transformer.py 57.2 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
2
3
4

"""Transformer."""
import math
5
from contextlib import nullcontext
6
import torch
7
import torch.nn.functional as F
8

9
from megatron import get_timers, get_args, core, get_num_microbatches
10
from .module import MegatronModule
11
from megatron.core import mpu, tensor_parallel
12
from megatron.core.enums import ModelType
13
from megatron.model import LayerNorm
14
from megatron.model.enums import AttnMaskType, LayerType, AttnType
15
16
from megatron.model.fused_softmax import FusedScaleMaskSoftmax
from megatron.model.fused_bias_gelu import bias_gelu_impl
Mostofa Patwary's avatar
Mostofa Patwary committed
17
from megatron.model.rotary_pos_embedding import apply_rotary_pos_emb
18
from megatron.model.utils import attention_mask_func, openai_gelu, erf_gelu
19

20
21
22
23
24
25
26
27
28
29
try:
    from einops import rearrange
except ImportError:
    rearrange = None

try:
    from flash_attn.flash_attn_interface import flash_attn_unpadded_func
except ImportError:
    flash_attn_unpadded_func = None

30
31
32
33
34
35
36
37
38
39
""" We use the following notation throughout this file:
     h: hidden size
     n: number of attention heads
     p: number of model parallel partitions
     np: n/p
     hp: h/p
     hn: h/n
     b: batch size
     s: sequence length
     l: number of layers
40
    Transformer takes input of size [s, b, h] and returns a
41
42
43
44
    tensor of the same size. We use the following arguments:
        hyperparameters: transformer hyperparameters
"""

45
class DropPath(MegatronModule):
46
    """Drop paths (Stochastic Depth) per sample
47
48
49
    (when applied in main path of residual blocks).
    """

Vijay Korthikanti's avatar
Vijay Korthikanti committed
50
    def __init__(self, drop_prob=0.):
51
52
53
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

Vijay Korthikanti's avatar
Vijay Korthikanti committed
54
    def forward(self, hidden_state):
55
        if self.drop_prob == 0. or not self.training:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
56
            return hidden_state
57
58
        keep_prob = 1 - self.drop_prob
        # work with diff dim tensors, not just 2D ConvNets
59
60
        # hidden_state: [s, b, h]
        shape = (1,) + (hidden_state.shape[1],) + (1,) * (hidden_state.ndim - 2)
61
        random_tensor = keep_prob + \
Vijay Korthikanti's avatar
Vijay Korthikanti committed
62
            torch.rand(shape, dtype=hidden_state.dtype, device=hidden_state.device)
63
        random_tensor.floor_()  # binarize
Vijay Korthikanti's avatar
Vijay Korthikanti committed
64
        output = hidden_state.div(keep_prob) * random_tensor
65
66
        return output

67
68
69
70
71
72
73
74
75
76
77
def _args_to_kwargs():
    args = get_args()

    common_kwargs = {
        "params_dtype": args.params_dtype,
        "use_cpu_initialization": args.use_cpu_initialization,
        "perform_initialization": args.perform_initialization,
        "gradient_accumulation_fusion": args.gradient_accumulation_fusion,
        "sequence_parallel_enabled": args.sequence_parallel,
    }
    return common_kwargs
78

79
80
81
82
83
class ParallelMLP(MegatronModule):
    """MLP.

    MLP will take the input with h hidden state, project it to 4*h
    hidden dimension, perform nonlinear transformation, and project the
hwijeen's avatar
hwijeen committed
84
    state back into h hidden dimension.
85
86
    """

87
    def __init__(self, init_method, output_layer_init_method):
88
        super(ParallelMLP, self).__init__()
Mohammad's avatar
Mohammad committed
89
        args = get_args()
90

91
        self.add_bias = args.add_bias_linear
92

93
        # Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
94
        self.dense_h_to_4h = tensor_parallel.ColumnParallelLinear(
Mohammad's avatar
Mohammad committed
95
            args.hidden_size,
96
97
            args.ffn_hidden_size * 2 if args.swiglu else args.ffn_hidden_size,
            bias=self.add_bias,
98
            gather_output=False,
99
            init_method=init_method,
100
101
102
            skip_bias_add=True,
            async_tensor_model_parallel_allreduce=args.async_tensor_model_parallel_allreduce,
            **_args_to_kwargs())
103

104
105
106
107
        self.bias_gelu_fusion = False
        self.activation_func = None
        self.swiglu = args.swiglu

108
109
110
111
        if args.openai_gelu:
            self.activation_func = openai_gelu
        elif args.onnx_safe:
            self.activation_func = erf_gelu
112
113
114
115
116
117
118
119
120
121
122
123
        elif args.swiglu:
            def swiglu(x):
                x = torch.chunk(x, 2, dim=-1)
                return F.silu(x[0]) * x[1]
            self.activation_func = swiglu
        elif args.squared_relu:
            def squared_relu(x):
                return torch.pow(F.relu(x), 2)
            self.activation_func = squared_relu
        else:
            self.bias_gelu_fusion = args.bias_gelu_fusion
            self.activation_func = F.gelu
124
125

        # Project back to h.
126
        self.dense_4h_to_h = tensor_parallel.RowParallelLinear(
127
            args.ffn_hidden_size,
Mohammad's avatar
Mohammad committed
128
            args.hidden_size,
129
            bias=self.add_bias,
130
            input_is_parallel=True,
131
            init_method=output_layer_init_method,
132
133
            skip_bias_add=True,
            **_args_to_kwargs())
134

135
136
    def forward(self, hidden_states):

137
138
        # [s, b, 4hp]
        intermediate_parallel, bias_parallel = self.dense_h_to_4h(hidden_states)
139

140
        if self.bias_gelu_fusion:
141
142
143
            assert self.add_bias is True
            assert self.activation_func == F.gelu
            intermediate_parallel = bias_gelu_impl(intermediate_parallel, bias_parallel)
144
        else:
Jared Casper's avatar
Jared Casper committed
145
            if bias_parallel is not None:
146
147
                intermediate_parallel = intermediate_parallel + bias_parallel
            intermediate_parallel = self.activation_func(intermediate_parallel)
148
149
150
151

        # [s, b, h]
        output, output_bias = self.dense_4h_to_h(intermediate_parallel)
        return output, output_bias
152

rprenger's avatar
rprenger committed
153
154
155
156
class SwitchMLP(MegatronModule):
    """
    Routes input to one of N MLP "experts"
    """
rprenger's avatar
rprenger committed
157
    def __init__(self, init_method, output_layer_init_method):
rprenger's avatar
rprenger committed
158
159
        super(SwitchMLP, self).__init__()
        args = get_args()
rprenger's avatar
rprenger committed
160
        self.router = torch.nn.Linear(args.hidden_size, args.num_experts)
rprenger's avatar
rprenger committed
161
        self.experts = torch.nn.ModuleList()
rprenger's avatar
rprenger committed
162
        for i in range(args.num_experts):
rprenger's avatar
rprenger committed
163
            self.experts.append(ParallelMLP(init_method, output_layer_init_method))
164

