transformer.py 38 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Transformer."""
import math
import torch
19
import torch.nn.functional as F
20

Mohammad's avatar
Mohammad committed
21
from megatron import get_args
22
from megatron import mpu
23
from .module import MegatronModule
24
from megatron.model.enums import AttnMaskType, ModelType, LayerType, AttnType
25
from megatron.model import LayerNorm
26
27
from megatron.model.fused_softmax import FusedScaleMaskSoftmax
from megatron.model.fused_bias_gelu import bias_gelu_impl
28
from megatron.model.utils import attention_mask_func, openai_gelu, erf_gelu
29
30
31
32
33
34
35
36
37
38
39

""" We use the following notation throughout this file:
     h: hidden size
     n: number of attention heads
     p: number of model parallel partitions
     np: n/p
     hp: h/p
     hn: h/n
     b: batch size
     s: sequence length
     l: number of layers
40
    Transformer takes input of size [s, b, h] and returns a
41
42
43
44
    tensor of the same size. We use the following arguments:
        hyperparameters: transformer hyperparameters
"""

45
46
47
48
49
50

class DropPath(MegatronModule):
    """Drop paths (Stochastic Depth) per sample 
    (when applied in main path of residual blocks).
    """

Vijay Korthikanti's avatar
Vijay Korthikanti committed
51
    def __init__(self, drop_prob=0.):
52
53
54
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

Vijay Korthikanti's avatar
Vijay Korthikanti committed
55
    def forward(self, hidden_state):
56
        if self.drop_prob == 0. or not self.training:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
57
            return hidden_state
58
59
        keep_prob = 1 - self.drop_prob
        # work with diff dim tensors, not just 2D ConvNets
Vijay Korthikanti's avatar
Vijay Korthikanti committed
60
        shape = (hidden_state.shape[0],) + (1,) * (hidden_state.ndim - 1)
61
        random_tensor = keep_prob + \
Vijay Korthikanti's avatar
Vijay Korthikanti committed
62
            torch.rand(shape, dtype=hidden_state.dtype, device=hidden_state.device)
63
        random_tensor.floor_()  # binarize
Vijay Korthikanti's avatar
Vijay Korthikanti committed
64
        output = hidden_state.div(keep_prob) * random_tensor
65
66
67
        return output


68
69
70
71
72
class ParallelMLP(MegatronModule):
    """MLP.

    MLP will take the input with h hidden state, project it to 4*h
    hidden dimension, perform nonlinear transformation, and project the
hwijeen's avatar
hwijeen committed
73
    state back into h hidden dimension.
74
75
    """

76
    def __init__(self, init_method, output_layer_init_method):
77
        super(ParallelMLP, self).__init__()
Mohammad's avatar
Mohammad committed
78
        args = get_args()
79
80
81

        # Project to 4h.
        self.dense_h_to_4h = mpu.ColumnParallelLinear(
Mohammad's avatar
Mohammad committed
82
            args.hidden_size,
83
            args.ffn_hidden_size,
84
            gather_output=False,
85
86
            init_method=init_method,
            skip_bias_add=True)
87

88
89
90
91
92
93
        self.bias_gelu_fusion = args.bias_gelu_fusion
        self.activation_func = F.gelu
        if args.openai_gelu:
            self.activation_func = openai_gelu
        elif args.onnx_safe:
            self.activation_func = erf_gelu
94
95
96

        # Project back to h.
        self.dense_4h_to_h = mpu.RowParallelLinear(
97
            args.ffn_hidden_size,
Mohammad's avatar
Mohammad committed
98
            args.hidden_size,
99
            input_is_parallel=True,
100
101
            init_method=output_layer_init_method,
            skip_bias_add=True)
102

103
104
    def forward(self, hidden_states):

105
106
        # [s, b, 4hp]
        intermediate_parallel, bias_parallel = self.dense_h_to_4h(hidden_states)
107

108
109
110
111
112
113
114
115
116
117
        if self.bias_gelu_fusion:
             intermediate_parallel = \
                     bias_gelu_impl(intermediate_parallel, bias_parallel)
        else:
            intermediate_parallel = \
                self.activation_func(intermediate_parallel + bias_parallel)

        # [s, b, h]
        output, output_bias = self.dense_4h_to_h(intermediate_parallel)
        return output, output_bias
118

rprenger's avatar
rprenger committed
119
120
121
122
class SwitchMLP(MegatronModule):
    """
    Routes input to one of N MLP "experts"
    """
rprenger's avatar
rprenger committed
123
    def __init__(self, init_method, output_layer_init_method):
rprenger's avatar
rprenger committed
124
125
        super(SwitchMLP, self).__init__()
        args = get_args()
rprenger's avatar
rprenger committed
126
        self.router = torch.nn.Linear(args.hidden_size, args.num_experts)
rprenger's avatar
rprenger committed
127
        self.experts = torch.nn.ModuleList()
rprenger's avatar
rprenger committed
128
        for i in range(args.num_experts):
rprenger's avatar
rprenger committed
129
            self.experts.append(ParallelMLP(init_method, output_layer_init_method))
130

