": "No fast tokenizer available"})),
)
)]
1411
1412
1413
1414
#[instrument(skip_all)]
async fn tokenize(
    Extension(infer): Extension<Infer>,
    Json(req): Json<GenerateRequest>,
1415
) -> Result<Json<TokenizeResponse>, (StatusCode, Json<ErrorResponse>)> {
1416
1417
1418
1419
1420
1421
1422
1423
    let input = req.inputs.clone();
    let encoding = infer.tokenize(req).await?;
    if let Some(encoding) = encoding {
        let tokens: Vec<SimpleToken> = encoding
            .get_ids()
            .iter()
            .zip(encoding.get_offsets())
            .map(|(&id, &(start, stop))| {
1424
1425
1426
1427
1428
                let text = input
                    .chars()
                    .skip(start)
                    .take(stop - start)
                    .collect::<String>();
1429
1430
1431
1432
1433
1434
1435
1436
                SimpleToken {
                    id,
                    text,
                    start,
                    stop,
                }
            })
            .collect();
1437
        Ok(Json(TokenizeResponse(tokens)))
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
    } else {
        Err((
            StatusCode::NOT_FOUND,
            Json(ErrorResponse {
                error: "No fast tokenizer or tokenizer.json for this model".to_string(),
                error_type: "no fast tokenizer".to_string(),
            }),
        ))
    }
}

1449
1450
/// Prometheus metrics scrape endpoint
#[utoipa::path(
1451
1452
1453
1454
    get,
    tag = "Text Generation Inference",
    path = "/metrics",
    responses((status = 200, description = "Prometheus Metrics", body = String))
1455
1456
1457
1458
1459
)]
async fn metrics(prom_handle: Extension<PrometheusHandle>) -> String {
    prom_handle.render()
}

1460
1461
1462
#[derive(Clone, Debug)]
pub(crate) struct ComputeType(String);

Nicolas Patry's avatar
Nicolas Patry committed
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
// OpenAPI documentation
#[derive(OpenApi)]
#[openapi(
paths(
health,
get_model_info,
compat_generate,
generate,
generate_stream,
chat_completions,
completions,
tokenize,
metrics,
),
components(
schemas(
Info,
CompatGenerateRequest,
GenerateRequest,
GrammarType,
ChatRequest,
Message,
MessageContent,
MessageChunk,
Url,
FunctionName,
OutputMessage,
TextMessage,
ToolCallMessage,
ToolCallDelta,
ChatCompletionComplete,
ChatCompletionChoice,
ChatCompletionDelta,
ChatCompletionChunk,
ChatCompletionLogprob,
ChatCompletionLogprobs,
ChatCompletionTopLogprob,
ChatCompletion,
CompletionRequest,
CompletionComplete,
Chunk,
Completion,
CompletionFinal,
Prompt,
GenerateParameters,
PrefillToken,
Token,
GenerateResponse,
TokenizeResponse,
SimpleToken,
BestOfSequence,
Details,
FinishReason,
StreamResponse,
StreamDetails,
ErrorResponse,
GrammarType,
Usage,
DeltaToolCall,
ToolType,
Tool,
ToolCall,
Function,
FunctionDefinition,
ToolChoice,
)
),
tags(
(name = "Text Generation Inference", description = "Hugging Face Text Generation Inference API")
),
info(
title = "Text Generation Inference",
license(
name = "Apache 2.0",
url = "https://www.apache.org/licenses/LICENSE-2.0"
)
)
)]
pub struct ApiDoc;

pub fn schema() -> ApiDoc {
    ApiDoc
}

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1547
1548
1549
/// Serving method
#[allow(clippy::too_many_arguments)]
pub async fn run(
Nicolas Patry's avatar
Nicolas Patry committed
1550
    backend: impl Backend + Send + Sync + 'static,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1551
    max_concurrent_requests: usize,
1552
    max_best_of: usize,
1553
    max_stop_sequences: usize,
Nicolas Patry's avatar
Nicolas Patry committed
1554
    max_top_n_tokens: u32,
OlivierDehaene's avatar
OlivierDehaene committed
1555
    max_input_tokens: usize,
1556
    max_total_tokens: usize,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1557
    validation_workers: usize,
Erik Kaunismäki's avatar
Erik Kaunismäki committed
1558
    api_key: Option<String>,
Nicolas Patry's avatar
Nicolas Patry committed
1559
1560
1561
1562
1563
1564
    tokenizer_name: String,
    tokenizer_config_path: Option<String>,
    revision: Option<String>,
    hostname: String,
    port: u16,
    cors_allow_origin: Option<Vec<String>>,
1565
    ngrok: bool,
1566
1567
    _ngrok_authtoken: Option<String>,
    _ngrok_edge: Option<String>,
1568
    messages_api_enabled: bool,
Nicolas Patry's avatar
Nicolas Patry committed
1569
    disable_grammar_support: bool,
1570
    max_client_batch_size: usize,
1571
    usage_stats_level: usage_stats::UsageStatsLevel,
OlivierDehaene's avatar
OlivierDehaene committed
1572
) -> Result<(), WebServerError> {
Nicolas Patry's avatar
Nicolas Patry committed
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
    // CORS allowed origins
    // map to go inside the option and then map to parse from String to HeaderValue
    // Finally, convert to AllowOrigin
    let allow_origin: Option<AllowOrigin> = cors_allow_origin.map(|cors_allow_origin| {
        AllowOrigin::list(
            cors_allow_origin
                .iter()
                .map(|origin| origin.parse::<HeaderValue>().unwrap()),
        )
    });
1583

