transformer.py 56.7 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
2
3
4

"""Transformer."""
import math
5
from contextlib import nullcontext
6
import torch
7
import torch.nn.functional as F
8

9
from megatron import get_timers, get_args, core, get_num_microbatches
10
from .module import MegatronModule
11
from megatron.core import mpu, tensor_parallel
12
from megatron.core.enums import ModelType
13
from megatron.model import LayerNorm
14
from megatron.model.enums import AttnMaskType, LayerType, AttnType
15
16
from megatron.model.fused_softmax import FusedScaleMaskSoftmax
from megatron.model.fused_bias_gelu import bias_gelu_impl
Mostofa Patwary's avatar
Mostofa Patwary committed
17
from megatron.model.rotary_pos_embedding import apply_rotary_pos_emb
18
from megatron.model.utils import attention_mask_func, openai_gelu, erf_gelu
19

20
21
22
23
24
25
26
27
28
29
try:
    from einops import rearrange
except ImportError:
    rearrange = None

try:
    from flash_attn.flash_attn_interface import flash_attn_unpadded_func
except ImportError:
    flash_attn_unpadded_func = None

30
31
32
33
34
35
36
37
38
39
""" We use the following notation throughout this file:
     h: hidden size
     n: number of attention heads
     p: number of model parallel partitions
     np: n/p
     hp: h/p
     hn: h/n
     b: batch size
     s: sequence length
     l: number of layers
40
    Transformer takes input of size [s, b, h] and returns a
41
42
43
44
    tensor of the same size. We use the following arguments:
        hyperparameters: transformer hyperparameters
"""

45
class DropPath(MegatronModule):
46
    """Drop paths (Stochastic Depth) per sample
47
48
49
    (when applied in main path of residual blocks).
    """

Vijay Korthikanti's avatar
Vijay Korthikanti committed
50
    def __init__(self, drop_prob=0.):
51
52
53
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

Vijay Korthikanti's avatar
Vijay Korthikanti committed
54
    def forward(self, hidden_state):
55
        if self.drop_prob == 0. or not self.training:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
56
            return hidden_state
57
58
        keep_prob = 1 - self.drop_prob
        # work with diff dim tensors, not just 2D ConvNets
59
60
        # hidden_state: [s, b, h]
        shape = (1,) + (hidden_state.shape[1],) + (1,) * (hidden_state.ndim - 2)
61
        random_tensor = keep_prob + \
Vijay Korthikanti's avatar
Vijay Korthikanti committed
62
            torch.rand(shape, dtype=hidden_state.dtype, device=hidden_state.device)
63
        random_tensor.floor_()  # binarize
Vijay Korthikanti's avatar
Vijay Korthikanti committed
64
        output = hidden_state.div(keep_prob) * random_tensor
65
66
        return output

67
68
69
70
71
72
73
74
75
76
77
def _args_to_kwargs():
    args = get_args()

    common_kwargs = {
        "params_dtype": args.params_dtype,
        "use_cpu_initialization": args.use_cpu_initialization,
        "perform_initialization": args.perform_initialization,
        "gradient_accumulation_fusion": args.gradient_accumulation_fusion,
        "sequence_parallel_enabled": args.sequence_parallel,
    }
    return common_kwargs
78

79
80
81
82
83
class ParallelMLP(MegatronModule):
    """MLP.

    MLP will take the input with h hidden state, project it to 4*h
    hidden dimension, perform nonlinear transformation, and project the
hwijeen's avatar
hwijeen committed
84
    state back into h hidden dimension.
85
86
    """

87
    def __init__(self, init_method, output_layer_init_method):
88
        super(ParallelMLP, self).__init__()
Mohammad's avatar
Mohammad committed
89
        args = get_args()
90

91
        self.add_bias = args.add_bias_linear
92

93
        # Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
94
        self.dense_h_to_4h = tensor_parallel.ColumnParallelLinear(
Mohammad's avatar
Mohammad committed
95
            args.hidden_size,
96
97
            args.ffn_hidden_size * 2 if args.swiglu else args.ffn_hidden_size,
            bias=self.add_bias,
98
            gather_output=False,
99
            init_method=init_method,
100
101
102
            skip_bias_add=True,
            async_tensor_model_parallel_allreduce=args.async_tensor_model_parallel_allreduce,
            **_args_to_kwargs())
103

104
105
106
107
        self.bias_gelu_fusion = False
        self.activation_func = None
        self.swiglu = args.swiglu

108
109
110
111
        if args.openai_gelu:
            self.activation_func = openai_gelu
        elif args.onnx_safe:
            self.activation_func = erf_gelu
112
113
114
115
116
117
118
119
120
121
122
123
        elif args.swiglu:
            def swiglu(x):
                x = torch.chunk(x, 2, dim=-1)
                return F.silu(x[0]) * x[1]
            self.activation_func = swiglu
        elif args.squared_relu:
            def squared_relu(x):
                return torch.pow(F.relu(x), 2)
            self.activation_func = squared_relu
        else:
            self.bias_gelu_fusion = args.bias_gelu_fusion
            self.activation_func = F.gelu
124
125

        # Project back to h.
126
        self.dense_4h_to_h = tensor_parallel.RowParallelLinear(
127
            args.ffn_hidden_size,
Mohammad's avatar
Mohammad committed
128
            args.hidden_size,
129
            bias=self.add_bias,
130
            input_is_parallel=True,
131
            init_method=output_layer_init_method,
132
133
            skip_bias_add=True,
            **_args_to_kwargs())
134

135
136
    def forward(self, hidden_states):

137
138
        # [s, b, 4hp]
        intermediate_parallel, bias_parallel = self.dense_h_to_4h(hidden_states)
139

140
        if self.bias_gelu_fusion:
141
142
143
            assert self.add_bias is True
            assert self.activation_func == F.gelu
            intermediate_parallel = bias_gelu_impl(intermediate_parallel, bias_parallel)
144
        else:
Jared Casper's avatar
Jared Casper committed
145
            if bias_parallel is not None:
146
147
                intermediate_parallel = intermediate_parallel + bias_parallel
            intermediate_parallel = self.activation_func(intermediate_parallel)
148
149
150
151

        # [s, b, h]
        output, output_bias = self.dense_4h_to_h(intermediate_parallel)
        return output, output_bias
152

rprenger's avatar
rprenger committed
153
154
155
156
class SwitchMLP(MegatronModule):
    """
    Routes input to one of N MLP "experts"
    """
rprenger's avatar
rprenger committed
157
    def __init__(self, init_method, output_layer_init_method):
rprenger's avatar
rprenger committed
158
159
        super(SwitchMLP, self).__init__()
        args = get_args()
rprenger's avatar
rprenger committed
160
        self.router = torch.nn.Linear(args.hidden_size, args.num_experts)
rprenger's avatar
rprenger committed
161
        self.experts = torch.nn.ModuleList()
rprenger's avatar
rprenger committed
162
        for i in range(args.num_experts):
rprenger's avatar
rprenger committed
163
            self.experts.append(ParallelMLP(init_method, output_layer_init_method))
164

rprenger's avatar
rprenger committed
165
    def forward(self, hidden_states):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
166
167
168
        # hidden_states: [s, b, h]
        s = hidden_states.size(0)
        b = hidden_states.size(1)
rprenger's avatar
rprenger committed
169
170
        h = hidden_states.size(2)
        route = self.router(hidden_states)
rprenger's avatar
rprenger committed
171
        route = torch.nn.functional.softmax(route, dim=2)
rprenger's avatar
rprenger committed
172
        max_prob, max_ind = torch.max(route, dim=2)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
173
        max_prob = torch.unsqueeze(max_prob, 2) # [s b 1]
174