rprenger's avatar
rprenger committed
131
132
133
134
135
136
    def forward(self, hidden_states):
        # hidden_states: [b, s, h]
        b = hidden_states.size(0)
        s = hidden_states.size(1)
        h = hidden_states.size(2)
        route = self.router(hidden_states)
rprenger's avatar
rprenger committed
137
        route = torch.nn.functional.softmax(route, dim=2)
rprenger's avatar
rprenger committed
138
        max_prob, max_ind = torch.max(route, dim=2)
139
140
        max_prob = torch.unsqueeze(max_prob, 2) # [b s 1]

rprenger's avatar
rprenger committed
141
142
        # TODO (rprenger) TODO this could be made easier to read
        # Converting [b, s, h] to [b*s, h].
143
144
145
146
        # Each vector could be routed differently
        hidden_states = hidden_states.view(-1, hidden_states.size(2)) # [b*s h]
        max_prob = max_prob.view(-1, max_prob.size(2)) # [b*s 1]
        max_ind = max_ind.view(-1) # [b*s]
rprenger's avatar
rprenger committed
147
148
149

        output_total = torch.empty_like(hidden_states)
        output_bias_total = torch.empty_like(hidden_states)
rprenger's avatar
rprenger committed
150
        #TODO (rprenger) This does each expert in serial, but it could be parallelized
151
        
rprenger's avatar
rprenger committed
152
        for expert_num, expert in enumerate(self.experts):
153
154
            local_indices = (max_ind == expert_num).nonzero()
            hidden = hidden_states[local_indices,:]
rprenger's avatar
rprenger committed
155
156
            output, output_bias = expert(hidden)
            output_bias = output_bias.expand_as(output)
157
158
159
            output_total[local_indices,:] = output
            output_bias_total[local_indices,:] = output_bias

rprenger's avatar
rprenger committed
160
161
        output_total = output_total*max_prob
        output_bias_total = output_bias_total*max_prob
162
163
        output_total = output_total.view(b, s, h)
        output_bias_total = output_bias_total.view(b, s, h)
rprenger's avatar
rprenger committed
164
165

        return output_total, output_bias_total
166

167
class ParallelAttention(MegatronModule):
168
169
170
171
172
    """Parallel self-attention layer abstract class.

    Self-attention layer takes input with size [b, s, h]
    and returns output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
173

174
    def __init__(self, init_method,
175
176
177
178
                 output_layer_init_method, layer_number,
                 attention_type=AttnType.self_attn,
                 attn_mask_type=AttnMaskType.padding):
        super(ParallelAttention, self).__init__()
Mohammad's avatar
Mohammad committed
179
        args = get_args()
Mohammad's avatar
Mohammad committed
180
        self.fp16 = args.fp16
181
        self.bf16 = args.bf16
182

Mohammad's avatar
Mohammad committed
183
184
        self.apply_query_key_layer_scaling = args.apply_query_key_layer_scaling
        self.attention_softmax_in_fp32 = args.attention_softmax_in_fp32
185
186
187
        if self.apply_query_key_layer_scaling:
            self.attention_softmax_in_fp32 = True
        self.layer_number = max(1, layer_number)
188
189
        self.attention_type = attention_type
        self.attn_mask_type = attn_mask_type
190
        self.params_dtype = args.params_dtype
Vijay Korthikanti's avatar
Vijay Korthikanti committed
191
        self.model_parallel_memory_opt = args.model_parallel_memory_opt
192
193

        projection_size = args.kv_channels * args.num_attention_heads
194
195

        # Per attention head and per partition values.
196
        world_size = mpu.get_tensor_model_parallel_world_size()
197
        self.hidden_size_per_partition = mpu.divide(projection_size,
Mohammad's avatar
Mohammad committed
198
                                                    world_size)
199
        self.hidden_size_per_attention_head = mpu.divide(
200
            projection_size, args.num_attention_heads)
201
        self.num_attention_heads_per_partition = mpu.divide(
Mohammad's avatar
Mohammad committed
202
            args.num_attention_heads, world_size)
203
204

        # Strided linear layer.
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
        if attention_type == AttnType.self_attn:
            self.query_key_value = mpu.ColumnParallelLinear(
                args.hidden_size,
                3 * projection_size,
                gather_output=False,
                init_method=init_method)
        else:
            assert attention_type == AttnType.cross_attn
            self.query = mpu.ColumnParallelLinear(
                args.hidden_size,
                projection_size,
                gather_output=False,
                init_method=init_method)

            self.key_value = mpu.ColumnParallelLinear(
                args.hidden_size,
                2 * projection_size,
                gather_output=False,
                init_method=init_method)
224