rprenger's avatar
rprenger committed
165
    def forward(self, hidden_states):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
166
167
168
        # hidden_states: [s, b, h]
        s = hidden_states.size(0)
        b = hidden_states.size(1)
rprenger's avatar
rprenger committed
169
170
        h = hidden_states.size(2)
        route = self.router(hidden_states)
rprenger's avatar
rprenger committed
171
        route = torch.nn.functional.softmax(route, dim=2)
rprenger's avatar
rprenger committed
172
        max_prob, max_ind = torch.max(route, dim=2)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
173
        max_prob = torch.unsqueeze(max_prob, 2) # [s b 1]
174

rprenger's avatar
rprenger committed
175
        # TODO (rprenger) TODO this could be made easier to read
Vijay Korthikanti's avatar
Vijay Korthikanti committed
176
        # Converting [s, b, h] to [s*b, h].
177
        # Each vector could be routed differently
Vijay Korthikanti's avatar
Vijay Korthikanti committed
178
179
180
        hidden_states = hidden_states.view(-1, hidden_states.size(2)) # [s*b h]
        max_prob = max_prob.view(-1, max_prob.size(2)) # [s*b 1]
        max_ind = max_ind.view(-1) # [s*b]
rprenger's avatar
rprenger committed
181
182
183

        output_total = torch.empty_like(hidden_states)
        output_bias_total = torch.empty_like(hidden_states)
rprenger's avatar
rprenger committed
184
        #TODO (rprenger) This does each expert in serial, but it could be parallelized
185

rprenger's avatar
rprenger committed
186
        for expert_num, expert in enumerate(self.experts):
187
188
            local_indices = (max_ind == expert_num).nonzero()
            hidden = hidden_states[local_indices,:]
rprenger's avatar
rprenger committed
189
190
            output, output_bias = expert(hidden)
            output_bias = output_bias.expand_as(output)
191
192
193
            output_total[local_indices,:] = output
            output_bias_total[local_indices,:] = output_bias

rprenger's avatar
rprenger committed
194
195
        output_total = output_total*max_prob
        output_bias_total = output_bias_total*max_prob
Vijay Korthikanti's avatar
Vijay Korthikanti committed
196
197
        output_total = output_total.view(s, b, h)
        output_bias_total = output_bias_total.view(s, b, h)
rprenger's avatar
rprenger committed
198
199

        return output_total, output_bias_total
200

201
202

class CoreAttention(MegatronModule):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
203

204
205
206
207
208
209
210
211
212
213
214
215
216
    def __init__(self, layer_number,
                 attn_mask_type=AttnMaskType.padding):
        super(CoreAttention, self).__init__()
        args = get_args()
        self.fp16 = args.fp16
        self.bf16 = args.bf16

        self.apply_query_key_layer_scaling = args.apply_query_key_layer_scaling
        self.attention_softmax_in_fp32 = args.attention_softmax_in_fp32
        if self.apply_query_key_layer_scaling:
            self.attention_softmax_in_fp32 = True
        self.layer_number = max(1, layer_number)
        self.attn_mask_type = attn_mask_type
Vijay Korthikanti's avatar
Vijay Korthikanti committed
217
        self.sequence_parallel = args.sequence_parallel
218
219
220
221

        projection_size = args.kv_channels * args.num_attention_heads

        # Per attention head and per partition values.
222
        world_size = mpu.get_tensor_model_parallel_world_size()
223
224
225
        self.hidden_size_per_partition = core.utils.divide(projection_size,
                                                           world_size)
        self.hidden_size_per_attention_head = core.utils.divide(
226
            projection_size, args.num_attention_heads)
227
        self.num_attention_heads_per_partition = core.utils.divide(
228
            args.num_attention_heads, world_size)
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

        coeff = None
        self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
        if self.apply_query_key_layer_scaling:
            coeff = self.layer_number
            self.norm_factor *= coeff

        self.scale_mask_softmax = FusedScaleMaskSoftmax(
            self.fp16, self.bf16,
            self.attn_mask_type,
            args.masked_softmax_fusion,
            attention_mask_func,
            self.attention_softmax_in_fp32,
            coeff)

        # Dropout. Note that for a single iteration, this layer will generate
        # different outputs on different number of parallel partitions but
        # on average it should not be partition dependent.
        self.attention_dropout = torch.nn.Dropout(args.attention_dropout)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
248

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
    def forward(self, query_layer, key_layer,
                value_layer, attention_mask):

        # ===================================
        # Raw attention scores. [b, np, s, s]
        # ===================================

        # [b, np, sq, sk]
        output_size = (query_layer.size(1),
                       query_layer.size(2),
                       query_layer.size(0),
                       key_layer.size(0))

        # [sq, b, np, hn] -> [sq, b * np, hn]
        query_layer = query_layer.view(output_size[2],
                                       output_size[0] * output_size[1], -1)
        # [sk, b, np, hn] -> [sk, b * np, hn]
        key_layer = key_layer.view(output_size[3],
                                   output_size[0] * output_size[1], -1)

Vijay Korthikanti's avatar
Vijay Korthikanti committed
269
        # preallocting input tensor: [b * np, sq, sk]
270
        matmul_input_buffer = mpu.get_global_memory_buffer().get_tensor(
271
            (output_size[0]*output_size[1], output_size[2], output_size[3]),
Vijay Korthikanti's avatar
Vijay Korthikanti committed
272
            query_layer.dtype, "mpu")
273
274
275

        # Raw attention scores. [b * np, sq, sk]
        matmul_result = torch.baddbmm(
Vijay Korthikanti's avatar
Vijay Korthikanti committed
276
            matmul_input_buffer,
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
            query_layer.transpose(0, 1),   # [b * np, sq, hn]
            key_layer.transpose(0, 1).transpose(1, 2),  # [b * np, hn, sk]
            beta=0.0, alpha=(1.0/self.norm_factor))

        # change view to [b, np, sq, sk]
        attention_scores = matmul_result.view(*output_size)

        # ===========================
        # Attention probs and dropout
        # ===========================

        # attention scores and attention mask [b, np, sq, sk]
        attention_probs = self.scale_mask_softmax(attention_scores,
                                                  attention_mask)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
294
        if not self.sequence_parallel:
295
            with tensor_parallel.get_cuda_rng_tracker().fork():
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
                attention_probs = self.attention_dropout(attention_probs)
        else:
            attention_probs = self.attention_dropout(attention_probs)

        # =========================
        # Context layer. [sq, b, hp]
        # =========================

        # value_layer -> context layer.
        # [sk, b, np, hn] --> [b, np, sq, hn]

        # context layer shape: [b, np, sq, hn]
        output_size = (value_layer.size(1),
                       value_layer.size(2),
                       query_layer.size(0),
                       value_layer.size(3))

        # change view [sk, b * np, hn]
        value_layer = value_layer.view(value_layer.size(0),
                                       output_size[0] * output_size[1], -1)

        # change view [b * np, sq, sk]
        attention_probs = attention_probs.view(output_size[0] * output_size[1],
                                               output_size[2], -1)