rprenger's avatar
rprenger committed
175
        # TODO (rprenger) TODO this could be made easier to read
Vijay Korthikanti's avatar
Vijay Korthikanti committed
176
        # Converting [s, b, h] to [s*b, h].
177
        # Each vector could be routed differently
Vijay Korthikanti's avatar
Vijay Korthikanti committed
178
179
180
        hidden_states = hidden_states.view(-1, hidden_states.size(2)) # [s*b h]
        max_prob = max_prob.view(-1, max_prob.size(2)) # [s*b 1]
        max_ind = max_ind.view(-1) # [s*b]
rprenger's avatar
rprenger committed
181
182
183

        output_total = torch.empty_like(hidden_states)
        output_bias_total = torch.empty_like(hidden_states)
rprenger's avatar
rprenger committed
184
        #TODO (rprenger) This does each expert in serial, but it could be parallelized
185

rprenger's avatar
rprenger committed
186
        for expert_num, expert in enumerate(self.experts):
187
188
            local_indices = (max_ind == expert_num).nonzero()
            hidden = hidden_states[local_indices,:]
rprenger's avatar
rprenger committed
189
190
            output, output_bias = expert(hidden)
            output_bias = output_bias.expand_as(output)
191
192
193
            output_total[local_indices,:] = output
            output_bias_total[local_indices,:] = output_bias

rprenger's avatar
rprenger committed
194
195
        output_total = output_total*max_prob
        output_bias_total = output_bias_total*max_prob
Vijay Korthikanti's avatar
Vijay Korthikanti committed
196
197
        output_total = output_total.view(s, b, h)
        output_bias_total = output_bias_total.view(s, b, h)
rprenger's avatar
rprenger committed
198
199

        return output_total, output_bias_total
200

201
202

class CoreAttention(MegatronModule):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
203

204
205
206
207
208
209
210
211
212
213
214
215
216
    def __init__(self, layer_number,
                 attn_mask_type=AttnMaskType.padding):
        super(CoreAttention, self).__init__()
        args = get_args()
        self.fp16 = args.fp16
        self.bf16 = args.bf16

        self.apply_query_key_layer_scaling = args.apply_query_key_layer_scaling
        self.attention_softmax_in_fp32 = args.attention_softmax_in_fp32
        if self.apply_query_key_layer_scaling:
            self.attention_softmax_in_fp32 = True
        self.layer_number = max(1, layer_number)
        self.attn_mask_type = attn_mask_type
Vijay Korthikanti's avatar
Vijay Korthikanti committed
217
        self.sequence_parallel = args.sequence_parallel
218
219
220
221

        projection_size = args.kv_channels * args.num_attention_heads

        # Per attention head and per partition values.
222
        world_size = mpu.get_tensor_model_parallel_world_size()
223
224
225
        self.hidden_size_per_partition = core.utils.divide(projection_size,
                                                           world_size)
        self.hidden_size_per_attention_head = core.utils.divide(
226
            projection_size, args.num_attention_heads)
227
        self.num_attention_heads_per_partition = core.utils.divide(
228
            args.num_attention_heads, world_size)
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

        coeff = None
        self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
        if self.apply_query_key_layer_scaling:
            coeff = self.layer_number
            self.norm_factor *= coeff

        self.scale_mask_softmax = FusedScaleMaskSoftmax(
            self.fp16, self.bf16,
            self.attn_mask_type,
            args.masked_softmax_fusion,
            attention_mask_func,
            self.attention_softmax_in_fp32,
            coeff)

        # Dropout. Note that for a single iteration, this layer will generate
        # different outputs on different number of parallel partitions but
        # on average it should not be partition dependent.
        self.attention_dropout = torch.nn.Dropout(args.attention_dropout)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
248

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
    def forward(self, query_layer, key_layer,
                value_layer, attention_mask):

        # ===================================
        # Raw attention scores. [b, np, s, s]
        # ===================================

        # [b, np, sq, sk]
        output_size = (query_layer.size(1),
                       query_layer.size(2),
                       query_layer.size(0),
                       key_layer.size(0))

        # [sq, b, np, hn] -> [sq, b * np, hn]
        query_layer = query_layer.view(output_size[2],
                                       output_size[0] * output_size[1], -1)
        # [sk, b, np, hn] -> [sk, b * np, hn]
        key_layer = key_layer.view(output_size[3],
                                   output_size[0] * output_size[1], -1)

Vijay Korthikanti's avatar
Vijay Korthikanti committed
269
        # preallocting input tensor: [b * np, sq, sk]
270
        matmul_input_buffer = mpu.get_global_memory_buffer().get_tensor(
271
            (output_size[0]*output_size[1], output_size[2], output_size[3]),
Vijay Korthikanti's avatar
Vijay Korthikanti committed
272
            query_layer.dtype, "mpu")
273
274
275

        # Raw attention scores. [b * np, sq, sk]
        matmul_result = torch.baddbmm(
Vijay Korthikanti's avatar
Vijay Korthikanti committed
276
            matmul_input_buffer,
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
            query_layer.transpose(0, 1),   # [b * np, sq, hn]
            key_layer.transpose(0, 1).transpose(1, 2),  # [b * np, hn, sk]
            beta=0.0, alpha=(1.0/self.norm_factor))

        # change view to [b, np, sq, sk]
        attention_scores = matmul_result.view(*output_size)

        # ===========================
        # Attention probs and dropout
        # ===========================

        # attention scores and attention mask [b, np, sq, sk]
        attention_probs = self.scale_mask_softmax(attention_scores,
                                                  attention_mask)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
294
        if not self.sequence_parallel:
295
            with tensor_parallel.get_cuda_rng_tracker().fork():
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
                attention_probs = self.attention_dropout(attention_probs)
        else:
            attention_probs = self.attention_dropout(attention_probs)

        # =========================
        # Context layer. [sq, b, hp]
        # =========================

        # value_layer -> context layer.
        # [sk, b, np, hn] --> [b, np, sq, hn]

        # context layer shape: [b, np, sq, hn]
        output_size = (value_layer.size(1),
                       value_layer.size(2),
                       query_layer.size(0),
                       value_layer.size(3))

        # change view [sk, b * np, hn]
        value_layer = value_layer.view(value_layer.size(0),
                                       output_size[0] * output_size[1], -1)

        # change view [b * np, sq, sk]
        attention_probs = attention_probs.view(output_size[0] * output_size[1],
                                               output_size[2], -1)

        # matmul: [b * np, sq, hn]
        context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))

        # change view [b, np, sq, hn]
        context_layer = context_layer.view(*output_size)

        # [b, np, sq, hn] --> [sq, b, np, hn]
        context_layer = context_layer.permute(2, 0, 1, 3).contiguous()

        # [sq, b, np, hn] --> [sq, b, hp]
        new_context_layer_shape = context_layer.size()[:-2] + \
            (self.hidden_size_per_partition,)
        context_layer = context_layer.view(*new_context_layer_shape)

        return context_layer


338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
class FlashSelfAttention(torch.nn.Module):
    """Implement the scaled dot product attention with softmax.
    Arguments
    ---------
        softmax_scale: The temperature to use for the softmax attention.
                      (default: 1/sqrt(d_keys) where d_keys is computed at
                      runtime)
        attention_dropout: The dropout rate to apply to the attention
                           (default: 0.0)
    """
    def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0,
                 device=None, dtype=None):
        super().__init__()
        assert flash_attn_unpadded_func is not None, ('Please install FlashAttention first, '
                                                      'e.g., with pip install flash-attn')
        assert rearrange is not None, 'Please install einops first, e.g., with pip install einops'
        self.causal = causal
        self.softmax_scale = softmax_scale
        self.dropout_p = attention_dropout

    def forward(self, q, k, v):
        """Implements the multihead softmax attention.
        Arguments
        ---------
            q, k, v: The tensor containing the query, key, and value. (B, S, H, D)
        """
Jimmy Zhang's avatar
Jimmy Zhang committed
364
365
366

        assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q,k,v)))
        assert all((i.is_cuda for i in (q,k,v)))
Jimmy Zhang's avatar
Jimmy Zhang committed
367
368

        batch_size, seqlen_q = q.shape[0], q.shape[1]
Jimmy Zhang's avatar
Jimmy Zhang committed
369
        seqlen_k = k.shape[1]
Jimmy Zhang's avatar
Jimmy Zhang committed
370