225
226
227
228
229
230
231
        coeff = None
        self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
        if self.apply_query_key_layer_scaling:
            coeff = self.layer_number
            self.norm_factor *= coeff

        self.scale_mask_softmax = FusedScaleMaskSoftmax(
232
            self.fp16, self.bf16,
233
234
            self.attn_mask_type,
            args.masked_softmax_fusion,
235
            attention_mask_func,
236
237
238
            self.attention_softmax_in_fp32,
            coeff)

239
240
241
        # Dropout. Note that for a single iteration, this layer will generate
        # different outputs on different number of parallel partitions but
        # on average it should not be partition dependent.
Mohammad's avatar
Mohammad committed
242
        self.attention_dropout = torch.nn.Dropout(args.attention_dropout)
243
244
245

        # Output.
        self.dense = mpu.RowParallelLinear(
246
            projection_size,
Mohammad's avatar
Mohammad committed
247
            args.hidden_size,
248
            input_is_parallel=True,
249
250
            init_method=output_layer_init_method,
            skip_bias_add=True)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
251

252
253
254
255
256
257
258
259
260
261
262
263

    def _allocate_memory(self, inference_max_sequence_len, batch_size):
        return torch.empty(
            inference_max_sequence_len,
            batch_size,
            self.num_attention_heads_per_partition,
            self.hidden_size_per_attention_head,
            dtype=self.params_dtype,
            device=torch.cuda.current_device())
        

    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
264
                encoder_output=None, inference_params=None):
265
        # hidden_states: [sq, b, h]
266

267
268
269
270

        # =================================================
        # Pre-allocate memory for key-values for inference.
        # =================================================
mshoeybi's avatar
mshoeybi committed
271
        if inference_params:
272
            if self.layer_number not in inference_params.key_value_memory_dict:
mshoeybi's avatar
mshoeybi committed
273
                inf_max_seq_len = inference_params.max_sequence_len
mshoeybi's avatar
mshoeybi committed
274
                inf_max_batch_size = inference_params.max_batch_size
275
                inference_key_memory = self._allocate_memory(
mshoeybi's avatar
mshoeybi committed
276
                    inf_max_seq_len, inf_max_batch_size)
277
                inference_value_memory = self._allocate_memory(
mshoeybi's avatar
mshoeybi committed
278
                    inf_max_seq_len, inf_max_batch_size)
279
280
281
282
283
                inference_params.key_value_memory_dict[self.layer_number] = (
                    inference_key_memory, inference_value_memory)
            else:
                inference_key_memory, inference_value_memory = \
                    inference_params.key_value_memory_dict[self.layer_number]
mshoeybi's avatar
mshoeybi committed
284

285

286
287
288
        # =====================
        # Query, Key, and Value
        # =====================
289

290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
        if self.attention_type == AttnType.self_attn:
            # Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
            mixed_x_layer, _ = self.query_key_value(hidden_states)

            # [sq, b, (np * 3 * hn)] --> [sq, b, np, 3 * hn]
            new_tensor_shape = mixed_x_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 3 * self.hidden_size_per_attention_head)
            mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)

            # [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
            (query_layer,
             key_layer,
             value_layer) = mpu.split_tensor_along_last_dim(mixed_x_layer, 3)
        else:
            # Attention heads [sk, b, h] --> [sk, b, (np * 2 * hn)]
            mixed_kv_layer, _ = self.key_value(encoder_output)

            # [sk, b, (np * 2 * hn)] --> [sk, b, np, 2 * hn]
            new_tensor_shape = mixed_kv_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 2 * self.hidden_size_per_attention_head)
            mixed_kv_layer = mixed_kv_layer.view(*new_tensor_shape)

            # [sk, b, np, 2 * hn] --> 2 [sk, b, np, hn]
            (key_layer,
             value_layer) = mpu.split_tensor_along_last_dim(mixed_kv_layer, 2)

            # Attention head [sq, b, h] --> [sq, b, hp]
            query_layer, _ = self.query(hidden_states)
            # [sq, b, hp] --> [sq, b, np, hn]
            new_tensor_shape = query_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 self.hidden_size_per_attention_head)
            query_layer = query_layer.view(*new_tensor_shape)
325
326


mshoeybi's avatar
mshoeybi committed
327
328
329
        # ==================================
        # Adjust key and value for inference
        # ==================================
330

mshoeybi's avatar
mshoeybi committed
331
        if inference_params:
mshoeybi's avatar
mshoeybi committed
332
333
            batch_start = inference_params.batch_size_offset
            batch_end = batch_start + key_layer.size(1)
334
            assert batch_end <= inference_key_memory.size(1)
mshoeybi's avatar
mshoeybi committed
335
336
            sequence_start = inference_params.sequence_len_offset
            sequence_end = sequence_start + key_layer.size(0)
337
            assert sequence_end <= inference_key_memory.size(0)
338
            # Copy key and values.
339
340
341
342
343
            inference_key_memory[sequence_start:sequence_end,
                                 batch_start:batch_end, ...] = key_layer
            inference_value_memory[sequence_start:sequence_end,
                                   batch_start:batch_end, ...] = value_layer
            key_layer = inference_key_memory[
mshoeybi's avatar
mshoeybi committed
344
                :sequence_end, batch_start:batch_end, ...]
345
            value_layer = inference_value_memory[
mshoeybi's avatar
mshoeybi committed
346
                :sequence_end, batch_start:batch_end, ...]
347