        # matmul: [b * np, sq, hn]
        context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))

        # change view [b, np, sq, hn]
        context_layer = context_layer.view(*output_size)

        # [b, np, sq, hn] --> [sq, b, np, hn]
        context_layer = context_layer.permute(2, 0, 1, 3).contiguous()

        # [sq, b, np, hn] --> [sq, b, hp]
        new_context_layer_shape = context_layer.size()[:-2] + \
            (self.hidden_size_per_partition,)
        context_layer = context_layer.view(*new_context_layer_shape)

        return context_layer


338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
class FlashSelfAttention(torch.nn.Module):
    """Implement the scaled dot product attention with softmax.
    Arguments
    ---------
        softmax_scale: The temperature to use for the softmax attention.
                      (default: 1/sqrt(d_keys) where d_keys is computed at
                      runtime)
        attention_dropout: The dropout rate to apply to the attention
                           (default: 0.0)
    """
    def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0,
                 device=None, dtype=None):
        super().__init__()
        assert flash_attn_unpadded_func is not None, ('Please install FlashAttention first, '
                                                      'e.g., with pip install flash-attn')
        assert rearrange is not None, 'Please install einops first, e.g., with pip install einops'
        self.causal = causal
        self.softmax_scale = softmax_scale
        self.dropout_p = attention_dropout

    def forward(self, q, k, v):
        """Implements the multihead softmax attention.
        Arguments
        ---------
            q, k, v: The tensor containing the query, key, and value. (B, S, H, D)
        """
        assert q.dtype in [torch.float16, torch.bfloat16]
        assert q.is_cuda
Jimmy Zhang's avatar
Jimmy Zhang committed
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401

        batch_size, seqlen_q = q.shape[0], q.shape[1]

        if self.training:
            # during training q,k,v all have same seqlen 
            q, k, v = [rearrange(x, 'b s ... -> (b s) ...') for x in [q, k, v]]
            cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32,
                                    device=q.device)
            
            output = flash_attn_unpadded_func(
                q, k, v, cu_seqlens, cu_seqlens, seqlen_q, seqlen_q,
                self.dropout_p if self.training else 0.0,
                softmax_scale=self.softmax_scale, causal=self.causal
            )
        else:
            # during inference q seqlen is different than k,v seqlen
            assert k.dtype in [torch.float16, torch.bfloat16]
            assert k.is_cuda

            # turn off FA causal mask after first inference autoregressive iteration
            # only on first autoregressive step do q,k,v have same seqlen
            seqlen_k = k.shape[1]
            is_causal = seqlen_q == seqlen_k

            q, k, v = [rearrange(x, 'b s ... -> (b s) ...') for x in [q, k, v]]
            cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32,
                                    device=q.device)
            cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32,
                                    device=q.device)

            output = flash_attn_unpadded_func(
                q, k, v, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen_k,
                0.0,
                softmax_scale=self.softmax_scale, causal=is_causal
            )

402
403
404
405
        output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
        return output


406
class ParallelAttention(MegatronModule):
407
408
    """Parallel self-attention layer abstract class.

Vijay Korthikanti's avatar
Vijay Korthikanti committed
409
    Self-attention layer takes input with size [s, b, h]
410
411
    and returns output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
412

413
    def __init__(self, init_method,
414
415
416
417
                 output_layer_init_method, layer_number,
                 attention_type=AttnType.self_attn,
                 attn_mask_type=AttnMaskType.padding):
        super(ParallelAttention, self).__init__()
Mohammad's avatar
Mohammad committed
418
        args = get_args()
419
        self.layer_number = max(1, layer_number)
420
421
        self.attention_type = attention_type
        self.attn_mask_type = attn_mask_type
422
        self.params_dtype = args.params_dtype
423
424
425
426
427
428
429
430
431
432
433
434
435
        self.sequence_parallel = args.sequence_parallel

        self.use_flash_attn = args.use_flash_attn
        if self.use_flash_attn:
            if flash_attn_unpadded_func is None:
                raise ImportError('FlashAttention is not installed, please install with '
                                  'pip install flash-attn')
            assert attention_type == AttnType.self_attn, ('FlashAttention code path only supports '
                                                          'self-attention for now')
            assert self.attn_mask_type == AttnMaskType.causal, ('FlashAttention code path only '
                                                                'supports causal mask for now')
            if rearrange is None:
                raise ImportError('einops is not installed, please install with pip install einops')
436
437

        projection_size = args.kv_channels * args.num_attention_heads
438
439

        # Per attention head and per partition values.
440
        world_size = mpu.get_tensor_model_parallel_world_size()
441
        self.hidden_size_per_attention_head = core.utils.divide(
442
            projection_size, args.num_attention_heads)
443
        self.num_attention_heads_per_partition = core.utils.divide(
Mohammad's avatar
Mohammad committed
444
            args.num_attention_heads, world_size)
445
446

        # Strided linear layer.
447
        if attention_type == AttnType.self_attn:
448
            self.query_key_value = tensor_parallel.ColumnParallelLinear(
449
450
                args.hidden_size,
                3 * projection_size,
451
                bias=args.add_bias_linear,
452
                gather_output=False,
453
454
455
                init_method=init_method,
                async_tensor_model_parallel_allreduce=args.async_tensor_model_parallel_allreduce,
                **_args_to_kwargs())
456
457
        else:
            assert attention_type == AttnType.cross_attn
458
            self.query = tensor_parallel.ColumnParallelLinear(
459
460
                args.hidden_size,
                projection_size,
461
                bias=args.add_bias_linear,
462
                gather_output=False,
463
464
465
                init_method=init_method,
                async_tensor_model_parallel_allreduce=args.async_tensor_model_parallel_allreduce,
                **_args_to_kwargs())
466

467

468
            self.key_value = tensor_parallel.ColumnParallelLinear(
469
470
                args.hidden_size,
                2 * projection_size,
471
                bias=args.add_bias_linear,
472
                gather_output=False,
473
474
475
                init_method=init_method,
                async_tensor_model_parallel_allreduce=args.async_tensor_model_parallel_allreduce,
                **_args_to_kwargs())
476

477
478
        self.core_attention = CoreAttention(self.layer_number,
                                            self.attn_mask_type)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
479
        self.checkpoint_core_attention = args.recompute_granularity == 'selective'
480

481
482
483
484
485
        if self.use_flash_attn:
            self.core_attention_flash = FlashSelfAttention(
                causal=True, attention_dropout=args.attention_dropout
            )

486
        # Output.
487
        self.dense = tensor_parallel.RowParallelLinear(
488
            projection_size,
Mohammad's avatar
Mohammad committed
489
            args.hidden_size,
490
            bias=args.add_bias_linear,
491
            input_is_parallel=True,
492
            init_method=output_layer_init_method,
493
494
            skip_bias_add=True,
            **_args_to_kwargs())
Vijay Korthikanti's avatar
Vijay Korthikanti committed
495

496
    def _checkpointed_attention_forward(self, query_layer, key_layer,
Mostofa Patwary's avatar
Mostofa Patwary committed
497
498
                                        value_layer, attention_mask,
                                        rotary_pos_emb=None):
499
500
501
502
503
504
505
506
507
508
        """Forward method with activation checkpointing."""
        def custom_forward(*inputs):
            query_layer = inputs[0]
            key_layer = inputs[1]
            value_layer = inputs[2]
            attention_mask = inputs[3]
            output_ = self.core_attention(query_layer, key_layer,
                                          value_layer, attention_mask)
            return output_

Mostofa Patwary's avatar
Mostofa Patwary committed
509
510
511
        q_pos_emb, k_pos_emb = (None, None) if rotary_pos_emb is None \
            else rotary_pos_emb