Nicolas Patry's avatar
Nicolas Patry committed
1584
1585
1586
1587
    // Parse Huggingface hub token
    let authorization_token = std::env::var("HF_TOKEN")
        .or_else(|_| std::env::var("HUGGING_FACE_HUB_TOKEN"))
        .ok();
OlivierDehaene's avatar
OlivierDehaene committed
1588

Nicolas Patry's avatar
Nicolas Patry committed
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
    // Tokenizer instance
    // This will only be used to validate payloads
    let local_path = Path::new(&tokenizer_name);

    // Shared API builder initialization
    let api_builder = || {
        let mut builder = ApiBuilder::new()
            .with_progress(false)
            .with_token(authorization_token);

        if let Ok(cache_dir) = std::env::var("HUGGINGFACE_HUB_CACHE") {
            builder = builder.with_cache_dir(cache_dir.into());
        }

        builder
    };

    // Decide if we need to use the API based on the revision and local path
    let use_api = revision.is_some() || !local_path.exists() || !local_path.is_dir();

    // Initialize API if needed
    #[derive(Clone)]
    enum Type {
        Api(Api),
        Cache(Cache),
        None,
    }
    let api = if use_api {
        if std::env::var("HF_HUB_OFFLINE") == Ok("1".to_string()) {
            let cache = std::env::var("HUGGINGFACE_HUB_CACHE")
                .map_err(|_| ())
                .map(|cache_dir| Cache::new(cache_dir.into()))
                .unwrap_or_else(|_| Cache::default());
            tracing::warn!("Offline mode active using cache defaults");
            Type::Cache(cache)
        } else {
            tracing::info!("Using the Hugging Face API");
            match api_builder().build() {
                Ok(api) => Type::Api(api),
                Err(_) => {
                    tracing::warn!("Unable to build the Hugging Face API");
                    Type::None
OlivierDehaene's avatar
OlivierDehaene committed
1631
                }
Nicolas Patry's avatar
Nicolas Patry committed
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
            }
        }
    } else {
        Type::None
    };

    // Load tokenizer and model info
    let (
        tokenizer_filename,
        config_filename,
        tokenizer_config_filename,
        preprocessor_config_filename,
        processor_config_filename,
        model_info,
    ) = match api {
        Type::None => (
            Some(local_path.join("tokenizer.json")),
            Some(local_path.join("config.json")),
            Some(local_path.join("tokenizer_config.json")),
            Some(local_path.join("preprocessor_config.json")),
            Some(local_path.join("processor_config.json")),
            None,
        ),
        Type::Api(api) => {
            let api_repo = api.repo(Repo::with_revision(
                tokenizer_name.to_string(),
                RepoType::Model,
                revision.clone().unwrap_or_else(|| "main".to_string()),
            ));

            let tokenizer_filename = match api_repo.get("tokenizer.json").await {
                Ok(tokenizer_filename) => Some(tokenizer_filename),
                Err(_) => get_base_tokenizer(&api, &api_repo).await,
            };
            let config_filename = api_repo.get("config.json").await.ok();
            let tokenizer_config_filename = api_repo.get("tokenizer_config.json").await.ok();
            let preprocessor_config_filename = api_repo.get("preprocessor_config.json").await.ok();
            let processor_config_filename = api_repo.get("processor_config.json").await.ok();
OlivierDehaene's avatar
OlivierDehaene committed
1670

Nicolas Patry's avatar
Nicolas Patry committed
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
            let model_info = if let Some(model_info) = get_hub_model_info(&api_repo).await {
                Some(model_info)
            } else {
                tracing::warn!("Could not retrieve model info from the Hugging Face hub.");
                None
            };
            (
                tokenizer_filename,
                config_filename,
                tokenizer_config_filename,
                preprocessor_config_filename,
                processor_config_filename,
                model_info,
            )
        }
        Type::Cache(cache) => {
            let repo = cache.repo(Repo::with_revision(
                tokenizer_name.to_string(),
                RepoType::Model,
                revision.clone().unwrap_or_else(|| "main".to_string()),
            ));
            (
                repo.get("tokenizer.json"),
                repo.get("config.json"),
                repo.get("tokenizer_config.json"),
                repo.get("preprocessor_config.json"),
                repo.get("processor_config.json"),
                None,
            )
        }
    };