348

349
350
351
        # ===================================
        # Raw attention scores. [b, np, s, s]
        # ===================================
352

353
        # [b, np, sq, sk]
354
355
356
        output_size = (query_layer.size(1),
                       query_layer.size(2),
                       query_layer.size(0),
357
                       key_layer.size(0))
358

359
        # [sq, b, np, hn] -> [sq, b * np, hn]
360
361
        query_layer = query_layer.view(output_size[2],
                                       output_size[0] * output_size[1], -1)
362
        # [sk, b, np, hn] -> [sk, b * np, hn]
363
364
365
        key_layer = key_layer.view(output_size[3],
                                   output_size[0] * output_size[1], -1)

366
        # preallocting result tensor: [b * np, sq, sk]
367
        matmul_result = torch.empty(
368
369
            output_size[0]*output_size[1],
            output_size[2],
370
            output_size[3],
371
            dtype=query_layer.dtype,
372
373
            device=torch.cuda.current_device())

374
        # Raw attention scores. [b * np, sq, sk]
375
376
        matmul_result = torch.baddbmm(
            matmul_result,
377
            query_layer.transpose(0, 1),   # [b * np, sq, hn]
378
            key_layer.transpose(0, 1).transpose(1, 2),  # [b * np, hn, sk]
379
380
            beta=0.0, alpha=(1.0/self.norm_factor))

381
        # change view to [b, np, sq, sk]
382
383
        attention_scores = matmul_result.view(*output_size)

384

385
386
387
        # ===========================
        # Attention probs and dropout
        # ===========================
388

389
        # attention scores and attention mask [b, np, sq, sk]
390
391
        attention_probs = self.scale_mask_softmax(attention_scores,
                                                  attention_mask)
392

393
394
        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
395
396
397
398
399
        
        if not self.model_parallel_memory_opt:
            with mpu.get_cuda_rng_tracker().fork():
                attention_probs = self.attention_dropout(attention_probs)
        else:
400
401
402
            attention_probs = self.attention_dropout(attention_probs)

        # =========================
403
        # Context layer. [sq, b, hp]
404
405
        # =========================

406
407
        # value_layer -> context layer.
        # [sk, b, np, hn] --> [b, np, sq, hn]
408

409
        # context layer shape: [b, np, sq, hn]
410
411
412
413
        output_size = (value_layer.size(1),
                       value_layer.size(2),
                       query_layer.size(0),
                       value_layer.size(3))
414

415
        # change view [sk, b * np, hn]
416
        value_layer = value_layer.view(value_layer.size(0),
417
                                       output_size[0] * output_size[1], -1)
418

419
        # change view [b * np, sq, sk]
420
421
        attention_probs = attention_probs.view(output_size[0] * output_size[1],
                                               output_size[2], -1)
422

423
        # matmul: [b * np, sq, hn]
424
        context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))
425

426
        # change view [b, np, sq, hn]
427
428
        context_layer = context_layer.view(*output_size)

429
        # [b, np, sq, hn] --> [sq, b, np, hn]
430
431
        context_layer = context_layer.permute(2, 0, 1, 3).contiguous()

432
        # [sq, b, np, hn] --> [sq, b, hp]
433
434
435
436
437
        new_context_layer_shape = context_layer.size()[:-2] + \
            (self.hidden_size_per_partition,)
        context_layer = context_layer.view(*new_context_layer_shape)

        # =================
438
        # Output. [sq, b, h]
439
440
441
        # =================

        output, bias = self.dense(context_layer)
442

443
444
445
        return output, bias


446
def bias_dropout_add(x, bias, residual, prob, training):
447
448
449
450
451
452
453
454
455
456
457
458
459
    # type: (Tensor, Tensor, Tensor, float, bool) -> Tensor
    out = torch.nn.functional.dropout(x + bias, p=prob, training=training)
    out = residual + out
    return out


def get_bias_dropout_add(training):
    def _bias_dropout_add(x, bias, residual, prob):
        return bias_dropout_add(x, bias, residual, prob, training)
    return _bias_dropout_add


@torch.jit.script
460
461
462
463
def bias_dropout_add_fused_train(x: torch.Tensor,
                                 bias: torch.Tensor,
                                 residual: torch.Tensor,
                                 prob: float) -> torch.Tensor:
464
465
466
467
    return bias_dropout_add(x, bias, residual, prob, True)


@torch.jit.script
468
469
470
471
def bias_dropout_add_fused_inference(x: torch.Tensor,
                                     bias: torch.Tensor,
                                     residual: torch.Tensor,
                                     prob: float) -> torch.Tensor:
472
    return bias_dropout_add(x, bias, residual, prob, False)
473
474
475
476
477


class ParallelTransformerLayer(MegatronModule):
    """A single transformer layer.