Jimmy Zhang's avatar
Jimmy Zhang committed
371
372
        q, k, v = [rearrange(x, 'b s ... -> (b s) ...') for x in [q, k, v]]
        cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32,
Jimmy Zhang's avatar
Jimmy Zhang committed
373
374
                                    device=q.device)

Jimmy Zhang's avatar
Jimmy Zhang committed
375
376
377
378
379
380
381
        if self.training:
            # during training q,k,v always have same seqlen
            assert seqlen_k == seqlen_q

            is_causal = self.causal
            cu_seqlens_k = cu_seqlens_q
        else:
Jimmy Zhang's avatar
Jimmy Zhang committed
382
            # turn off FA causal mask after first inference autoregressive iteration
Jimmy Zhang's avatar
Jimmy Zhang committed
383
            # only on first autoregressive step q,k,v have same seqlen
Jimmy Zhang's avatar
Jimmy Zhang committed
384
385
            is_causal = seqlen_q == seqlen_k
            cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32,
Jimmy Zhang's avatar
Jimmy Zhang committed
386
                        device=q.device)
Jimmy Zhang's avatar
Jimmy Zhang committed
387
            self.dropout_p = 0
Jimmy Zhang's avatar
Jimmy Zhang committed
388

Jimmy Zhang's avatar
Jimmy Zhang committed
389
390
        output = flash_attn_unpadded_func(
            q, k, v, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen_k,
Jimmy Zhang's avatar
Jimmy Zhang committed
391
            self.dropout_p,
Jimmy Zhang's avatar
Jimmy Zhang committed
392
393
            softmax_scale=self.softmax_scale, causal=is_causal
        )
Jimmy Zhang's avatar
Jimmy Zhang committed
394

395
396
397
398
        output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
        return output


399
class ParallelAttention(MegatronModule):
400
401
    """Parallel self-attention layer abstract class.

Vijay Korthikanti's avatar
Vijay Korthikanti committed
402
    Self-attention layer takes input with size [s, b, h]
403
404
    and returns output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
405

406
    def __init__(self, init_method,
407
408
409
410
                 output_layer_init_method, layer_number,
                 attention_type=AttnType.self_attn,
                 attn_mask_type=AttnMaskType.padding):
        super(ParallelAttention, self).__init__()
Mohammad's avatar
Mohammad committed
411
        args = get_args()
412
        self.layer_number = max(1, layer_number)
413
414
        self.attention_type = attention_type
        self.attn_mask_type = attn_mask_type
415
        self.params_dtype = args.params_dtype
416
417
418
419
420
421
422
423
424
425
426
427
428
        self.sequence_parallel = args.sequence_parallel

        self.use_flash_attn = args.use_flash_attn
        if self.use_flash_attn:
            if flash_attn_unpadded_func is None:
                raise ImportError('FlashAttention is not installed, please install with '
                                  'pip install flash-attn')
            assert attention_type == AttnType.self_attn, ('FlashAttention code path only supports '
                                                          'self-attention for now')
            assert self.attn_mask_type == AttnMaskType.causal, ('FlashAttention code path only '
                                                                'supports causal mask for now')
            if rearrange is None:
                raise ImportError('einops is not installed, please install with pip install einops')
429
430

        projection_size = args.kv_channels * args.num_attention_heads
431
432

        # Per attention head and per partition values.
433
        world_size = mpu.get_tensor_model_parallel_world_size()
434
        self.hidden_size_per_attention_head = core.utils.divide(
435
            projection_size, args.num_attention_heads)
436
        self.num_attention_heads_per_partition = core.utils.divide(
Mohammad's avatar
Mohammad committed
437
            args.num_attention_heads, world_size)
438
439

        # Strided linear layer.
440
        if attention_type == AttnType.self_attn:
441
            self.query_key_value = tensor_parallel.ColumnParallelLinear(
442
443
                args.hidden_size,
                3 * projection_size,
444
                bias=args.add_bias_linear,
445
                gather_output=False,
446
447
448
                init_method=init_method,
                async_tensor_model_parallel_allreduce=args.async_tensor_model_parallel_allreduce,
                **_args_to_kwargs())
449
450
        else:
            assert attention_type == AttnType.cross_attn
451
            self.query = tensor_parallel.ColumnParallelLinear(
452
453
                args.hidden_size,
                projection_size,
454
                bias=args.add_bias_linear,
455
                gather_output=False,
456
457
458
                init_method=init_method,
                async_tensor_model_parallel_allreduce=args.async_tensor_model_parallel_allreduce,
                **_args_to_kwargs())
459

460

461
            self.key_value = tensor_parallel.ColumnParallelLinear(
462
463
                args.hidden_size,
                2 * projection_size,
464
                bias=args.add_bias_linear,
465
                gather_output=False,
466
467
468
                init_method=init_method,
                async_tensor_model_parallel_allreduce=args.async_tensor_model_parallel_allreduce,
                **_args_to_kwargs())
469

470
471
        self.core_attention = CoreAttention(self.layer_number,
                                            self.attn_mask_type)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
472
        self.checkpoint_core_attention = args.recompute_granularity == 'selective'
473

474
475
476
477
478
        if self.use_flash_attn:
            self.core_attention_flash = FlashSelfAttention(
                causal=True, attention_dropout=args.attention_dropout
            )

479
        # Output.
480
        self.dense = tensor_parallel.RowParallelLinear(
481
            projection_size,
Mohammad's avatar
Mohammad committed
482
            args.hidden_size,
483
            bias=args.add_bias_linear,
484
            input_is_parallel=True,
485
            init_method=output_layer_init_method,
486
487
            skip_bias_add=True,
            **_args_to_kwargs())
Vijay Korthikanti's avatar
Vijay Korthikanti committed
488

489
    def _checkpointed_attention_forward(self, query_layer, key_layer,
Mostofa Patwary's avatar
Mostofa Patwary committed
490
491
                                        value_layer, attention_mask,
                                        rotary_pos_emb=None):
492
493
494
495
496
497
498
499
500
501
        """Forward method with activation checkpointing."""
        def custom_forward(*inputs):
            query_layer = inputs[0]
            key_layer = inputs[1]
            value_layer = inputs[2]
            attention_mask = inputs[3]
            output_ = self.core_attention(query_layer, key_layer,
                                          value_layer, attention_mask)
            return output_

Mostofa Patwary's avatar
Mostofa Patwary committed
502
503
504
        q_pos_emb, k_pos_emb = (None, None) if rotary_pos_emb is None \
            else rotary_pos_emb

505
        hidden_states = tensor_parallel.checkpoint(
506
            custom_forward,
Mostofa Patwary's avatar
Mostofa Patwary committed
507
508
            False, query_layer, key_layer, value_layer, attention_mask,
            q_pos_emb, k_pos_emb)
509
510

        return hidden_states
511
512
513
514
515
516
517
518
519
520
521

    def _allocate_memory(self, inference_max_sequence_len, batch_size):
        return torch.empty(
            inference_max_sequence_len,
            batch_size,
            self.num_attention_heads_per_partition,
            self.hidden_size_per_attention_head,
            dtype=self.params_dtype,
            device=torch.cuda.current_device())

    def forward(self, hidden_states, attention_mask,
Mostofa Patwary's avatar
Mostofa Patwary committed
522
523
                encoder_output=None, inference_params=None,
                rotary_pos_emb=None):
524
        # hidden_states: [sq, b, h]
525