512
        hidden_states = tensor_parallel.checkpoint(
513
            custom_forward,
Mostofa Patwary's avatar
Mostofa Patwary committed
514
515
            False, query_layer, key_layer, value_layer, attention_mask,
            q_pos_emb, k_pos_emb)
516
517

        return hidden_states
518
519
520
521
522
523
524
525
526
527
528

    def _allocate_memory(self, inference_max_sequence_len, batch_size):
        return torch.empty(
            inference_max_sequence_len,
            batch_size,
            self.num_attention_heads_per_partition,
            self.hidden_size_per_attention_head,
            dtype=self.params_dtype,
            device=torch.cuda.current_device())

    def forward(self, hidden_states, attention_mask,
Mostofa Patwary's avatar
Mostofa Patwary committed
529
530
                encoder_output=None, inference_params=None,
                rotary_pos_emb=None):
531
        # hidden_states: [sq, b, h]
532

533
534
535
        # =================================================
        # Pre-allocate memory for key-values for inference.
        # =================================================
Mostofa Patwary's avatar
Mostofa Patwary committed
536
        is_first_step = False
mshoeybi's avatar
mshoeybi committed
537
        if inference_params:
538
            if self.layer_number not in inference_params.key_value_memory_dict:
mshoeybi's avatar
mshoeybi committed
539
                inf_max_seq_len = inference_params.max_sequence_len
mshoeybi's avatar
mshoeybi committed
540
                inf_max_batch_size = inference_params.max_batch_size
541
                inference_key_memory = self._allocate_memory(
mshoeybi's avatar
mshoeybi committed
542
                    inf_max_seq_len, inf_max_batch_size)
543
                inference_value_memory = self._allocate_memory(
mshoeybi's avatar
mshoeybi committed
544
                    inf_max_seq_len, inf_max_batch_size)
545
546
                inference_params.key_value_memory_dict[self.layer_number] = (
                    inference_key_memory, inference_value_memory)
Mostofa Patwary's avatar
Mostofa Patwary committed
547
                is_first_step = True
548
549
550
            else:
                inference_key_memory, inference_value_memory = \
                    inference_params.key_value_memory_dict[self.layer_number]
mshoeybi's avatar
mshoeybi committed
551

552
553
554
        # =====================
        # Query, Key, and Value
        # =====================
555

556
557
558
559
560
561
562
563
564
565
566
567
568
        if self.attention_type == AttnType.self_attn:
            # Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
            mixed_x_layer, _ = self.query_key_value(hidden_states)

            # [sq, b, (np * 3 * hn)] --> [sq, b, np, 3 * hn]
            new_tensor_shape = mixed_x_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 3 * self.hidden_size_per_attention_head)
            mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)

            # [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
            (query_layer,
             key_layer,
569
             value_layer) = tensor_parallel.split_tensor_along_last_dim(mixed_x_layer, 3)
570
571
572
573
574
575
576
577
578
579
580
581
        else:
            # Attention heads [sk, b, h] --> [sk, b, (np * 2 * hn)]
            mixed_kv_layer, _ = self.key_value(encoder_output)

            # [sk, b, (np * 2 * hn)] --> [sk, b, np, 2 * hn]
            new_tensor_shape = mixed_kv_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 2 * self.hidden_size_per_attention_head)
            mixed_kv_layer = mixed_kv_layer.view(*new_tensor_shape)

            # [sk, b, np, 2 * hn] --> 2 [sk, b, np, hn]
            (key_layer,
582
             value_layer) = tensor_parallel.split_tensor_along_last_dim(mixed_kv_layer, 2)
583
584
585
586
587
588
589
590

            # Attention head [sq, b, h] --> [sq, b, hp]
            query_layer, _ = self.query(hidden_states)
            # [sq, b, hp] --> [sq, b, np, hn]
            new_tensor_shape = query_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 self.hidden_size_per_attention_head)
            query_layer = query_layer.view(*new_tensor_shape)
591

mshoeybi's avatar
mshoeybi committed
592
593
594
        # ==================================
        # Adjust key and value for inference
        # ==================================
595

Mostofa Patwary's avatar
Mostofa Patwary committed
596
597
        # duplicate the pos_emb for self attention
        if rotary_pos_emb is not None:
Mostofa Patwary's avatar
Mostofa Patwary committed
598
599
600
601
            if isinstance(rotary_pos_emb, tuple):
                rotary_pos_emb = rotary_pos_emb
            else:
                rotary_pos_emb = ((rotary_pos_emb,) * 2)
Mostofa Patwary's avatar
Mostofa Patwary committed
602

mshoeybi's avatar
mshoeybi committed
603
        if inference_params:
mshoeybi's avatar
mshoeybi committed
604
605
            batch_start = inference_params.batch_size_offset
            batch_end = batch_start + key_layer.size(1)
606
            assert batch_end <= inference_key_memory.size(1)
mshoeybi's avatar
mshoeybi committed
607
608
            sequence_start = inference_params.sequence_len_offset
            sequence_end = sequence_start + key_layer.size(0)
609
            assert sequence_end <= inference_key_memory.size(0)
610
            # Copy key and values.
611
612
613
614
615
            inference_key_memory[sequence_start:sequence_end,
                                 batch_start:batch_end, ...] = key_layer
            inference_value_memory[sequence_start:sequence_end,
                                   batch_start:batch_end, ...] = value_layer
            key_layer = inference_key_memory[
mshoeybi's avatar
mshoeybi committed
616
                :sequence_end, batch_start:batch_end, ...]
617
            value_layer = inference_value_memory[
mshoeybi's avatar
mshoeybi committed
618
                :sequence_end, batch_start:batch_end, ...]
619

Mostofa Patwary's avatar
Mostofa Patwary committed
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641

            # adjust the key rotary positional embedding
            if rotary_pos_emb is not None:
                q_pos_emb, k_pos_emb = rotary_pos_emb
                # need to cross check this condition during inference
                # if not set_inference_key_value_memory:
                if not is_first_step:
                    # In inference, we compute one token at a time.
                    # Select the correct positional embedding
                    # (only the last token in the sequence)
                    q_pos_emb = q_pos_emb[sequence_end - 1 : sequence_end]
                else:
                    # In the first forward pass of inference,
                    # we use the entire provided prefix.
                    # q_pos_emb here has the rope embeddings of the entire
                    # prefix + to-be-generated output so
                    # we slice to just the prefix.
                    q_pos_emb = q_pos_emb[:sequence_end, :, :, :]
                k_pos_emb = k_pos_emb[:sequence_end, :, :, :]
                rotary_pos_emb = (q_pos_emb, k_pos_emb)


642
643
644
        # ==================================
        # core attention computation
        # ==================================
645

Mostofa Patwary's avatar
Mostofa Patwary committed
646
647
648
649
650
651
652
653
654
655
        # apply relative positional encoding (rotary embedding)
        if rotary_pos_emb is not None:
            q_pos_emb, k_pos_emb = rotary_pos_emb
            query_layer = apply_rotary_pos_emb(query_layer, q_pos_emb)
            key_layer = apply_rotary_pos_emb(key_layer, k_pos_emb)
            # TODO, can apply positional embedding to value_layer so it has
            # absolute positional embedding.
            # otherwise, only relative positional embedding takes effect
            # value_layer = apply_rotary_pos_emb(value_layer, k_pos_emb)