478
    Transformer layer takes input with size [b, s, h] and returns an
479
480
    output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
481

482
483
    def __init__(self, init_method, output_layer_init_method,
                 layer_number, layer_type=LayerType.encoder,
484
485
                 self_attn_mask_type=AttnMaskType.padding,
                 drop_path_rate=0.):
Mohammad's avatar
Mohammad committed
486
        args = get_args()
487
488

        super(ParallelTransformerLayer, self).__init__()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
489
        self.layer_number = layer_number
490
        self.layer_type = layer_type
491
492

        self.apply_residual_connection_post_layernorm \
Mohammad's avatar
Mohammad committed
493
            = args.apply_residual_connection_post_layernorm
494

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
495
496
497
        self.bf16 = args.bf16
        self.fp32_residual_connection = args.fp32_residual_connection

498
499
        # Layernorm on the input data.
        self.input_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
500
            args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
501
            eps=args.layernorm_epsilon,
502
503
            no_persist_layer_norm=args.no_persist_layer_norm,
            sequence_parallel=args.model_parallel_memory_opt)
504
505

        # Self attention.
506
507
508
509
510
511
        self.self_attention = ParallelAttention(
            init_method,
            output_layer_init_method,
            layer_number,
            attention_type=AttnType.self_attn,
            attn_mask_type=self_attn_mask_type)
512
513
        self.hidden_dropout = args.hidden_dropout
        self.bias_dropout_fusion = args.bias_dropout_fusion
Vijay Korthikanti's avatar
Vijay Korthikanti committed
514
        self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else None
515

516
        # Layernorm on the attention output
517
        self.post_attention_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
518
            args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
519
            eps=args.layernorm_epsilon,
520
521
            no_persist_layer_norm=args.no_persist_layer_norm,
            sequence_parallel=args.model_parallel_memory_opt)
522

523
524
525
526
527
528
529
530
531
        if self.layer_type == LayerType.decoder:
            self.inter_attention = ParallelAttention(
                init_method,
                output_layer_init_method,
                layer_number,
                attention_type=AttnType.cross_attn)
            # Layernorm on the attention output.
            self.post_inter_attention_layernorm = LayerNorm(
                args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
532
                eps=args.layernorm_epsilon,
533
534
                no_persist_layer_norm=args.no_persist_layer_norm,
                sequence_parallel=args.model_parallel_memory_opt)
535

536
        # MLP
rprenger's avatar
rprenger committed
537
538
539
540
        if args.num_experts is not None:
            self.mlp = SwitchMLP(init_method, output_layer_init_method)
        else:
            self.mlp = ParallelMLP(init_method, output_layer_init_method)
541

542
    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
543
544
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
545
546
        # hidden_states: [b, s, h]

547
        # Layer norm at the beginning of the transformer layer.
548
549
        layernorm_output = self.input_layernorm(hidden_states)
        # Self attention.
550
        attention_output, attention_bias = \
551
552
553
            self.self_attention(
                layernorm_output,
                attention_mask,
mshoeybi's avatar
mshoeybi committed
554
                inference_params=inference_params)
555

556
557
        # Residual connection.
        if self.apply_residual_connection_post_layernorm:
558
559
560
561
            residual = layernorm_output
        else:
            residual = hidden_states

Vijay Korthikanti's avatar
Vijay Korthikanti committed
562
        if self.drop_path is None:
563
564
565
566
567
568
569
570
571
            # jit scripting for a nn.module (with dropout) is not
            # trigerring the fusion kernel. For now, we use two
            # different nn.functional routines to account for varying
            # dropout semantics during training and inference phases.
            if self.bias_dropout_fusion:
                if self.training:
                    bias_dropout_add_func = bias_dropout_add_fused_train
                else:
                    bias_dropout_add_func = bias_dropout_add_fused_inference
572
            else:
573
                bias_dropout_add_func = get_bias_dropout_add(self.training)
574

575
576
577
578
579
580
581
582
583
584
585
586
            # re-enable torch grad to enable fused optimization.
            with torch.enable_grad():
                layernorm_input = bias_dropout_add_func(
                    attention_output,
                    attention_bias.expand_as(residual),
                    residual,
                    self.hidden_dropout)
        else:
            out = torch.nn.functional.dropout(attention_output + attention_bias,
                                              p=self.hidden_dropout,
                                              training=self.training)
            layernorm_input = residual + self.drop_path(out)
587

588
589
590
        # Layer norm post the self attention.
        layernorm_output = self.post_attention_layernorm(layernorm_input)