    // Read the JSON contents of the file as an instance of 'HubTokenizerConfig'.
    let tokenizer_config: Option<HubTokenizerConfig> = if let Some(filename) = tokenizer_config_path
    {
        HubTokenizerConfig::from_file(filename)
    } else {
        tokenizer_config_filename.and_then(HubTokenizerConfig::from_file)
    };
    let tokenizer_config = tokenizer_config.unwrap_or_else(|| {
        tracing::warn!("Could not find tokenizer config locally and no API specified");
        HubTokenizerConfig::default()
    });

    let tokenizer: Option<Tokenizer> = tokenizer_filename.and_then(|filename| {
        let mut tokenizer = Tokenizer::from_file(filename).ok();
        if let Some(tokenizer) = &mut tokenizer {
            if let Some(class) = &tokenizer_config.tokenizer_class {
                if class == "LlamaTokenizer" || class == "LlamaTokenizerFast"{
                    if let Ok(post_processor) = create_post_processor(tokenizer, &tokenizer_config) {
                        tracing::info!("Overriding LlamaTokenizer with TemplateProcessing to follow python override defined in https://github.com/huggingface/transformers/blob/4aa17d00690b7f82c95bb2949ea57e22c35b4336/src/transformers/models/llama/tokenization_llama_fast.py#L203-L205");
                        tokenizer.with_post_processor(post_processor);
                    }
OlivierDehaene's avatar
OlivierDehaene committed
1724
1725
                }
            }
Nicolas Patry's avatar
Nicolas Patry committed
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
        }
        tokenizer
    });

    let config: Option<Config> = config_filename.and_then(|filename| {
        std::fs::read_to_string(filename)
            .ok()
            .as_ref()
            .and_then(|c| {
                let config: Result<Config, _> = serde_json::from_str(c);
                if let Err(err) = &config {
                    tracing::warn!("Could not parse config {err:?}");
                }
                config.ok()
            })
    });
    let model_info = model_info.unwrap_or_else(|| HubModelInfo {
        model_id: tokenizer_name.to_string(),
        sha: None,
        pipeline_tag: None,
    });

    let processor_config = processor_config_filename
        .and_then(HubProcessorConfig::from_file)
        .unwrap_or_default();

    let preprocessor_config: Option<HubPreprocessorConfig> =
        preprocessor_config_filename.and_then(HubPreprocessorConfig::from_file);

    tracing::info!("Using config {config:?}");
    if tokenizer.is_none() {
        tracing::warn!("Could not find a fast tokenizer implementation for {tokenizer_name}");
        tracing::warn!("Rust input length validation and truncation is disabled");
    }
OlivierDehaene's avatar
OlivierDehaene committed
1760

Nicolas Patry's avatar
Nicolas Patry committed
1761
1762
    // Only send usage stats when TGI is run in container and the function returns Some
    let is_container = matches!(usage_stats::is_container(), Ok(true));
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
    let user_agent = match (usage_stats_level, is_container) {
        (usage_stats::UsageStatsLevel::On | usage_stats::UsageStatsLevel::NoStack, true) => {
            let reduced_args = usage_stats::Args::new(
                config.clone(),
                tokenizer_config.tokenizer_class.clone(),
                max_concurrent_requests,
                max_best_of,
                max_stop_sequences,
                max_top_n_tokens,
                max_input_tokens,
                max_total_tokens,
                // waiting_served_ratio,
                // max_batch_prefill_tokens,
                // max_batch_total_tokens,
                // max_waiting_tokens,
                // max_batch_size,
                revision.clone(),
                validation_workers,
                messages_api_enabled,
                disable_grammar_support,
                max_client_batch_size,
                usage_stats_level,
            );
            Some(usage_stats::UserAgent::new(reduced_args))
        }
        _ => None,
Nicolas Patry's avatar
Nicolas Patry committed
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
    };

    if let Some(ref ua) = user_agent {
        let start_event =
            usage_stats::UsageStatsEvent::new(ua.clone(), usage_stats::EventType::Start, None);
        tokio::spawn(async move {
            start_event.send().await;
        });
    };
    let compat_return_full_text = match &model_info.pipeline_tag {
        None => {
            tracing::warn!("no pipeline tag found for model {tokenizer_name}");
            true
        }
        Some(pipeline_tag) => pipeline_tag.as_str() == "text-generation",
    };
    let result = start(
        backend,
        max_concurrent_requests,
        max_best_of,
        max_stop_sequences,
        max_top_n_tokens,
        max_input_tokens,
        max_total_tokens,
        validation_workers,
        api_key,
        config,
        (tokenizer, tokenizer_config),
        (preprocessor_config, processor_config),
        hostname,
        port,
        ngrok,
        _ngrok_authtoken,
        _ngrok_edge,
        messages_api_enabled,
        disable_grammar_support,
        max_client_batch_size,
        model_info,
        compat_return_full_text,
        allow_origin,
    )
    .await;