526
527
528
        # =================================================
        # Pre-allocate memory for key-values for inference.
        # =================================================
Mostofa Patwary's avatar
Mostofa Patwary committed
529
        is_first_step = False
mshoeybi's avatar
mshoeybi committed
530
        if inference_params:
531
            if self.layer_number not in inference_params.key_value_memory_dict:
mshoeybi's avatar
mshoeybi committed
532
                inf_max_seq_len = inference_params.max_sequence_len
mshoeybi's avatar
mshoeybi committed
533
                inf_max_batch_size = inference_params.max_batch_size
534
                inference_key_memory = self._allocate_memory(
mshoeybi's avatar
mshoeybi committed
535
                    inf_max_seq_len, inf_max_batch_size)
536
                inference_value_memory = self._allocate_memory(
mshoeybi's avatar
mshoeybi committed
537
                    inf_max_seq_len, inf_max_batch_size)
538
539
                inference_params.key_value_memory_dict[self.layer_number] = (
                    inference_key_memory, inference_value_memory)
Mostofa Patwary's avatar
Mostofa Patwary committed
540
                is_first_step = True
541
542
543
            else:
                inference_key_memory, inference_value_memory = \
                    inference_params.key_value_memory_dict[self.layer_number]
mshoeybi's avatar
mshoeybi committed
544

545
546
547
        # =====================
        # Query, Key, and Value
        # =====================
548

549
550
551
552
553
554
555
556
557
558
559
560
561
        if self.attention_type == AttnType.self_attn:
            # Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
            mixed_x_layer, _ = self.query_key_value(hidden_states)

            # [sq, b, (np * 3 * hn)] --> [sq, b, np, 3 * hn]
            new_tensor_shape = mixed_x_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 3 * self.hidden_size_per_attention_head)
            mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)

            # [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
            (query_layer,
             key_layer,
562
             value_layer) = tensor_parallel.split_tensor_along_last_dim(mixed_x_layer, 3)
563
564
565
566
567
568
569
570
571
572
573
574
        else:
            # Attention heads [sk, b, h] --> [sk, b, (np * 2 * hn)]
            mixed_kv_layer, _ = self.key_value(encoder_output)

            # [sk, b, (np * 2 * hn)] --> [sk, b, np, 2 * hn]
            new_tensor_shape = mixed_kv_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 2 * self.hidden_size_per_attention_head)
            mixed_kv_layer = mixed_kv_layer.view(*new_tensor_shape)

            # [sk, b, np, 2 * hn] --> 2 [sk, b, np, hn]
            (key_layer,
575
             value_layer) = tensor_parallel.split_tensor_along_last_dim(mixed_kv_layer, 2)
576
577
578
579
580
581
582
583

            # Attention head [sq, b, h] --> [sq, b, hp]
            query_layer, _ = self.query(hidden_states)
            # [sq, b, hp] --> [sq, b, np, hn]
            new_tensor_shape = query_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 self.hidden_size_per_attention_head)
            query_layer = query_layer.view(*new_tensor_shape)
584

mshoeybi's avatar
mshoeybi committed
585
586
587
        # ==================================
        # Adjust key and value for inference
        # ==================================
588

Mostofa Patwary's avatar
Mostofa Patwary committed
589
590
        # duplicate the pos_emb for self attention
        if rotary_pos_emb is not None:
Mostofa Patwary's avatar
Mostofa Patwary committed
591
592
593
594
            if isinstance(rotary_pos_emb, tuple):
                rotary_pos_emb = rotary_pos_emb
            else:
                rotary_pos_emb = ((rotary_pos_emb,) * 2)
Mostofa Patwary's avatar
Mostofa Patwary committed
595

mshoeybi's avatar
mshoeybi committed
596
        if inference_params:
mshoeybi's avatar
mshoeybi committed
597
598
            batch_start = inference_params.batch_size_offset
            batch_end = batch_start + key_layer.size(1)
599
            assert batch_end <= inference_key_memory.size(1)
mshoeybi's avatar
mshoeybi committed
600
601
            sequence_start = inference_params.sequence_len_offset
            sequence_end = sequence_start + key_layer.size(0)
602
            assert sequence_end <= inference_key_memory.size(0)
603
            # Copy key and values.
604
605
606
607
608
            inference_key_memory[sequence_start:sequence_end,
                                 batch_start:batch_end, ...] = key_layer
            inference_value_memory[sequence_start:sequence_end,
                                   batch_start:batch_end, ...] = value_layer
            key_layer = inference_key_memory[
mshoeybi's avatar
mshoeybi committed
609
                :sequence_end, batch_start:batch_end, ...]
610
            value_layer = inference_value_memory[
mshoeybi's avatar
mshoeybi committed
611
                :sequence_end, batch_start:batch_end, ...]
612

Mostofa Patwary's avatar
Mostofa Patwary committed
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634

            # adjust the key rotary positional embedding
            if rotary_pos_emb is not None:
                q_pos_emb, k_pos_emb = rotary_pos_emb
                # need to cross check this condition during inference
                # if not set_inference_key_value_memory:
                if not is_first_step:
                    # In inference, we compute one token at a time.
                    # Select the correct positional embedding
                    # (only the last token in the sequence)
                    q_pos_emb = q_pos_emb[sequence_end - 1 : sequence_end]
                else:
                    # In the first forward pass of inference,
                    # we use the entire provided prefix.
                    # q_pos_emb here has the rope embeddings of the entire
                    # prefix + to-be-generated output so
                    # we slice to just the prefix.
                    q_pos_emb = q_pos_emb[:sequence_end, :, :, :]
                k_pos_emb = k_pos_emb[:sequence_end, :, :, :]
                rotary_pos_emb = (q_pos_emb, k_pos_emb)


635
636
637
        # ==================================
        # core attention computation
        # ==================================
638

Mostofa Patwary's avatar
Mostofa Patwary committed
639
640
641
642
643
644
645
646
647
648
        # apply relative positional encoding (rotary embedding)
        if rotary_pos_emb is not None:
            q_pos_emb, k_pos_emb = rotary_pos_emb
            query_layer = apply_rotary_pos_emb(query_layer, q_pos_emb)
            key_layer = apply_rotary_pos_emb(key_layer, k_pos_emb)
            # TODO, can apply positional embedding to value_layer so it has
            # absolute positional embedding.
            # otherwise, only relative positional embedding takes effect
            # value_layer = apply_rotary_pos_emb(value_layer, k_pos_emb)

649
650
651
652
653
654
655
        if not self.use_flash_attn:
            if self.checkpoint_core_attention:
                context_layer = self._checkpointed_attention_forward(
                    query_layer, key_layer, value_layer, attention_mask)
            else:
                context_layer = self.core_attention(
                    query_layer, key_layer, value_layer, attention_mask)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
656
        else:
657
658
659
660
661
662
663
664
            q, k, v = [rearrange(x, 's b ... -> b s ...').contiguous()
                       for x in (query_layer, key_layer, value_layer)]
            if not self.sequence_parallel:
                with tensor_parallel.get_cuda_rng_tracker().fork():
                    context_layer = self.core_attention_flash(q, k, v)
            else:
                context_layer = self.core_attention_flash(q, k, v)
            context_layer = rearrange(context_layer, 'b s h d -> s b (h d)').contiguous()
665
666