656
657
658
659
660
661
662
        if not self.use_flash_attn:
            if self.checkpoint_core_attention:
                context_layer = self._checkpointed_attention_forward(
                    query_layer, key_layer, value_layer, attention_mask)
            else:
                context_layer = self.core_attention(
                    query_layer, key_layer, value_layer, attention_mask)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
663
        else:
664
665
666
667
668
669
670
671
            q, k, v = [rearrange(x, 's b ... -> b s ...').contiguous()
                       for x in (query_layer, key_layer, value_layer)]
            if not self.sequence_parallel:
                with tensor_parallel.get_cuda_rng_tracker().fork():
                    context_layer = self.core_attention_flash(q, k, v)
            else:
                context_layer = self.core_attention_flash(q, k, v)
            context_layer = rearrange(context_layer, 'b s h d -> s b (h d)').contiguous()
672
673

        # =================
674
        # Output. [sq, b, h]
675
676
677
        # =================

        output, bias = self.dense(context_layer)
678

679
680
681
        return output, bias


682
def bias_dropout_add(x, bias, residual, prob, training):
683
    # type: (Tensor, Tensor, Tensor, float, bool) -> Tensor
684
685
686
    if bias is not None:
        x = x + bias
    out = torch.nn.functional.dropout(x, p=prob, training=training)
687
688
689
690
691
692
693
694
695
696
697
    out = residual + out
    return out


def get_bias_dropout_add(training):
    def _bias_dropout_add(x, bias, residual, prob):
        return bias_dropout_add(x, bias, residual, prob, training)
    return _bias_dropout_add


@torch.jit.script
698
699
700
701
def bias_dropout_add_fused_train(x: torch.Tensor,
                                 bias: torch.Tensor,
                                 residual: torch.Tensor,
                                 prob: float) -> torch.Tensor:
702
703
704
705
    return bias_dropout_add(x, bias, residual, prob, True)


@torch.jit.script
706
707
708
709
def bias_dropout_add_fused_inference(x: torch.Tensor,
                                     bias: torch.Tensor,
                                     residual: torch.Tensor,
                                     prob: float) -> torch.Tensor:
710
    return bias_dropout_add(x, bias, residual, prob, False)
711
712
713
714
715


class ParallelTransformerLayer(MegatronModule):
    """A single transformer layer.

Vijay Korthikanti's avatar
Vijay Korthikanti committed
716
    Transformer layer takes input with size [s, b, h] and returns an
717
718
    output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
719

720
721
    def __init__(self, init_method, output_layer_init_method,
                 layer_number, layer_type=LayerType.encoder,
722
723
                 self_attn_mask_type=AttnMaskType.padding,
                 drop_path_rate=0.):
Mohammad's avatar
Mohammad committed
724
        args = get_args()
725
726

        super(ParallelTransformerLayer, self).__init__()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
727
        self.layer_number = layer_number
728
        self.layer_type = layer_type
729
730

        self.apply_residual_connection_post_layernorm \
Mohammad's avatar
Mohammad committed
731
            = args.apply_residual_connection_post_layernorm
732

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
733
734
735
        self.bf16 = args.bf16
        self.fp32_residual_connection = args.fp32_residual_connection

736
737
        # Layernorm on the input data.
        self.input_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
738
            args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
739
            eps=args.layernorm_epsilon,
740
            no_persist_layer_norm=args.no_persist_layer_norm,
Mostofa Patwary's avatar
Mostofa Patwary committed
741
            sequence_parallel=args.sequence_parallel,
Jared Casper's avatar
Jared Casper committed
742
            apply_layernorm_1p=args.apply_layernorm_1p)
743
744

        # Self attention.
745
746
747
748
749
750
        self.self_attention = ParallelAttention(
            init_method,
            output_layer_init_method,
            layer_number,
            attention_type=AttnType.self_attn,
            attn_mask_type=self_attn_mask_type)
751
752
        self.hidden_dropout = args.hidden_dropout
        self.bias_dropout_fusion = args.bias_dropout_fusion
Vijay Korthikanti's avatar
Vijay Korthikanti committed
753
        self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else None
754

755
        # Layernorm on the attention output
756
        self.post_attention_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
757
            args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
758
            eps=args.layernorm_epsilon,
759
            no_persist_layer_norm=args.no_persist_layer_norm,
Mostofa Patwary's avatar
Mostofa Patwary committed
760
            sequence_parallel=args.sequence_parallel,
Jared Casper's avatar
Jared Casper committed
761
            apply_layernorm_1p=args.apply_layernorm_1p)
762

763
764
765
766
767
768
769
770
771
        if self.layer_type == LayerType.decoder:
            self.inter_attention = ParallelAttention(
                init_method,
                output_layer_init_method,
                layer_number,
                attention_type=AttnType.cross_attn)
            # Layernorm on the attention output.
            self.post_inter_attention_layernorm = LayerNorm(
                args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
772
                eps=args.layernorm_epsilon,
773
                no_persist_layer_norm=args.no_persist_layer_norm,
Mostofa Patwary's avatar
Mostofa Patwary committed
774
                sequence_parallel=args.sequence_parallel,
Jared Casper's avatar
Jared Casper committed
775
                apply_layernorm_1p=args.apply_layernorm_1p)
776

777
        # MLP
rprenger's avatar
rprenger committed
778
779
780
781
        if args.num_experts is not None:
            self.mlp = SwitchMLP(init_method, output_layer_init_method)
        else:
            self.mlp = ParallelMLP(init_method, output_layer_init_method)
782

783
784
785
786
787
788
789
        # Set bias+dropout+add fusion grad_enable execution handler.
        TORCH_MAJOR = int(torch.__version__.split('.')[0])
        TORCH_MINOR = int(torch.__version__.split('.')[1])
        use_nvfuser = TORCH_MAJOR > 1 or (TORCH_MAJOR == 1 and TORCH_MINOR >= 10)
        self.bias_dropout_add_exec_handler = \
                nullcontext if use_nvfuser else torch.enable_grad

790
    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
791
                encoder_output=None, enc_dec_attn_mask=None,
Mostofa Patwary's avatar
Mostofa Patwary committed
792
                inference_params=None, rotary_pos_emb=None):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
793
        # hidden_states: [s, b, h]
794

795
        # Layer norm at the beginning of the transformer layer.
796
797
        layernorm_output = self.input_layernorm(hidden_states)
        # Self attention.
798
        attention_output, attention_bias = \
799
800
801
            self.self_attention(
                layernorm_output,
                attention_mask,
Mostofa Patwary's avatar
Mostofa Patwary committed
802
                inference_params=inference_params,
Mostofa Patwary's avatar
Mostofa Patwary committed
803
                rotary_pos_emb=rotary_pos_emb)
804

805
806
        # Residual connection.
        if self.apply_residual_connection_post_layernorm:
807
808
809
810
            residual = layernorm_output
        else:
            residual = hidden_states

Vijay Korthikanti's avatar
Vijay Korthikanti committed
811
        if self.drop_path is None:
812
813
814
815
816
817
818
819
820
            # jit scripting for a nn.module (with dropout) is not
            # trigerring the fusion kernel. For now, we use two
            # different nn.functional routines to account for varying
            # dropout semantics during training and inference phases.
            if self.bias_dropout_fusion:
                if self.training:
                    bias_dropout_add_func = bias_dropout_add_fused_train
                else:
                    bias_dropout_add_func = bias_dropout_add_fused_inference
821
            else:
822
                bias_dropout_add_func = get_bias_dropout_add(self.training)
823