    if let Some(ua) = user_agent {
        match result {
            Ok(_) => {
                let stop_event = usage_stats::UsageStatsEvent::new(
                    ua.clone(),
                    usage_stats::EventType::Stop,
                    None,
                );
                stop_event.send().await;
                Ok(())
OlivierDehaene's avatar
OlivierDehaene committed
1842
            }
Nicolas Patry's avatar
Nicolas Patry committed
1843
            Err(e) => {
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
                let description = match usage_stats_level {
                    usage_stats::UsageStatsLevel::On => Some(e.to_string()),
                    usage_stats::UsageStatsLevel::NoStack => Some("unknow_error".to_string()),
                    _ => None,
                };
                let event = usage_stats::UsageStatsEvent::new(
                    ua.clone(),
                    usage_stats::EventType::Error,
                    description,
                );
                event.send().await;

Nicolas Patry's avatar
Nicolas Patry committed
1856
                Err(e)
OlivierDehaene's avatar
OlivierDehaene committed
1857
1858
            }
        }
Nicolas Patry's avatar
Nicolas Patry committed
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
    } else {
        result
    }
}

#[allow(clippy::too_many_arguments)]
async fn start(
    backend: impl Backend + Send + Sync + 'static,
    max_concurrent_requests: usize,
    max_best_of: usize,
    max_stop_sequences: usize,
    max_top_n_tokens: u32,
    max_input_tokens: usize,
    max_total_tokens: usize,
    validation_workers: usize,
    api_key: Option<String>,
    config: Option<Config>,
    (tokenizer, tokenizer_config): (Option<Tokenizer>, HubTokenizerConfig),
    (preprocessor_config, processor_config): (Option<HubPreprocessorConfig>, HubProcessorConfig),
    hostname: String,
    port: u16,
    ngrok: bool,
    _ngrok_authtoken: Option<String>,
    _ngrok_edge: Option<String>,
    messages_api_enabled: bool,
    disable_grammar_support: bool,
    max_client_batch_size: usize,
    model_info: HubModelInfo,
    compat_return_full_text: bool,
    allow_origin: Option<AllowOrigin>,
) -> Result<(), WebServerError> {
    // Determine the server port based on the feature and environment variable.
    let port = if cfg!(feature = "google") {
        std::env::var("AIP_HTTP_PORT")
            .map(|aip_http_port| aip_http_port.parse::<u16>().unwrap_or(port))
            .unwrap_or(port)
    } else {
        port
    };

    let addr = match hostname.parse() {
        Ok(ip) => SocketAddr::new(ip, port),
        Err(_) => {
            tracing::warn!("Invalid hostname, defaulting to 0.0.0.0");
            SocketAddr::new(IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)), port)
        }
OlivierDehaene's avatar
OlivierDehaene committed
1905
1906
    };

Nicolas Patry's avatar
Nicolas Patry committed
1907
    // Create state
1908
1909
1910
    let validation = Validation::new(
        validation_workers,
        tokenizer,
1911
        config,
1912
        preprocessor_config,
1913
        max_best_of,
1914
        max_stop_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
1915
        max_top_n_tokens,
OlivierDehaene's avatar
OlivierDehaene committed
1916
        max_input_tokens,
1917
        max_total_tokens,
Nicolas Patry's avatar
Nicolas Patry committed
1918
        disable_grammar_support,
1919
    );
OlivierDehaene's avatar
OlivierDehaene committed
1920

1921
    let infer = Infer::new(
Nicolas Patry's avatar
Nicolas Patry committed
1922
        backend,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1923
        validation,
1924
        max_concurrent_requests,
1925
        tokenizer_config,
drbh's avatar
drbh committed
1926
        processor_config,
1927
    );
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1928