        # =================
667
        # Output. [sq, b, h]
668
669
670
        # =================

        output, bias = self.dense(context_layer)
671

672
673
674
        return output, bias


675
def bias_dropout_add(x, bias, residual, prob, training):
676
    # type: (Tensor, Tensor, Tensor, float, bool) -> Tensor
677
678
679
    if bias is not None:
        x = x + bias
    out = torch.nn.functional.dropout(x, p=prob, training=training)
680
681
682
683
684
685
686
687
688
689
690
    out = residual + out
    return out


def get_bias_dropout_add(training):
    def _bias_dropout_add(x, bias, residual, prob):
        return bias_dropout_add(x, bias, residual, prob, training)
    return _bias_dropout_add


@torch.jit.script
691
692
693
694
def bias_dropout_add_fused_train(x: torch.Tensor,
                                 bias: torch.Tensor,
                                 residual: torch.Tensor,
                                 prob: float) -> torch.Tensor:
695
696
697
698
    return bias_dropout_add(x, bias, residual, prob, True)


@torch.jit.script
699
700
701
702
def bias_dropout_add_fused_inference(x: torch.Tensor,
                                     bias: torch.Tensor,
                                     residual: torch.Tensor,
                                     prob: float) -> torch.Tensor:
703
    return bias_dropout_add(x, bias, residual, prob, False)
704
705
706
707
708


class ParallelTransformerLayer(MegatronModule):
    """A single transformer layer.

Vijay Korthikanti's avatar
Vijay Korthikanti committed
709
    Transformer layer takes input with size [s, b, h] and returns an
710
711
    output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
712

713
714
    def __init__(self, init_method, output_layer_init_method,
                 layer_number, layer_type=LayerType.encoder,
715
716
                 self_attn_mask_type=AttnMaskType.padding,
                 drop_path_rate=0.):
Mohammad's avatar
Mohammad committed
717
        args = get_args()
718
719

        super(ParallelTransformerLayer, self).__init__()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
720
        self.layer_number = layer_number
721
        self.layer_type = layer_type
722
723

        self.apply_residual_connection_post_layernorm \
Mohammad's avatar
Mohammad committed
724
            = args.apply_residual_connection_post_layernorm
725

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
726
727
728
        self.bf16 = args.bf16
        self.fp32_residual_connection = args.fp32_residual_connection

729
730
        # Layernorm on the input data.
        self.input_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
731
            args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
732
            eps=args.layernorm_epsilon,
733
            no_persist_layer_norm=args.no_persist_layer_norm,
Mostofa Patwary's avatar
Mostofa Patwary committed
734
            sequence_parallel=args.sequence_parallel,
Jared Casper's avatar
Jared Casper committed
735
            apply_layernorm_1p=args.apply_layernorm_1p)
736
737

        # Self attention.
738
739
740
741
742
743
        self.self_attention = ParallelAttention(
            init_method,
            output_layer_init_method,
            layer_number,
            attention_type=AttnType.self_attn,
            attn_mask_type=self_attn_mask_type)
744
745
        self.hidden_dropout = args.hidden_dropout
        self.bias_dropout_fusion = args.bias_dropout_fusion
Vijay Korthikanti's avatar
Vijay Korthikanti committed
746
        self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else None
747

748
        # Layernorm on the attention output
749
        self.post_attention_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
750
            args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
751
            eps=args.layernorm_epsilon,
752
            no_persist_layer_norm=args.no_persist_layer_norm,
Mostofa Patwary's avatar
Mostofa Patwary committed
753
            sequence_parallel=args.sequence_parallel,
Jared Casper's avatar
Jared Casper committed
754
            apply_layernorm_1p=args.apply_layernorm_1p)
755

756
757
758
759
760
761
762
763
764
        if self.layer_type == LayerType.decoder:
            self.inter_attention = ParallelAttention(
                init_method,
                output_layer_init_method,
                layer_number,
                attention_type=AttnType.cross_attn)
            # Layernorm on the attention output.
            self.post_inter_attention_layernorm = LayerNorm(
                args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
765
                eps=args.layernorm_epsilon,
766
                no_persist_layer_norm=args.no_persist_layer_norm,
Mostofa Patwary's avatar
Mostofa Patwary committed
767
                sequence_parallel=args.sequence_parallel,
Jared Casper's avatar
Jared Casper committed
768
                apply_layernorm_1p=args.apply_layernorm_1p)
769

770
        # MLP
rprenger's avatar
rprenger committed
771
772
773
774
        if args.num_experts is not None:
            self.mlp = SwitchMLP(init_method, output_layer_init_method)
        else:
            self.mlp = ParallelMLP(init_method, output_layer_init_method)
775

776
777
778
779
780
781
782
        # Set bias+dropout+add fusion grad_enable execution handler.
        TORCH_MAJOR = int(torch.__version__.split('.')[0])
        TORCH_MINOR = int(torch.__version__.split('.')[1])
        use_nvfuser = TORCH_MAJOR > 1 or (TORCH_MAJOR == 1 and TORCH_MINOR >= 10)
        self.bias_dropout_add_exec_handler = \
                nullcontext if use_nvfuser else torch.enable_grad

783
    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
784
                encoder_output=None, enc_dec_attn_mask=None,
Mostofa Patwary's avatar
Mostofa Patwary committed
785
                inference_params=None, rotary_pos_emb=None):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
786
        # hidden_states: [s, b, h]
787

788
        # Layer norm at the beginning of the transformer layer.
789
790
        layernorm_output = self.input_layernorm(hidden_states)
        # Self attention.
791
        attention_output, attention_bias = \
792
793
794
            self.self_attention(
                layernorm_output,
                attention_mask,
Mostofa Patwary's avatar
Mostofa Patwary committed
795
                inference_params=inference_params,
Mostofa Patwary's avatar
Mostofa Patwary committed
796
                rotary_pos_emb=rotary_pos_emb)
797

798
799
        # Residual connection.
        if self.apply_residual_connection_post_layernorm:
800
801
802
803
            residual = layernorm_output
        else:
            residual = hidden_states

Vijay Korthikanti's avatar
Vijay Korthikanti committed
804
        if self.drop_path is None:
805
806
807
808
809
810
811
812
813
            # jit scripting for a nn.module (with dropout) is not
            # trigerring the fusion kernel. For now, we use two
            # different nn.functional routines to account for varying
            # dropout semantics during training and inference phases.
            if self.bias_dropout_fusion:
                if self.training:
                    bias_dropout_add_func = bias_dropout_add_fused_train
                else:
                    bias_dropout_add_func = bias_dropout_add_fused_inference
814
            else:
815
                bias_dropout_add_func = get_bias_dropout_add(self.training)
816

817
818
            if attention_bias is not None:
                attention_bias = attention_bias.expand_as(residual)
819
            with self.bias_dropout_add_exec_handler():
820
821
                layernorm_input = bias_dropout_add_func(
                    attention_output,
822
                    attention_bias,
823
824
825
826
827
828
829
                    residual,
                    self.hidden_dropout)
        else:
            out = torch.nn.functional.dropout(attention_output + attention_bias,
                                              p=self.hidden_dropout,
                                              training=self.training)
            layernorm_input = residual + self.drop_path(out)
830

831
832
833
        # Layer norm post the self attention.
        layernorm_output = self.post_attention_layernorm(layernorm_input)

834
835
836
837
838
839
840
841
842
843
844
        if self.layer_type == LayerType.decoder:
            attention_output, attention_bias = \
                self.inter_attention(layernorm_output,
                                     enc_dec_attn_mask,
                                     encoder_output=encoder_output)
            # residual connection
            if self.apply_residual_connection_post_layernorm:
                residual = layernorm_output
            else:
                residual = layernorm_input

845
846
847
            if attention_bias is not None:
                attention_bias = attention_bias.expand_as(residual)