591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
        if self.layer_type == LayerType.decoder:
            attention_output, attention_bias = \
                self.inter_attention(layernorm_output,
                                     enc_dec_attn_mask,
                                     encoder_output=encoder_output)
            # residual connection
            if self.apply_residual_connection_post_layernorm:
                residual = layernorm_output
            else:
                residual = layernorm_input

            # re-enable torch grad to enable fused optimization.
            with torch.enable_grad():
                layernorm_input = bias_dropout_add_func(
                    attention_output,
                    attention_bias.expand_as(residual),
                    residual,
                    self.hidden_dropout)

            # Layer norm post the decoder attention
            layernorm_output = self.post_inter_attention_layernorm(layernorm_input)

613
        # MLP.
614
        mlp_output, mlp_bias = self.mlp(layernorm_output)
615

616
617
        # Second residual connection.
        if self.apply_residual_connection_post_layernorm:
618
            residual = layernorm_output
619
        else:
620
621
            residual = layernorm_input

Vijay Korthikanti's avatar
Vijay Korthikanti committed
622
        if self.drop_path is None:
623
624
625
626
627
628
629
630
631
632
633
634
            # re-enable torch grad to enable fused optimization.
            with torch.enable_grad():
                output = bias_dropout_add_func(
                    mlp_output,
                    mlp_bias.expand_as(residual),
                    residual,
                    self.hidden_dropout)
        else:
            out = torch.nn.functional.dropout(mlp_output + mlp_bias,
                                              p=self.hidden_dropout,
                                              training=self.training)
            output = residual + self.drop_path(out)
635
636
637
638

        return output


639
640
641
class NoopTransformerLayer(MegatronModule):
    """A single 'no-op' transformer layer.

Lawrence McAfee's avatar
Lawrence McAfee committed
642
    The sole purpose of this layer is for when a standalone embedding layer
643
    is used (i.e., args.standalone_embedding_stage == True). In this case,
Lawrence McAfee's avatar
Lawrence McAfee committed
644
645
646
647
648
649
650
651
652
    zero transformer layers are assigned when pipeline rank == 0. Additionally,
    when virtual pipeline rank >= 1, zero total model parameters are created
    (virtual rank 0 contains the input embedding). This results in the model's
    input and output tensors being the same, which causes an error when
    performing certain memory optimiations on the output tensor (e.g.,
    deallocating it). Thus, this layer disconnects the input from the output
    via a clone. Since ranks containing a no-op layer are generally under-
    utilized (both compute and memory), there's no worry of any performance
    degredation.
653
654
655
656
657
658
659
660
661
662
663
664
    """

    def __init__(self, layer_number):
        super().__init__()
        self.layer_number = layer_number

    def forward(self, hidden_states, attention_mask,
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
        return hidden_states.clone()


665
666
667
class ParallelTransformer(MegatronModule):
    """Transformer class."""

668
    def __init__(self, init_method, output_layer_init_method,
669
                 layer_type=LayerType.encoder,
670
                 self_attn_mask_type=AttnMaskType.padding,
671
672
                 pre_process=True, post_process=True,
                 drop_path_rate=0.0):
673
        super(ParallelTransformer, self).__init__()
Mohammad's avatar
Mohammad committed
674
        args = get_args()
675

676
677
        self.layer_type = layer_type
        self.model_type = args.model_type
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
678
        self.bf16 = args.bf16
679
        self.fp32_residual_connection = args.fp32_residual_connection
680
681
682
        self.pre_process = pre_process
        self.post_process = post_process
        self.input_tensor = None
683
        self.drop_path_rate = drop_path_rate
684

685
        # Store activation checkpoiting flag.
686
687
        self.activations_checkpoint_method = args.activations_checkpoint_method
        self.activations_checkpoint_num_layers = args.activations_checkpoint_num_layers
688
689
        self.distribute_checkpointed_activations = \
            args.distribute_checkpointed_activations and not args.model_parallel_memory_opt
690

691
692
        self.model_parallel_memory_opt = args.model_parallel_memory_opt

693
        # Number of layers.
694
695
        self.num_layers = mpu.get_num_layers(
            args, args.model_type == ModelType.encoder_and_decoder)
Mohammad's avatar
Mohammad committed
696

Vijay Korthikanti's avatar
Vijay Korthikanti committed
697
        self.drop_path_rates = [rate.item() for rate in torch.linspace(0, self.drop_path_rate, args.num_layers)]
698