1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
    // Duration buckets
    let duration_matcher = Matcher::Suffix(String::from("duration"));
    let n_duration_buckets = 35;
    let mut duration_buckets = Vec::with_capacity(n_duration_buckets);
    // Minimum duration in seconds
    let mut value = 0.0001;
    for _ in 0..n_duration_buckets {
        // geometric sequence
        value *= 1.5;
        duration_buckets.push(value);
    }
    // Input Length buckets
    let input_length_matcher = Matcher::Full(String::from("tgi_request_input_length"));
    let input_length_buckets: Vec<f64> = (0..100)
OlivierDehaene's avatar
OlivierDehaene committed
1943
        .map(|x| (max_input_tokens as f64 / 100.0) * (x + 1) as f64)
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
        .collect();
    // Generated tokens buckets
    let generated_tokens_matcher = Matcher::Full(String::from("tgi_request_generated_tokens"));
    let generated_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Input Length buckets
    let max_new_tokens_matcher = Matcher::Full(String::from("tgi_request_max_new_tokens"));
    let max_new_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Batch size buckets
    let batch_size_matcher = Matcher::Full(String::from("tgi_batch_next_size"));
1957
    let batch_size_buckets: Vec<f64> = (0..1024).map(|x| (x + 1) as f64).collect();
OlivierDehaene's avatar
OlivierDehaene committed
1958
    // Speculated tokens buckets
Nicolas Patry's avatar
Nicolas Patry committed
1959
1960
    // let skipped_matcher = Matcher::Full(String::from("tgi_request_skipped_tokens"));
    // let skipped_buckets: Vec<f64> = (0..shard_info.speculate + 1).map(|x| x as f64).collect();
1961

1962
    // Prometheus handler
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
    let builder = PrometheusBuilder::new()
        .set_buckets_for_metric(duration_matcher, &duration_buckets)
        .unwrap()
        .set_buckets_for_metric(input_length_matcher, &input_length_buckets)
        .unwrap()
        .set_buckets_for_metric(generated_tokens_matcher, &generated_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(max_new_tokens_matcher, &max_new_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(batch_size_matcher, &batch_size_buckets)
        .unwrap();
Nicolas Patry's avatar
Nicolas Patry committed
1974
1975
    // .set_buckets_for_metric(skipped_matcher, &skipped_buckets)
    // .unwrap();
1976
1977
1978
1979
    let prom_handle = builder
        .install_recorder()
        .expect("failed to install metrics recorder");

1980
1981
1982
1983
1984
1985
1986
    // CORS layer
    let allow_origin = allow_origin.unwrap_or(AllowOrigin::any());
    let cors_layer = CorsLayer::new()
        .allow_methods([Method::GET, Method::POST])
        .allow_headers([http::header::CONTENT_TYPE])
        .allow_origin(allow_origin);

1987
1988
1989
1990
    // Endpoint info
    let info = Info {
        model_id: model_info.model_id,
        model_sha: model_info.sha,
Nicolas Patry's avatar
Nicolas Patry committed
1991
1992
        // model_dtype: shard_info.dtype,
        // model_device_type: shard_info.device_type,
1993
1994
1995
1996
        model_pipeline_tag: model_info.pipeline_tag,
        max_concurrent_requests,
        max_best_of,
        max_stop_sequences,
OlivierDehaene's avatar
OlivierDehaene committed
1997
        max_input_tokens,
1998
        max_total_tokens,
Nicolas Patry's avatar
Nicolas Patry committed
1999
2000
2001
2002
        // waiting_served_ratio,
        // max_batch_total_tokens,
        // max_waiting_tokens,
        // max_batch_size,
2003
        validation_workers,
2004
        max_client_batch_size,
2005
        router: env!("CARGO_PKG_NAME"),
2006
2007
        version: env!("CARGO_PKG_VERSION"),
        sha: option_env!("VERGEN_GIT_SHA"),
2008
        docker_label: option_env!("DOCKER_LABEL"),
2009
2010
    };

2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
    #[allow(unused_mut)] // mut is needed for conditional compilation
    let mut doc = ApiDoc::openapi();

    #[cfg(feature = "google")]
    {
        use crate::VertexInstance;

        #[derive(OpenApi)]
        #[openapi(
            paths(vertex_compatibility),
            components(schemas(VertexInstance, VertexRequest, VertexResponse))
        )]
        struct VertexApiDoc;

        doc.merge(VertexApiDoc::openapi());
    }

    #[cfg(feature = "kserve")]
    {
        use crate::kserve::{
            InferenceOutput, InferenceRequest, LiveResponse, MetadataServerResponse, OutputChunk,
            ReadyResponse,
        };
        use crate::kserve::{
            __path_kerve_server_metadata, __path_kserve_health_live, __path_kserve_health_ready,
            __path_kserve_model_infer, __path_kserve_model_metadata,
            __path_kserve_model_metadata_ready,
        };

        #[derive(OpenApi)]
        #[openapi(
            paths(
                kserve_health_live,
                kserve_health_ready,
                kerve_server_metadata,
                kserve_model_metadata,
                kserve_model_metadata_ready,
2048
                kserve_model_infer,
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
            ),
            components(schemas(
                InferenceOutput,
                InferenceRequest,
                LiveResponse,
                MetadataServerResponse,
                OutputChunk,
                ReadyResponse,
            ))
        )]
        struct KServeApiDoc;

        doc.merge(KServeApiDoc::openapi());
    }
drbh's avatar
drbh committed
2063

2064
    // Configure Swagger UI
drbh's avatar
drbh committed
2065
    let swagger_ui = SwaggerUi::new("/docs").url("/api-doc/openapi.json", doc);
2066
2067