848
            with self.bias_dropout_add_exec_handler():
849
850
                layernorm_input = bias_dropout_add_func(
                    attention_output,
851
                    attention_bias,
852
853
854
855
856
857
                    residual,
                    self.hidden_dropout)

            # Layer norm post the decoder attention
            layernorm_output = self.post_inter_attention_layernorm(layernorm_input)

858
        # MLP.
859
        mlp_output, mlp_bias = self.mlp(layernorm_output)
860

861
862
        # Second residual connection.
        if self.apply_residual_connection_post_layernorm:
863
            residual = layernorm_output
864
        else:
865
866
            residual = layernorm_input

Vijay Korthikanti's avatar
Vijay Korthikanti committed
867
        if self.drop_path is None:
868
869
            if mlp_bias is not None:
                mlp_bias = mlp_bias.expand_as(residual)
870
            with self.bias_dropout_add_exec_handler():
871
872
                output = bias_dropout_add_func(
                    mlp_output,
873
                    mlp_bias,
874
875
                    residual,
                    self.hidden_dropout)
876
877
878
879
880
881
882

            # Jit compiled function creates 'view' tensor. This tensor
            # potentially gets saved in the MPU checkpoint function context,
            # which rejects view tensors. While making a viewless tensor here
            # won't result in memory savings (like the data loader, or
            # p2p_communication), it serves to document the origin of this
            # 'view' tensor.
883
884
885
            output = core.utils.make_viewless_tensor(inp = output,
                                                     requires_grad = output.requires_grad,
                                                     keep_graph = True)
886

887
        else:
888
889
890
            if mlp_bias is not None:
                mlp_output = mlp_output + mlp_bias
            out = torch.nn.functional.dropout(mlp_output,
891
892
893
                                              p=self.hidden_dropout,
                                              training=self.training)
            output = residual + self.drop_path(out)
894
895
896
897

        return output


898
899
900
class NoopTransformerLayer(MegatronModule):
    """A single 'no-op' transformer layer.

Lawrence McAfee's avatar
Lawrence McAfee committed
901
    The sole purpose of this layer is for when a standalone embedding layer
902
    is used (i.e., args.standalone_embedding_stage == True). In this case,
Lawrence McAfee's avatar
Lawrence McAfee committed
903
904
905
906
907
908
909
910
911
    zero transformer layers are assigned when pipeline rank == 0. Additionally,
    when virtual pipeline rank >= 1, zero total model parameters are created
    (virtual rank 0 contains the input embedding). This results in the model's
    input and output tensors being the same, which causes an error when
    performing certain memory optimiations on the output tensor (e.g.,
    deallocating it). Thus, this layer disconnects the input from the output
    via a clone. Since ranks containing a no-op layer are generally under-
    utilized (both compute and memory), there's no worry of any performance
    degredation.
912
913
914
915
916
917
918
919
920
921
922
923
    """

    def __init__(self, layer_number):
        super().__init__()
        self.layer_number = layer_number

    def forward(self, hidden_states, attention_mask,
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
        return hidden_states.clone()


Jared Casper's avatar
Jared Casper committed
924
def _get_num_layers(args, is_encoder_and_decoder_model, is_decoder=False):
925
    """Compute the number of transformer layers resident on the current rank."""
Jared Casper's avatar
Jared Casper committed
926
    if mpu.get_pipeline_model_parallel_world_size() > 1:
927
928
929
930
931
932
933
934
935
936
937
938
939
        if is_encoder_and_decoder_model:
            assert args.pipeline_model_parallel_split_rank is not None

            # When a standalone embedding stage is used, a rank is taken from
            # the encoder's ranks, to be used for the encoder's embedding
            # layer. This way, the rank referenced by the 'split rank' remains
            # the same whether or not a standalone embedding stage is used.
            num_ranks_in_encoder = (
                args.pipeline_model_parallel_split_rank - 1
                if args.standalone_embedding_stage else
                args.pipeline_model_parallel_split_rank
            )
            num_ranks_in_decoder = args.transformer_pipeline_model_parallel_size - num_ranks_in_encoder
Jared Casper's avatar
Jared Casper committed
940
941
942
943
            assert args.encoder_num_layers % num_ranks_in_encoder == 0, \
                    'encoder_num_layers (%d) must be divisible by number of ranks given to encoder (%d)' % (args.encoder_num_layers, num_ranks_in_encoder)
            assert args.decoder_num_layers % num_ranks_in_decoder == 0, \
                    'decoder_num_layers (%d) must be divisible by number of ranks given to decoder (%d)' % (args.decoder_num_layers, num_ranks_in_decoder)
Jared Casper's avatar
Jared Casper committed
944
            if mpu.is_pipeline_stage_before_split():
945
946
947
                num_layers = (
                    0
                    if args.standalone_embedding_stage
Jared Casper's avatar
Jared Casper committed
948
                    and mpu.get_pipeline_model_parallel_rank() == 0 else
Jared Casper's avatar
Jared Casper committed
949
                    args.encoder_num_layers // num_ranks_in_encoder
950
951
                )
            else:
Jared Casper's avatar
Jared Casper committed
952
                num_layers = args.decoder_num_layers // num_ranks_in_decoder
953
        else:
Jared Casper's avatar
Jared Casper committed
954
            assert args.num_layers == args.encoder_num_layers
955
956
957
958
959
960
961
962
963
964
            assert args.num_layers % args.transformer_pipeline_model_parallel_size == 0, \
                'num_layers must be divisible by transformer_pipeline_model_parallel_size'

            # When a standalone embedding stage is used, all transformer layers
            # are divided among pipeline rank >= 1, while on pipeline rank 0,
            # ranks either contain the input embedding layer (virtual pp rank 0),
            # or no layers at all (virtual pp rank >= 1).
            num_layers = (
                0
                if args.standalone_embedding_stage
Jared Casper's avatar
Jared Casper committed
965
                and mpu.get_pipeline_model_parallel_rank() == 0 else
966
967
968
                args.num_layers // args.transformer_pipeline_model_parallel_size
            )
    else:
Jared Casper's avatar
Jared Casper committed
969
970
971
972
        if not is_decoder:
            num_layers = args.encoder_num_layers
        else:
            num_layers = args.decoder_num_layers
973
974
975
    return num_layers


976
977
978
class ParallelTransformer(MegatronModule):
    """Transformer class."""

979
    def __init__(self, init_method, output_layer_init_method,
980
                 layer_type=LayerType.encoder,
981
                 self_attn_mask_type=AttnMaskType.padding,
982
                 post_layer_norm=True,
983
984
                 pre_process=True, post_process=True,
                 drop_path_rate=0.0):
985
        super(ParallelTransformer, self).__init__()
Mohammad's avatar
Mohammad committed
986
        args = get_args()
987

988
989
        self.layer_type = layer_type
        self.model_type = args.model_type
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
990
        self.bf16 = args.bf16
991
        self.fp32_residual_connection = args.fp32_residual_connection
992
        self.post_layer_norm = post_layer_norm
993
994
995
        self.pre_process = pre_process
        self.post_process = post_process
        self.input_tensor = None
996
        self.drop_path_rate = drop_path_rate
997
        self.transformer_impl = args.transformer_impl
998

999
        # Store activation checkpoiting flag.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1000
1001
1002
        self.recompute_granularity = args.recompute_granularity
        self.recompute_method = args.recompute_method
        self.recompute_num_layers = args.recompute_num_layers
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1003
1004
        self.distribute_saved_activations = \
            args.distribute_saved_activations and not args.sequence_parallel
1005

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1006
        self.sequence_parallel = args.sequence_parallel
1007