Mohammad's avatar
Mohammad committed
699
700
        # Transformer layers.
        def build_layer(layer_number):
701
            return ParallelTransformerLayer(
702
703
704
                init_method,
                output_layer_init_method,
                layer_number,
705
                layer_type=layer_type,
706
                self_attn_mask_type=self_attn_mask_type,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
707
                drop_path_rate=self.drop_path_rates[layer_number - 1])
708
709
        if args.virtual_pipeline_model_parallel_size is not None:
            assert args.num_layers % args.virtual_pipeline_model_parallel_size == 0, \
710
711
                'num_layers_per_stage must be divisible by ' \
                'virtual_pipeline_model_parallel_size'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
712
            assert args.model_type != ModelType.encoder_and_decoder
713
714
            # Number of layers in each model chunk is the number of layers in the stage,
            # divided by the number of model chunks in a stage.
715
            self.num_layers = self.num_layers // args.virtual_pipeline_model_parallel_size
716
717
718
719
720
721
722
723
            # With 8 layers, 2 stages, and 4 model chunks, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0]  [2]  [4]  [6]
            # Stage 1: [1]  [3]  [5]  [7]
            # With 8 layers, 2 stages, and 2 virtual stages, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0, 1]  [4, 5]
            # Stage 1: [2, 3]  [6, 7]
724
            offset = mpu.get_virtual_pipeline_model_parallel_rank() * (
725
                args.num_layers // args.virtual_pipeline_model_parallel_size) + \
726
727
                (mpu.get_pipeline_model_parallel_rank() * self.num_layers)
        else:
728
            # Each stage gets a contiguous set of layers.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
729
730
            if args.model_type == ModelType.encoder_and_decoder and \
                    mpu.get_pipeline_model_parallel_world_size() > 1:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
731
732
733
734
735
736
737
738
                pipeline_rank = mpu.get_pipeline_model_parallel_rank()
                if layer_type == LayerType.encoder:
                    offset = pipeline_rank * self.num_layers
                else:
                    num_ranks_in_enc = args.pipeline_model_parallel_split_rank
                    offset = (pipeline_rank - num_ranks_in_enc) * self.num_layers
            else:
                offset = mpu.get_pipeline_model_parallel_rank() * self.num_layers
739

740
        if self.num_layers == 0:
Lawrence McAfee's avatar
Lawrence McAfee committed
741
            # When a standalone embedding stage is used (e.g.,
742
            # args.standalone_embedding_stage == True), virtual pipeline ranks
743
            # on pipeline rank 0 will have zero transformer layers assigned to
Lawrence McAfee's avatar
Lawrence McAfee committed
744
745
746
747
748
            # them. This results in the model's input and output tensors to be
            # the same, which will cause failure for certain output tensor
            # optimizations (e.g., pipeline output deallocation). To remedy
            # this, we assign a 'no-op' layer on these ranks, which will
            # disconnect the input tensor from the output tensor.
749
750
751
752
753
            self.num_layers = 1
            self.layers = torch.nn.ModuleList([ NoopTransformerLayer(1) ])
        else:
            self.layers = torch.nn.ModuleList(
                [build_layer(i + 1 + offset) for i in range(self.num_layers)])
754

755
        if self.post_process:
756
757
758
            # Final layer norm before output.
            self.final_layernorm = LayerNorm(
                args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
759
                eps=args.layernorm_epsilon,
760
761
                no_persist_layer_norm=args.no_persist_layer_norm,
                sequence_parallel=args.model_parallel_memory_opt)
762

Mohammad's avatar
Mohammad committed
763
    def _get_layer(self, layer_number):
764
        return self.layers[layer_number]
Mohammad's avatar
Mohammad committed
765

766
767
    def _checkpointed_forward(self, hidden_states, attention_mask,
                              encoder_output, enc_dec_attn_mask):
768
769
770
771
        """Forward method with activation checkpointing."""
        def custom(start, end):
            def custom_forward(*inputs):
                x_ = inputs[0]
772
773
774
                attention_mask = inputs[1]
                encoder_output = inputs[2]
                enc_dec_attn_mask = inputs[3]
Mohammad's avatar
Mohammad committed
775
776
                for index in range(start, end):
                    layer = self._get_layer(index)
777
                    x_ = layer(x_, attention_mask, encoder_output, enc_dec_attn_mask)
778
779
780
                return x_
            return custom_forward

781
782
783
784
785
786
787
788
        if self.activations_checkpoint_method == 'uniform':
            # Uniformly divide the total number of Transformer layers and checkpoint
            # the input activation of each divided chunk.
            # A method to further reduce memory usage reducing checkpoints.
            l = 0
            while l < self.num_layers:
                hidden_states = mpu.checkpoint(
                    custom(l, l + self.activations_checkpoint_num_layers),
789
                    self.distribute_checkpointed_activations,
790
791
792
793
794
795
796
797
798
799
                    hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
                l += self.activations_checkpoint_num_layers
        elif self.activations_checkpoint_method == 'block':
            # Checkpoint the input activation of only a set number of individual
            # Transformer layers and skip the rest.
            # A method fully use the device memory removing redundant re-computation.
            for l in range(self.num_layers):
                if l < self.activations_checkpoint_num_layers:
                    hidden_states = mpu.checkpoint(
                        custom(l, l + 1),
800
                        self.distribute_checkpointed_activations,
801
802
803
804
805
806
                        hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
                else:
                    hidden_states = custom(l, l + 1)(
                        hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
        else:
            raise ValueError("Invalid activation checkpoint method.")
807
808
809

        return hidden_states

810
    def set_input_tensor(self, input_tensor):
811
812
813
814
815
816
817
        """Set input tensor to be used instead of forward()'s input.