824
825
            if attention_bias is not None:
                attention_bias = attention_bias.expand_as(residual)
826
            with self.bias_dropout_add_exec_handler():
827
828
                layernorm_input = bias_dropout_add_func(
                    attention_output,
829
                    attention_bias,
830
831
832
833
834
835
836
                    residual,
                    self.hidden_dropout)
        else:
            out = torch.nn.functional.dropout(attention_output + attention_bias,
                                              p=self.hidden_dropout,
                                              training=self.training)
            layernorm_input = residual + self.drop_path(out)
837

838
839
840
        # Layer norm post the self attention.
        layernorm_output = self.post_attention_layernorm(layernorm_input)

841
842
843
844
845
846
847
848
849
850
851
        if self.layer_type == LayerType.decoder:
            attention_output, attention_bias = \
                self.inter_attention(layernorm_output,
                                     enc_dec_attn_mask,
                                     encoder_output=encoder_output)
            # residual connection
            if self.apply_residual_connection_post_layernorm:
                residual = layernorm_output
            else:
                residual = layernorm_input

852
853
854
            if attention_bias is not None:
                attention_bias = attention_bias.expand_as(residual)

855
            with self.bias_dropout_add_exec_handler():
856
857
                layernorm_input = bias_dropout_add_func(
                    attention_output,
858
                    attention_bias,
859
860
861
862
863
864
                    residual,
                    self.hidden_dropout)

            # Layer norm post the decoder attention
            layernorm_output = self.post_inter_attention_layernorm(layernorm_input)

865
        # MLP.
866
        mlp_output, mlp_bias = self.mlp(layernorm_output)
867

868
869
        # Second residual connection.
        if self.apply_residual_connection_post_layernorm:
870
            residual = layernorm_output
871
        else:
872
873
            residual = layernorm_input

Vijay Korthikanti's avatar
Vijay Korthikanti committed
874
        if self.drop_path is None:
875
876
            if mlp_bias is not None:
                mlp_bias = mlp_bias.expand_as(residual)
877
            with self.bias_dropout_add_exec_handler():
878
879
                output = bias_dropout_add_func(
                    mlp_output,
880
                    mlp_bias,
881
882
                    residual,
                    self.hidden_dropout)
883
884
885
886
887
888
889

            # Jit compiled function creates 'view' tensor. This tensor
            # potentially gets saved in the MPU checkpoint function context,
            # which rejects view tensors. While making a viewless tensor here
            # won't result in memory savings (like the data loader, or
            # p2p_communication), it serves to document the origin of this
            # 'view' tensor.
890
891
892
            output = core.utils.make_viewless_tensor(inp = output,
                                                     requires_grad = output.requires_grad,
                                                     keep_graph = True)
893

894
        else:
895
896
897
            if mlp_bias is not None:
                mlp_output = mlp_output + mlp_bias
            out = torch.nn.functional.dropout(mlp_output,
898
899
900
                                              p=self.hidden_dropout,
                                              training=self.training)
            output = residual + self.drop_path(out)
901
902
903
904

        return output


905
906
907
class NoopTransformerLayer(MegatronModule):
    """A single 'no-op' transformer layer.

Lawrence McAfee's avatar
Lawrence McAfee committed
908
    The sole purpose of this layer is for when a standalone embedding layer
909
    is used (i.e., args.standalone_embedding_stage == True). In this case,
Lawrence McAfee's avatar
Lawrence McAfee committed
910
911
912
913
914
915
916
917
918
    zero transformer layers are assigned when pipeline rank == 0. Additionally,
    when virtual pipeline rank >= 1, zero total model parameters are created
    (virtual rank 0 contains the input embedding). This results in the model's
    input and output tensors being the same, which causes an error when
    performing certain memory optimiations on the output tensor (e.g.,
    deallocating it). Thus, this layer disconnects the input from the output
    via a clone. Since ranks containing a no-op layer are generally under-
    utilized (both compute and memory), there's no worry of any performance
    degredation.
919
920
921
922
923
924
925
926
927
928
929
930
    """

    def __init__(self, layer_number):
        super().__init__()
        self.layer_number = layer_number

    def forward(self, hidden_states, attention_mask,
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
        return hidden_states.clone()


Jared Casper's avatar
Jared Casper committed
931
def _get_num_layers(args, is_encoder_and_decoder_model, is_decoder=False):
932
    """Compute the number of transformer layers resident on the current rank."""
Jared Casper's avatar
Jared Casper committed
933
    if mpu.get_pipeline_model_parallel_world_size() > 1:
934
935
936
937
938
939
940
941
942
943
944
945
946
        if is_encoder_and_decoder_model:
            assert args.pipeline_model_parallel_split_rank is not None

            # When a standalone embedding stage is used, a rank is taken from
            # the encoder's ranks, to be used for the encoder's embedding
            # layer. This way, the rank referenced by the 'split rank' remains
            # the same whether or not a standalone embedding stage is used.
            num_ranks_in_encoder = (
                args.pipeline_model_parallel_split_rank - 1
                if args.standalone_embedding_stage else
                args.pipeline_model_parallel_split_rank
            )
            num_ranks_in_decoder = args.transformer_pipeline_model_parallel_size - num_ranks_in_encoder
Jared Casper's avatar
Jared Casper committed
947
948
949
950
            assert args.encoder_num_layers % num_ranks_in_encoder == 0, \
                    'encoder_num_layers (%d) must be divisible by number of ranks given to encoder (%d)' % (args.encoder_num_layers, num_ranks_in_encoder)
            assert args.decoder_num_layers % num_ranks_in_decoder == 0, \
                    'decoder_num_layers (%d) must be divisible by number of ranks given to decoder (%d)' % (args.decoder_num_layers, num_ranks_in_decoder)
Jared Casper's avatar
Jared Casper committed
951
            if mpu.is_pipeline_stage_before_split():
952
953
954
                num_layers = (
                    0
                    if args.standalone_embedding_stage
Jared Casper's avatar
Jared Casper committed
955
                    and mpu.get_pipeline_model_parallel_rank() == 0 else
Jared Casper's avatar
Jared Casper committed
956
                    args.encoder_num_layers // num_ranks_in_encoder
957
958
                )
            else:
Jared Casper's avatar
Jared Casper committed
959
                num_layers = args.decoder_num_layers // num_ranks_in_decoder
960
        else:
Jared Casper's avatar
Jared Casper committed
961
            assert args.num_layers == args.encoder_num_layers
962
963
964
965
966
967
968
969
970
971
            assert args.num_layers % args.transformer_pipeline_model_parallel_size == 0, \
                'num_layers must be divisible by transformer_pipeline_model_parallel_size'

            # When a standalone embedding stage is used, all transformer layers
            # are divided among pipeline rank >= 1, while on pipeline rank 0,
            # ranks either contain the input embedding layer (virtual pp rank 0),
            # or no layers at all (virtual pp rank >= 1).
            num_layers = (
                0
                if args.standalone_embedding_stage
Jared Casper's avatar
Jared Casper committed
972
                and mpu.get_pipeline_model_parallel_rank() == 0 else
973
974
975
                args.num_layers // args.transformer_pipeline_model_parallel_size
            )
    else:
Jared Casper's avatar
Jared Casper committed
976
977
978
979
        if not is_decoder:
            num_layers = args.encoder_num_layers
        else:
            num_layers = args.decoder_num_layers
980
981
982
    return num_layers


983
984
985
class ParallelTransformer(MegatronModule):
    """Transformer class."""