1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
        # Transformer Engine Init.
        if self.transformer_impl == 'transformer_engine':
            global transformer_engine
            import transformer_engine
        self.use_fp8 = args.fp8_e4m3 or args.fp8_hybrid
        self.fp8_recipe = None
        self.fp8_group = mpu.get_data_parallel_group()
        if self.use_fp8:
            if args.fp8_e4m3:
                fp8_format = transformer_engine.common.recipe.Format.E4M3
            elif args.fp8_hybrid:
                fp8_format = transformer_engine.common.recipe.Format.HYBRID
            self.fp8_recipe = transformer_engine.common.recipe.DelayedScaling(
                margin=args.fp8_margin,
                interval=args.fp8_interval,
                fp8_format=fp8_format,
                amax_history_len=args.fp8_amax_history_len,
                amax_compute_algo=args.fp8_amax_compute_algo,
                override_linear_precision=(False, False, not args.fp8_wgrad),
            )

        self.num_microbatches_in_previous_step = -1
        self.microbatch_count = 0
        self.checkpoint_core_attention = args.recompute_granularity == 'selective'

1033
        # Number of layers.
1034
        self.num_layers = _get_num_layers(
1035
1036
1037
            args,
            args.model_type == ModelType.encoder_and_decoder,
            layer_type == LayerType.decoder)
Mohammad's avatar
Mohammad committed
1038

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1039
        self.drop_path_rates = [rate.item() for rate in torch.linspace(0, self.drop_path_rate, args.num_layers)]
1040

Mohammad's avatar
Mohammad committed
1041
1042
        # Transformer layers.
        def build_layer(layer_number):
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
            if args.transformer_impl == 'local':
                return ParallelTransformerLayer(
                    init_method,
                    output_layer_init_method,
                    layer_number,
                    layer_type=layer_type,
                    self_attn_mask_type=self_attn_mask_type,
                    drop_path_rate=self.drop_path_rates[layer_number - 1])
            else:
                return transformer_engine.pytorch.TransformerLayer(
                    args.hidden_size,
                    args.ffn_hidden_size,
                    args.num_attention_heads,
                    layernorm_epsilon=args.layernorm_epsilon,
                    hidden_dropout=args.hidden_dropout,
                    attention_dropout=args.attention_dropout,
                    init_method=init_method,
                    output_layer_init_method=output_layer_init_method,
                    layer_number=layer_number,
                    kv_channels=args.kv_channels,
                    self_attn_mask_type=self_attn_mask_type.name,
                    tp_group=mpu.get_tensor_model_parallel_group(),
                    get_rng_state_tracker=tensor_parallel.get_cuda_rng_tracker,
                    fuse_wgrad_accumulation=args.gradient_accumulation_fusion,
                    apply_query_key_layer_scaling=args.apply_query_key_layer_scaling,
                    attention_softmax_in_fp32=args.attention_softmax_in_fp32,
                    seq_length=args.seq_length,
                    micro_batch_size=args.micro_batch_size,
                    sequence_parallel=args.sequence_parallel,
                    params_dtype=args.params_dtype,
                    apply_residual_connection_post_layernorm=args.apply_residual_connection_post_layernorm,
                    output_layernorm=False,
                    layer_type="encoder",
                    drop_path_rate=self.drop_path_rates[layer_number - 1],
                    set_parallel_mode=True,
                    fuse_qkv_params=True)

1080
1081
        if args.virtual_pipeline_model_parallel_size is not None:
            assert args.num_layers % args.virtual_pipeline_model_parallel_size == 0, \
1082
1083
                'num_layers_per_stage must be divisible by ' \
                'virtual_pipeline_model_parallel_size'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1084
            assert args.model_type != ModelType.encoder_and_decoder
1085
1086
            # Number of layers in each model chunk is the number of layers in the stage,
            # divided by the number of model chunks in a stage.
1087
            self.num_layers = self.num_layers // args.virtual_pipeline_model_parallel_size
1088
1089
1090
1091
1092
1093
1094
1095
            # With 8 layers, 2 stages, and 4 model chunks, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0]  [2]  [4]  [6]
            # Stage 1: [1]  [3]  [5]  [7]
            # With 8 layers, 2 stages, and 2 virtual stages, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0, 1]  [4, 5]
            # Stage 1: [2, 3]  [6, 7]
1096
            offset = mpu.get_virtual_pipeline_model_parallel_rank() * (
1097
                args.num_layers // args.virtual_pipeline_model_parallel_size) + \
1098
                (mpu.get_pipeline_model_parallel_rank() * self.num_layers)
1099
        else:
1100
            # Each stage gets a contiguous set of layers.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1101
            if args.model_type == ModelType.encoder_and_decoder and \
1102
1103
                    mpu.get_pipeline_model_parallel_world_size() > 1:
                pipeline_rank = mpu.get_pipeline_model_parallel_rank()
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1104
1105
1106
1107
1108
1109
                if layer_type == LayerType.encoder:
                    offset = pipeline_rank * self.num_layers
                else:
                    num_ranks_in_enc = args.pipeline_model_parallel_split_rank
                    offset = (pipeline_rank - num_ranks_in_enc) * self.num_layers
            else:
1110
                offset = mpu.get_pipeline_model_parallel_rank() * self.num_layers
1111

1112
        if self.num_layers == 0:
Lawrence McAfee's avatar
Lawrence McAfee committed
1113
            # When a standalone embedding stage is used (e.g.,
1114
            # args.standalone_embedding_stage == True), virtual pipeline ranks
1115
            # on pipeline rank 0 will have zero transformer layers assigned to
Lawrence McAfee's avatar
Lawrence McAfee committed
1116
1117
1118
1119
1120
            # them. This results in the model's input and output tensors to be
            # the same, which will cause failure for certain output tensor
            # optimizations (e.g., pipeline output deallocation). To remedy
            # this, we assign a 'no-op' layer on these ranks, which will
            # disconnect the input tensor from the output tensor.
1121
1122
1123
1124
1125
            self.num_layers = 1
            self.layers = torch.nn.ModuleList([ NoopTransformerLayer(1) ])
        else:
            self.layers = torch.nn.ModuleList(
                [build_layer(i + 1 + offset) for i in range(self.num_layers)])
1126

1127
        if self.post_process and self.post_layer_norm:
1128
1129
1130
            # Final layer norm before output.
            self.final_layernorm = LayerNorm(
                args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
1131
                eps=args.layernorm_epsilon,
1132
                no_persist_layer_norm=args.no_persist_layer_norm,
Mostofa Patwary's avatar
Mostofa Patwary committed
1133
                sequence_parallel=args.sequence_parallel,
Jared Casper's avatar
Jared Casper committed
1134
                apply_layernorm_1p=args.apply_layernorm_1p)
1135

Mohammad's avatar
Mohammad committed
1136
    def _get_layer(self, layer_number):
1137
        return self.layers[layer_number]
Mohammad's avatar
Mohammad committed
1138

1139
    def _checkpointed_forward(self, hidden_states, attention_mask,
Mostofa Patwary's avatar
Mostofa Patwary committed
1140
1141
                              encoder_output, enc_dec_attn_mask,
                              rotary_pos_emb, is_first_microbatch):
1142
        """Forward method with activation checkpointing."""
1143
1144
        def custom(start, end, is_transformer_engine=False):
            def custom_forward(*args, **kwargs):
1145
                x_, *args = args
Mohammad's avatar
Mohammad committed
1146
1147
                for index in range(start, end):
                    layer = self._get_layer(index)
1148
                    x_ = layer(x_, *args, **kwargs)
1149
                return x_
1150
1151
1152
1153
1154
1155
            def custom_forward_transformer_engine(*args, **kwargs):
                return custom_forward(*args, is_first_microbatch=is_first_microbatch, **kwargs)
            if not is_transformer_engine:
                return custom_forward
            else:
                return custom_forward_transformer_engine
1156