        When doing pipeline parallelism the input from the previous
        stage comes from communication, not from the input, so the
        model's forward_step_func won't have it. This function is thus
        used by internal code to bypass the input provided by the
        forward_step_func"""
818
819
        self.input_tensor = input_tensor

820
    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
821
822
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
823

824
        # Checks.
mshoeybi's avatar
mshoeybi committed
825
        if inference_params:
826
            assert self.activations_checkpoint_method is None, \
827
                'inference does not work with activation checkpointing'
828

829
        if self.pre_process:
830
            # Data format change to avoid explicit tranposes : [b s h] --> [s b h].
mshoeybi's avatar
mshoeybi committed
831
            # If the input flag for fp32 residual connection is set, convert for float.
832
833
            if self.fp32_residual_connection:
                hidden_states = hidden_states.transpose(0, 1).contiguous().float()
mshoeybi's avatar
mshoeybi committed
834
            # Otherwise, leave it as is.
835
836
            else:
                hidden_states = hidden_states.transpose(0, 1).contiguous()
837
838

            if self.model_parallel_memory_opt:
839
                hidden_states = mpu.scatter_to_sequence_parallel_region(hidden_states)
840

841
        else:
842
            # See set_input_tensor()
843
            hidden_states = self.input_tensor
844

845
846
        # Viewless tensor.
        # - We only need to create a viewless tensor in the case of micro batch
847
848
849
850
        #   size (mbs) == 1, since in this case, 'hidden_states.transpose()'
        #   above creates a view tensor, and '.contiguous()' is a pass-through.
        #   For mbs >= 2, '.contiguous()' creates a new tensor, eliminating
        #   the need to make it viewless.
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
        #
        #   However, we don't explicitly check mbs == 1 here because
        #   make_viewless_tensor() has negligible overhead when its input
        #   is already viewless.
        # 
        # - For the 'else' case above, calling make_viewless_tensor() here is
        #   likely redundant, since p2p_communication.py (likely originator)
        #   already creates viewless tensors. That said, make_viewless_tensor()
        #   is called here to be future-proof and corner-case-proof.
        hidden_states = mpu.make_viewless_tensor(
            hidden_states,
            requires_grad = True,
            keep_graph = True,
        )

        # Transpose encoder output.
867
868
        if encoder_output is not None and \
                not self.model_parallel_memory_opt:
869
            encoder_output = encoder_output.transpose(0, 1).contiguous()
870
871
872
            if self.model_parallel_memory_opt:
                encoder_output = mpu.scatter_to_sequence_parallel_region(encoder_output)

Vijay Korthikanti's avatar
Vijay Korthikanti committed
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
        if self.model_parallel_memory_opt:
            with mpu.get_cuda_rng_tracker().fork():
                # Forward pass.
                if self.activations_checkpoint_method is not None:
                    hidden_states = self._checkpointed_forward(hidden_states,
                                                               attention_mask,
                                                               encoder_output,
                                                               enc_dec_attn_mask)
                else:
                    for index in range(self.num_layers):
                        layer = self._get_layer(index)
                        hidden_states = layer(
                            hidden_states,
                            attention_mask,
                            encoder_output=encoder_output,
                            enc_dec_attn_mask=enc_dec_attn_mask,
                            inference_params=inference_params)
890
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
            # Forward pass.
            if self.activations_checkpoint_method is not None:
                hidden_states = self._checkpointed_forward(hidden_states,
                                                           attention_mask,
                                                           encoder_output,
                                                           enc_dec_attn_mask)
            else:
                for index in range(self.num_layers):
                    layer = self._get_layer(index)
                    hidden_states = layer(
                        hidden_states,
                        attention_mask,
                        encoder_output=encoder_output,
                        enc_dec_attn_mask=enc_dec_attn_mask,
                        inference_params=inference_params)
mshoeybi's avatar
mshoeybi committed
906

907
        # Final layer norm.
908
        if self.post_process:
909
            # Reverting data format change [s b h] --> [b s h].
910
911
            hidden_states = self.final_layernorm(hidden_states)

Vijay Korthikanti's avatar
Vijay Korthikanti committed
912
913
            if self.layer_type == LayerType.encoder and \
                    self.model_type == ModelType.encoder_and_decoder and \
914
915
916
                    self.model_parallel_memory_opt:
                output = hidden_states
            else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
917

918
919
                if self.model_parallel_memory_opt:
                    hidden_states = mpu.gather_from_sequence_parallel_region(hidden_states)
920

921
                output = hidden_states.transpose(0, 1).contiguous()
922
923
        else:
            output = hidden_states
924

925
        return output