    // Define base and health routes
Erik Kaunismäki's avatar
Erik Kaunismäki committed
2068
    let mut base_routes = Router::new()
2069
        .route("/", post(compat_generate))
Olivier Dehaene's avatar
Olivier Dehaene committed
2070
        .route("/generate", post(generate))
2071
        .route("/generate_stream", post(generate_stream))
2072
        .route("/v1/chat/completions", post(chat_completions))
2073
        .route("/v1/completions", post(completions))
drbh's avatar
drbh committed
2074
        .route("/vertex", post(vertex_compatibility))
Erik Kaunismäki's avatar
Erik Kaunismäki committed
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
        .route("/tokenize", post(tokenize));

    if let Some(api_key) = api_key {
        let mut prefix = "Bearer ".to_string();
        prefix.push_str(&api_key);

        // Leak to allow FnMut
        let api_key: &'static str = prefix.leak();

        let auth = move |headers: HeaderMap,
                         request: axum::extract::Request,
                         next: axum::middleware::Next| async move {
            match headers.get(AUTHORIZATION) {
                Some(token) => match token.to_str() {
                    Ok(token_str) if token_str.to_lowercase() == api_key.to_lowercase() => {
                        let response = next.run(request).await;
                        Ok(response)
                    }
                    _ => Err(StatusCode::UNAUTHORIZED),
                },
                None => Err(StatusCode::UNAUTHORIZED),
            }
        };

        base_routes = base_routes.layer(axum::middleware::from_fn(auth))
    }
    let info_routes = Router::new()
        .route("/", get(health))
2103
        .route("/chat_tokenize", post(get_chat_tokenize))
Erik Kaunismäki's avatar
Erik Kaunismäki committed
2104
        .route("/info", get(get_model_info))
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
2105
        .route("/health", get(health))
2106
        .route("/ping", get(health))
2107
2108
2109
        .route("/metrics", get(metrics));

    // Conditional AWS Sagemaker route
2110
    let aws_sagemaker_route = if messages_api_enabled {
2111
2112
2113
2114
2115
        Router::new().route("/invocations", post(chat_completions)) // Use 'chat_completions' for OAI_ENABLED
    } else {
        Router::new().route("/invocations", post(compat_generate)) // Use 'compat_generate' otherwise
    };

2116
2117
    let compute_type =
        ComputeType(std::env::var("COMPUTE_TYPE").unwrap_or("gpu+optimized".to_string()));
2118

2119
    // Combine routes and layers
drbh's avatar
drbh committed
2120
    let mut app = Router::new()
2121
2122
        .merge(swagger_ui)
        .merge(base_routes)
Erik Kaunismäki's avatar
Erik Kaunismäki committed
2123
        .merge(info_routes)
drbh's avatar
drbh committed
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
        .merge(aws_sagemaker_route);

    #[cfg(feature = "google")]
    {
        tracing::info!("Built with `google` feature");
        tracing::info!(
            "Environment variables `AIP_PREDICT_ROUTE` and `AIP_HEALTH_ROUTE` will be respected."
        );
        if let Ok(env_predict_route) = std::env::var("AIP_PREDICT_ROUTE") {
            app = app.route(&env_predict_route, post(vertex_compatibility));
        }
        if let Ok(env_health_route) = std::env::var("AIP_HEALTH_ROUTE") {
            app = app.route(&env_health_route, get(health));
        }
    }

2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
    #[cfg(feature = "kserve")]
    {
        tracing::info!("Built with `kserve` feature");
        app = app
            .route(
                "/v2/models/:model_name/versions/:model_version/infer",
                post(kserve_model_infer),
            )
            .route(
                "/v2/models/:model_name/versions/:model_version",
                get(kserve_model_metadata),
            )
            .route("/v2/health/ready", get(kserve_health_ready))
            .route("/v2/health/live", get(kserve_health_live))
            .route("/v2", get(kerve_server_metadata))
            .route(
                "/v2/models/:model_name/versions/:model_version/ready",
                get(kserve_model_metadata_ready),
            );
    }

drbh's avatar
drbh committed
2161
2162
    // add layers after routes
    app = app
2163
        .layer(Extension(info))
2164
2165
        .layer(Extension(compat_return_full_text))
        .layer(Extension(infer))
2166
        .layer(Extension(compute_type))
2167
        .layer(Extension(prom_handle.clone()))
Nicolas Patry's avatar
Nicolas Patry committed
2168
        .layer(OtelAxumLayer::default())
2169
        .layer(cors_layer);
Olivier Dehaene's avatar
Olivier Dehaene committed
2170

OlivierDehaene's avatar
OlivierDehaene committed
2171
2172
    tracing::info!("Connected");