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1157
        if self.recompute_method == 'uniform':
1158
1159
1160
1161
1162
            # Uniformly divide the total number of Transformer layers and checkpoint
            # the input activation of each divided chunk.
            # A method to further reduce memory usage reducing checkpoints.
            l = 0
            while l < self.num_layers:
1163
1164
1165
1166
1167
1168
                if self.transformer_impl == 'transformer_engine':
                    hidden_states = transformer_engine.pytorch.distributed.checkpoint(
                        custom(l, l + self.recompute_num_layers, is_transformer_engine=True),
                        self.distribute_saved_activations,
                        tensor_parallel.get_cuda_rng_tracker,
                        mpu.get_tensor_model_parallel_group(),
Mostofa Patwary's avatar
Mostofa Patwary committed
1169
1170
                        hidden_states, attention_mask, encoder_output,
                        enc_dec_attn_mask, rotary_pos_emb)
1171
1172
1173
1174
                else:
                    hidden_states = tensor_parallel.checkpoint(
                        custom(l, l + self.recompute_num_layers),
                        self.distribute_saved_activations,
Mostofa Patwary's avatar
Mostofa Patwary committed
1175
1176
                        hidden_states, attention_mask, encoder_output,
                        enc_dec_attn_mask, rotary_pos_emb)
1177

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1178
                l += self.recompute_num_layers
1179

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1180
        elif self.recompute_method == 'block':
1181
1182
1183
1184
            # Checkpoint the input activation of only a set number of individual
            # Transformer layers and skip the rest.
            # A method fully use the device memory removing redundant re-computation.
            for l in range(self.num_layers):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1185
                if l < self.recompute_num_layers:
1186
1187
1188
1189
1190
1191
                    if self.transformer_impl == 'transformer_engine':
                        hidden_states = transformer_engine.pytorch.distributed.checkpoint(
                            custom(l, l + 1, is_transformer_engine=True),
                            self.distribute_saved_activations,
                            tensor_parallel.get_cuda_rng_tracker,
                            mpu.get_tensor_model_parallel_group(),
Mostofa Patwary's avatar
Mostofa Patwary committed
1192
1193
                            hidden_states, attention_mask, encoder_output,
                            enc_dec_attn_mask, rotary_pos_emb)
1194
1195
1196
1197
                    else:
                        hidden_states = tensor_parallel.checkpoint(
                            custom(l, l + 1),
                            self.distribute_saved_activations,
Mostofa Patwary's avatar
Mostofa Patwary committed
1198
1199
                            hidden_states, attention_mask, encoder_output,
                            enc_dec_attn_mask, rotary_pos_emb)
1200
                else:
1201
1202
                    if self.transformer_impl == 'transformer_engine':
                        hidden_states = custom(l, l + 1, is_transformer_engine=True)(
Mostofa Patwary's avatar
Mostofa Patwary committed
1203
1204
                            hidden_states, attention_mask, encoder_output,
                            enc_dec_attn_mask, rotary_pos_emb)
1205
1206
                    else:
                        hidden_states = custom(l, l + 1)(
Mostofa Patwary's avatar
Mostofa Patwary committed
1207
1208
                            hidden_states, attention_mask, encoder_output,
                            enc_dec_attn_mask, rotary_pos_emb)
1209
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1210
            raise ValueError("Invalid activation recompute method.")
1211
1212
1213

        return hidden_states

1214
    def set_input_tensor(self, input_tensor):
1215
1216
1217
1218
1219
1220
1221
        """Set input tensor to be used instead of forward()'s input.

        When doing pipeline parallelism the input from the previous
        stage comes from communication, not from the input, so the
        model's forward_step_func won't have it. This function is thus
        used by internal code to bypass the input provided by the
        forward_step_func"""
1222
1223
        self.input_tensor = input_tensor

1224
    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
1225
                encoder_output=None, enc_dec_attn_mask=None,
Mostofa Patwary's avatar
Mostofa Patwary committed
1226
                inference_params=None, rotary_pos_emb=None):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1227
1228
        # hidden_states: [s, b, h]

1229
        # Checks.
mshoeybi's avatar
mshoeybi committed
1230
        if inference_params:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1231
            assert self.recompute_granularity is None, \
1232
                'inference does not work with activation checkpointing'
1233

1234
        if not self.pre_process:
1235
            # See set_input_tensor()
1236
            hidden_states = self.input_tensor
1237

1238
1239
        # Viewless tensor.
        # - We only need to create a viewless tensor in the case of micro batch
1240
1241
1242
1243
        #   size (mbs) == 1, since in this case, 'hidden_states.transpose()'
        #   above creates a view tensor, and '.contiguous()' is a pass-through.
        #   For mbs >= 2, '.contiguous()' creates a new tensor, eliminating
        #   the need to make it viewless.
1244
1245
1246
1247
        #
        #   However, we don't explicitly check mbs == 1 here because
        #   make_viewless_tensor() has negligible overhead when its input
        #   is already viewless.
1248
        #
1249
1250
1251
1252
        # - For the 'else' case above, calling make_viewless_tensor() here is
        #   likely redundant, since p2p_communication.py (likely originator)
        #   already creates viewless tensors. That said, make_viewless_tensor()
        #   is called here to be future-proof and corner-case-proof.
1253
        hidden_states = core.utils.make_viewless_tensor(
1254
            hidden_states,
1255
1256
            requires_grad=True,
            keep_graph=True,
1257
1258
        )

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1259
        if self.sequence_parallel:
1260
            rng_context = tensor_parallel.get_cuda_rng_tracker().fork()
1261
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1262
            rng_context = nullcontext()
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1263
1264

        with rng_context:
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
            # The fp8_autocast context manager is a no-op when enabled=True
            # The if...else serves to short circuit name resolution for fp8_autocast
            with transformer_engine.pytorch.fp8_autocast(
                enabled=self.use_fp8,
                fp8_recipe=self.fp8_recipe,
                fp8_group=self.fp8_group
            ) if self.use_fp8 else nullcontext():
                # Determine if the current iteration is first microbatch
                if self.num_microbatches_in_previous_step != get_num_microbatches():
                    self.microbatch_count = 0 # Reset count on new batch size rampup interval
                self.num_microbatches_in_previous_step = get_num_microbatches()
                is_first_microbatch = self.microbatch_count % get_num_microbatches() == 0

                # Forward pass.
                if self.recompute_granularity == 'full':
                    hidden_states = self._checkpointed_forward(hidden_states,
                                                               attention_mask,
                                                               encoder_output,
                                                               enc_dec_attn_mask,
Mostofa Patwary's avatar
Mostofa Patwary committed
1284
                                                               rotary_pos_emb,
1285
1286
1287
1288
1289
1290
                                                               is_first_microbatch)
                else:
                    forward_kwargs = {
                        'encoder_output': encoder_output,
                        'enc_dec_attn_mask': enc_dec_attn_mask,
                        'inference_params': inference_params,
Mostofa Patwary's avatar
Mostofa Patwary committed
1291
                        'rotary_pos_emb': rotary_pos_emb,
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
                    }

                    if self.transformer_impl == 'transformer_engine':
                        forward_kwargs['is_first_microbatch'] = is_first_microbatch
                        forward_kwargs['checkpoint_core_attention'] = self.checkpoint_core_attention

                    for index in range(self.num_layers):
                        layer = self._get_layer(index)

                        hidden_states = layer(
                            hidden_states,
                            attention_mask,
                            **forward_kwargs)

                # Skip counter update for eval and activation checkpointing
                if torch.is_grad_enabled() and self.training:
                    self.microbatch_count += 1
mshoeybi's avatar
mshoeybi committed
1309

1310
        # Final layer norm.
1311
        if self.post_process and self.post_layer_norm:
1312
1313
            hidden_states = self.final_layernorm(hidden_states)

1314
        return hidden_states