986
    def __init__(self, init_method, output_layer_init_method,
987
                 layer_type=LayerType.encoder,
988
                 self_attn_mask_type=AttnMaskType.padding,
989
                 post_layer_norm=True,
990
991
                 pre_process=True, post_process=True,
                 drop_path_rate=0.0):
992
        super(ParallelTransformer, self).__init__()
Mohammad's avatar
Mohammad committed
993
        args = get_args()
994

995
996
        self.layer_type = layer_type
        self.model_type = args.model_type
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
997
        self.bf16 = args.bf16
998
        self.fp32_residual_connection = args.fp32_residual_connection
999
        self.post_layer_norm = post_layer_norm
1000
1001
1002
        self.pre_process = pre_process
        self.post_process = post_process
        self.input_tensor = None
1003
        self.drop_path_rate = drop_path_rate
1004
        self.transformer_impl = args.transformer_impl
1005

1006
        # Store activation checkpoiting flag.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1007
1008
1009
        self.recompute_granularity = args.recompute_granularity
        self.recompute_method = args.recompute_method
        self.recompute_num_layers = args.recompute_num_layers
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1010
1011
        self.distribute_saved_activations = \
            args.distribute_saved_activations and not args.sequence_parallel
1012

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1013
        self.sequence_parallel = args.sequence_parallel
1014

1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
        # Transformer Engine Init.
        if self.transformer_impl == 'transformer_engine':
            global transformer_engine
            import transformer_engine
        self.use_fp8 = args.fp8_e4m3 or args.fp8_hybrid
        self.fp8_recipe = None
        self.fp8_group = mpu.get_data_parallel_group()
        if self.use_fp8:
            if args.fp8_e4m3:
                fp8_format = transformer_engine.common.recipe.Format.E4M3
            elif args.fp8_hybrid:
                fp8_format = transformer_engine.common.recipe.Format.HYBRID
            self.fp8_recipe = transformer_engine.common.recipe.DelayedScaling(
                margin=args.fp8_margin,
                interval=args.fp8_interval,
                fp8_format=fp8_format,
                amax_history_len=args.fp8_amax_history_len,
                amax_compute_algo=args.fp8_amax_compute_algo,
                override_linear_precision=(False, False, not args.fp8_wgrad),
            )

        self.num_microbatches_in_previous_step = -1
        self.microbatch_count = 0
        self.checkpoint_core_attention = args.recompute_granularity == 'selective'

1040
        # Number of layers.
1041
        self.num_layers = _get_num_layers(
1042
1043
1044
            args,
            args.model_type == ModelType.encoder_and_decoder,
            layer_type == LayerType.decoder)
Mohammad's avatar
Mohammad committed
1045

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1046
        self.drop_path_rates = [rate.item() for rate in torch.linspace(0, self.drop_path_rate, args.num_layers)]
1047

Mohammad's avatar
Mohammad committed
1048
1049
        # Transformer layers.
        def build_layer(layer_number):
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
            if args.transformer_impl == 'local':
                return ParallelTransformerLayer(
                    init_method,
                    output_layer_init_method,
                    layer_number,
                    layer_type=layer_type,
                    self_attn_mask_type=self_attn_mask_type,
                    drop_path_rate=self.drop_path_rates[layer_number - 1])
            else:
                return transformer_engine.pytorch.TransformerLayer(
                    args.hidden_size,
                    args.ffn_hidden_size,
                    args.num_attention_heads,
                    layernorm_epsilon=args.layernorm_epsilon,
                    hidden_dropout=args.hidden_dropout,
                    attention_dropout=args.attention_dropout,
                    init_method=init_method,
                    output_layer_init_method=output_layer_init_method,
                    layer_number=layer_number,
                    kv_channels=args.kv_channels,
                    self_attn_mask_type=self_attn_mask_type.name,
                    tp_group=mpu.get_tensor_model_parallel_group(),
                    get_rng_state_tracker=tensor_parallel.get_cuda_rng_tracker,
                    fuse_wgrad_accumulation=args.gradient_accumulation_fusion,
                    apply_query_key_layer_scaling=args.apply_query_key_layer_scaling,
                    attention_softmax_in_fp32=args.attention_softmax_in_fp32,
                    seq_length=args.seq_length,
                    micro_batch_size=args.micro_batch_size,
                    sequence_parallel=args.sequence_parallel,
                    params_dtype=args.params_dtype,
                    apply_residual_connection_post_layernorm=args.apply_residual_connection_post_layernorm,
                    output_layernorm=False,
                    layer_type="encoder",
                    drop_path_rate=self.drop_path_rates[layer_number - 1],
                    set_parallel_mode=True,
                    fuse_qkv_params=True)

1087
1088
        if args.virtual_pipeline_model_parallel_size is not None:
            assert args.num_layers % args.virtual_pipeline_model_parallel_size == 0, \
1089
1090
                'num_layers_per_stage must be divisible by ' \
                'virtual_pipeline_model_parallel_size'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1091
            assert args.model_type != ModelType.encoder_and_decoder
1092
1093
            # Number of layers in each model chunk is the number of layers in the stage,
            # divided by the number of model chunks in a stage.
1094
            self.num_layers = self.num_layers // args.virtual_pipeline_model_parallel_size
1095
1096
1097
1098
1099
1100
1101
1102
            # With 8 layers, 2 stages, and 4 model chunks, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0]  [2]  [4]  [6]
            # Stage 1: [1]  [3]  [5]  [7]
            # With 8 layers, 2 stages, and 2 virtual stages, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0, 1]  [4, 5]
            # Stage 1: [2, 3]  [6, 7]
1103
            offset = mpu.get_virtual_pipeline_model_parallel_rank() * (
1104
                args.num_layers // args.virtual_pipeline_model_parallel_size) + \
1105
                (mpu.get_pipeline_model_parallel_rank() * self.num_layers)
1106
        else:
1107
            # Each stage gets a contiguous set of layers.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1108
            if args.model_type == ModelType.encoder_and_decoder and \
1109
1110
                    mpu.get_pipeline_model_parallel_world_size() > 1:
                pipeline_rank = mpu.get_pipeline_model_parallel_rank()
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1111
1112
1113
1114
1115
1116
                if layer_type == LayerType.encoder:
                    offset = pipeline_rank * self.num_layers
                else:
                    num_ranks_in_enc = args.pipeline_model_parallel_split_rank
                    offset = (pipeline_rank - num_ranks_in_enc) * self.num_layers
            else:
1117
                offset = mpu.get_pipeline_model_parallel_rank() * self.num_layers
1118