2173
2174
2175
    if ngrok {
        #[cfg(feature = "ngrok")]
        {
2176
            panic!("ngrok feature is not functional with axum=0.7 and hyper=1, waiting on https://github.com/ngrok/ngrok-rust/pull/137/files to re-enable.");
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190

            // Run server
        }
        #[cfg(not(feature = "ngrok"))]
        {
            let _ngrok_authtoken = ngrok_authtoken;
            let _ngrok_domain = ngrok_domain;
            let _ngrok_username = ngrok_username;
            let _ngrok_password = ngrok_password;

            panic!("`text-generation-router` was compiled without the `ngrok` feature");
        }
    } else {
        // Run server
2191
2192
2193

        let listener = tokio::net::TcpListener::bind(&addr).await.unwrap();
        axum::serve(listener, app)
2194
            .with_graceful_shutdown(shutdown_signal())
OlivierDehaene's avatar
OlivierDehaene committed
2195
2196
            .await
            .map_err(|err| WebServerError::Axum(Box::new(err)))?;
2197
    }
2198
    Ok(())
Olivier Dehaene's avatar
Olivier Dehaene committed
2199
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
2200

Nicolas Patry's avatar
Nicolas Patry committed
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
/// get model info from the Huggingface Hub
pub async fn get_hub_model_info(api: &ApiRepo) -> Option<HubModelInfo> {
    let response = api.info_request().send().await.ok()?;

    if response.status().is_success() {
        let hub_model_info: HubModelInfo =
            serde_json::from_str(&response.text().await.ok()?).ok()?;
        if let Some(sha) = &hub_model_info.sha {
            tracing::info!(
                "Serving revision {sha} of model {}",
                hub_model_info.model_id
            );
        }
        Some(hub_model_info)
    } else {
        None
    }
}

/// get base tokenizer
pub async fn get_base_tokenizer(api: &Api, api_repo: &ApiRepo) -> Option<PathBuf> {
    let config_filename = api_repo.get("config.json").await.ok()?;

    // Open the file in read-only mode with buffer.
    let file = File::open(config_filename).ok()?;
    let reader = BufReader::new(file);

    // Read the JSON contents of the file as an instance of `User`.
    let config: serde_json::Value = serde_json::from_reader(reader).ok()?;

    if let Some(serde_json::Value::String(base_model_id)) = config.get("base_model_name_or_path") {
        let api_base_repo = api.repo(Repo::with_revision(
            base_model_id.to_string(),
            RepoType::Model,
            "main".to_string(),
        ));

        api_base_repo.get("tokenizer.json").await.ok()
    } else {
        None
    }
}

/// get tokenizer_config from the Huggingface Hub
pub async fn get_tokenizer_config(api_repo: &ApiRepo) -> Option<HubTokenizerConfig> {
    let tokenizer_config_filename = api_repo.get("tokenizer_config.json").await.ok()?;

    // Open the file in read-only mode with buffer.
    let file = File::open(tokenizer_config_filename).ok()?;
    let reader = BufReader::new(file);

    // Read the JSON contents of the file as an instance of 'HubTokenizerConfig'.
    let tokenizer_config: HubTokenizerConfig = serde_json::from_reader(reader)
        .map_err(|e| {
            tracing::warn!("Unable to parse tokenizer config: {}", e);
            e
        })
        .ok()?;

    Some(tokenizer_config)
}

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
/// Shutdown signal handler
async fn shutdown_signal() {
    let ctrl_c = async {
        signal::ctrl_c()
            .await
            .expect("failed to install Ctrl+C handler");
    };

    #[cfg(unix)]
    let terminate = async {
        signal::unix::signal(signal::unix::SignalKind::terminate())
            .expect("failed to install signal handler")
            .recv()
            .await;
    };

    #[cfg(not(unix))]
    let terminate = std::future::pending::<()>();

    tokio::select! {
        _ = ctrl_c => {},
        _ = terminate => {},
    }

    tracing::info!("signal received, starting graceful shutdown");
2288
    opentelemetry::global::shutdown_tracer_provider();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
2289
}
2290
2291
2292
2293
2294
2295
2296
2297
2298

/// Convert to Axum supported formats
impl From<InferError> for (StatusCode, Json<ErrorResponse>) {
    fn from(err: InferError) -> Self {
        let status_code = match err {
            InferError::GenerationError(_) => StatusCode::FAILED_DEPENDENCY,
            InferError::Overloaded(_) => StatusCode::TOO_MANY_REQUESTS,
            InferError::ValidationError(_) => StatusCode::UNPROCESSABLE_ENTITY,
            InferError::IncompleteGeneration => StatusCode::INTERNAL_SERVER_ERROR,
2299
            InferError::TemplateError(_) => StatusCode::UNPROCESSABLE_ENTITY,
2300
            InferError::MissingTemplateVariable(_) => StatusCode::UNPROCESSABLE_ENTITY,
2301
            InferError::ToolError(_) => StatusCode::UNPROCESSABLE_ENTITY,
2302
2303
2304
2305
2306
2307
        };

        (
            status_code,
            Json(ErrorResponse {
                error: err.to_string(),
2308
                error_type: err.error_type().to_string(),
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
            }),
        )
    }
}

impl From<InferError> for Event {
    fn from(err: InferError) -> Self {
        Event::default()
            .json_data(ErrorResponse {
                error: err.to_string(),
2319
                error_type: err.error_type().to_string(),
2320
2321
2322
2323
            })
            .unwrap()
    }
}
OlivierDehaene's avatar
OlivierDehaene committed
2324
2325
2326
2327
2328
2329

#[derive(Debug, Error)]
pub enum WebServerError {
    #[error("Axum error: {0}")]
    Axum(#[from] axum::BoxError),
}
Nicolas Patry's avatar
Nicolas Patry committed
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400

/// Create a post_processor for the LlamaTokenizer
fn create_post_processor(
    tokenizer: &Tokenizer,
    tokenizer_config: &HubTokenizerConfig,
) -> Result<TemplateProcessing, tokenizers::processors::template::TemplateProcessingBuilderError> {
    let add_bos_token = tokenizer_config.add_bos_token.unwrap_or(true);
    let add_eos_token = tokenizer_config.add_eos_token.unwrap_or(false);

    let bos_token = tokenizer_config.bos_token.as_ref();
    let eos_token = tokenizer_config.eos_token.as_ref();

    if add_bos_token && bos_token.is_none() {
        panic!("add_bos_token = true but bos_token is None");
    }

    if add_eos_token && eos_token.is_none() {
        panic!("add_eos_token = true but eos_token is None");
    }

    let mut single = Vec::new();
    let mut pair = Vec::new();
    let mut special_tokens = Vec::new();

    if add_bos_token {
        if let Some(bos) = bos_token {
            let bos_token_id = tokenizer
                .token_to_id(bos.as_str())
                .expect("Should have found the bos token id");
            special_tokens.push((bos.as_str(), bos_token_id));
            single.push(format!("{}:0", bos.as_str()));
            pair.push(format!("{}:0", bos.as_str()));
        }
    }

    single.push("$A:0".to_string());
    pair.push("$A:0".to_string());

    if add_eos_token {
        if let Some(eos) = eos_token {
            let eos_token_id = tokenizer
                .token_to_id(eos.as_str())
                .expect("Should have found the eos token id");
            special_tokens.push((eos.as_str(), eos_token_id));
            single.push(format!("{}:0", eos.as_str()));
            pair.push(format!("{}:0", eos.as_str()));
        }
    }

    if add_bos_token {
        if let Some(bos) = bos_token {
            pair.push(format!("{}:1", bos.as_str()));
        }
    }

    pair.push("$B:1".to_string());

    if add_eos_token {
        if let Some(eos) = eos_token {
            pair.push(format!("{}:1", eos.as_str()));
        }
    }

    let post_processor = TemplateProcessing::builder()
        .try_single(single)?
        .try_pair(pair)?
        .special_tokens(special_tokens)
        .build()?;

    Ok(post_processor)
}
2401
2402
2403
2404
2405
2406
2407
2408
2409

type PreparedInput = (String, Option<GrammarType>, Option<Tools>);

fn prepare_chat_input(
    infer: &Infer,
    response_format: Option<GrammarType>,
    tools: Option<Vec<Tool>>,
    tool_choice: ToolChoice,
    tool_prompt: &str,
2410
    guideline: Option<String>,
2411
2412
2413
2414
2415
2416
2417
2418
2419
    messages: Vec<Message>,
) -> Result<PreparedInput, InferError> {
    if response_format.is_some() && tools.is_some() {
        return Err(InferError::ToolError(
            "Grammar and tools are mutually exclusive".into(),
        ));
    }

    if let Some(format) = response_format {
2420
        let inputs = infer.apply_chat_template(guideline, messages, None)?;
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
        return Ok((inputs, Some(format), None));
    }

    // if tools are set, apply the tool grammar and then the chat template
    let tool_grammar: Option<Tools> = ToolGrammar::apply(tools, tool_choice)?;
    let grammar = tool_grammar
        .as_ref()
        .map(|t| GrammarType::Json(serde_json::json!(t)));
    let tools_grammar_prompt = tool_grammar
        .as_ref()
        .map(|t| (GrammarType::Json(serde_json::json!(t)), tool_prompt.into()));
2432
    let inputs = infer.apply_chat_template(guideline, messages, tools_grammar_prompt)?;
2433
2434
    Ok((inputs, grammar, tool_grammar))
}