1119
        if self.num_layers == 0:
Lawrence McAfee's avatar
Lawrence McAfee committed
1120
            # When a standalone embedding stage is used (e.g.,
1121
            # args.standalone_embedding_stage == True), virtual pipeline ranks
1122
            # on pipeline rank 0 will have zero transformer layers assigned to
Lawrence McAfee's avatar
Lawrence McAfee committed
1123
1124
1125
1126
1127
            # them. This results in the model's input and output tensors to be
            # the same, which will cause failure for certain output tensor
            # optimizations (e.g., pipeline output deallocation). To remedy
            # this, we assign a 'no-op' layer on these ranks, which will
            # disconnect the input tensor from the output tensor.
1128
1129
1130
1131
1132
            self.num_layers = 1
            self.layers = torch.nn.ModuleList([ NoopTransformerLayer(1) ])
        else:
            self.layers = torch.nn.ModuleList(
                [build_layer(i + 1 + offset) for i in range(self.num_layers)])
1133

1134
        if self.post_process and self.post_layer_norm:
1135
1136
1137
            # Final layer norm before output.
            self.final_layernorm = LayerNorm(
                args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
1138
                eps=args.layernorm_epsilon,
1139
                no_persist_layer_norm=args.no_persist_layer_norm,
Mostofa Patwary's avatar
Mostofa Patwary committed
1140
                sequence_parallel=args.sequence_parallel,
Jared Casper's avatar
Jared Casper committed
1141
                apply_layernorm_1p=args.apply_layernorm_1p)
1142

Mohammad's avatar
Mohammad committed
1143
    def _get_layer(self, layer_number):
1144
        return self.layers[layer_number]
Mohammad's avatar
Mohammad committed
1145

1146
    def _checkpointed_forward(self, hidden_states, attention_mask,
Mostofa Patwary's avatar
Mostofa Patwary committed
1147
1148
                              encoder_output, enc_dec_attn_mask,
                              rotary_pos_emb, is_first_microbatch):
1149
        """Forward method with activation checkpointing."""
1150
1151
        def custom(start, end, is_transformer_engine=False):
            def custom_forward(*args, **kwargs):
1152
                x_, *args = args
Mohammad's avatar
Mohammad committed
1153
1154
                for index in range(start, end):
                    layer = self._get_layer(index)
1155
                    x_ = layer(x_, *args, **kwargs)
1156
                return x_
1157
1158
1159
1160
1161
1162
            def custom_forward_transformer_engine(*args, **kwargs):
                return custom_forward(*args, is_first_microbatch=is_first_microbatch, **kwargs)
            if not is_transformer_engine:
                return custom_forward
            else:
                return custom_forward_transformer_engine
1163

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1164
        if self.recompute_method == 'uniform':
1165
1166
1167
1168
1169
            # Uniformly divide the total number of Transformer layers and checkpoint
            # the input activation of each divided chunk.
            # A method to further reduce memory usage reducing checkpoints.
            l = 0
            while l < self.num_layers:
1170
1171
1172
1173
1174
1175
                if self.transformer_impl == 'transformer_engine':
                    hidden_states = transformer_engine.pytorch.distributed.checkpoint(
                        custom(l, l + self.recompute_num_layers, is_transformer_engine=True),
                        self.distribute_saved_activations,
                        tensor_parallel.get_cuda_rng_tracker,
                        mpu.get_tensor_model_parallel_group(),
Mostofa Patwary's avatar
Mostofa Patwary committed
1176
1177
                        hidden_states, attention_mask, encoder_output,
                        enc_dec_attn_mask, rotary_pos_emb)
1178
1179
1180
1181
                else:
                    hidden_states = tensor_parallel.checkpoint(
                        custom(l, l + self.recompute_num_layers),
                        self.distribute_saved_activations,
Mostofa Patwary's avatar
Mostofa Patwary committed
1182
1183
                        hidden_states, attention_mask, encoder_output,
                        enc_dec_attn_mask, rotary_pos_emb)
1184

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1185
                l += self.recompute_num_layers
1186

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1187
        elif self.recompute_method == 'block':
1188
1189
1190
1191
            # Checkpoint the input activation of only a set number of individual
            # Transformer layers and skip the rest.
            # A method fully use the device memory removing redundant re-computation.
            for l in range(self.num_layers):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1192
                if l < self.recompute_num_layers:
1193
1194
1195
1196
1197
1198
                    if self.transformer_impl == 'transformer_engine':
                        hidden_states = transformer_engine.pytorch.distributed.checkpoint(
                            custom(l, l + 1, is_transformer_engine=True),
                            self.distribute_saved_activations,
                            tensor_parallel.get_cuda_rng_tracker,
                            mpu.get_tensor_model_parallel_group(),
Mostofa Patwary's avatar
Mostofa Patwary committed
1199
1200
                            hidden_states, attention_mask, encoder_output,
                            enc_dec_attn_mask, rotary_pos_emb)
1201
1202
1203
1204
                    else:
                        hidden_states = tensor_parallel.checkpoint(
                            custom(l, l + 1),
                            self.distribute_saved_activations,
Mostofa Patwary's avatar
Mostofa Patwary committed
1205
1206
                            hidden_states, attention_mask, encoder_output,
                            enc_dec_attn_mask, rotary_pos_emb)
1207
                else:
1208
1209
                    if self.transformer_impl == 'transformer_engine':
                        hidden_states = custom(l, l + 1, is_transformer_engine=True)(
Mostofa Patwary's avatar
Mostofa Patwary committed
1210
1211
                            hidden_states, attention_mask, encoder_output,
                            enc_dec_attn_mask, rotary_pos_emb)
1212
1213
                    else:
                        hidden_states = custom(l, l + 1)(
Mostofa Patwary's avatar
Mostofa Patwary committed
1214
1215
                            hidden_states, attention_mask, encoder_output,
                            enc_dec_attn_mask, rotary_pos_emb)
1216
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1217
            raise ValueError("Invalid activation recompute method.")
1218
1219
1220

        return hidden_states

1221
    def set_input_tensor(self, input_tensor):
1222
1223
1224
1225
1226
1227
1228
        """Set input tensor to be used instead of forward()'s input.

        When doing pipeline parallelism the input from the previous
        stage comes from communication, not from the input, so the
        model's forward_step_func won't have it. This function is thus
        used by internal code to bypass the input provided by the
        forward_step_func"""
1229
1230
        self.input_tensor = input_tensor

1231
    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
1232
                encoder_output=None, enc_dec_attn_mask=None,
Mostofa Patwary's avatar
Mostofa Patwary committed
1233
                inference_params=None, rotary_pos_emb=None):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1234
1235
        # hidden_states: [s, b, h]

1236
        # Checks.
mshoeybi's avatar
mshoeybi committed
1237
        if inference_params:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1238
            assert self.recompute_granularity is None, \
1239
                'inference does not work with activation checkpointing'
1240

1241
        if not self.pre_process:
1242
            # See set_input_tensor()
1243
            hidden_states = self.input_tensor
1244

1245
1246
        # Viewless tensor.
        # - We only need to create a viewless tensor in the case of micro batch
1247
1248
1249
1250
        #   size (mbs) == 1, since in this case, 'hidden_states.transpose()'
        #   above creates a view tensor, and '.contiguous()' is a pass-through.
        #   For mbs >= 2, '.contiguous()' creates a new tensor, eliminating
        #   the need to make it viewless.
1251
1252
1253
1254
        #
        #   However, we don't explicitly check mbs == 1 here because
        #   make_viewless_tensor() has negligible overhead when its input
        #   is already viewless.
1255
        #
1256
1257
1258
1259
        # - For the 'else' case above, calling make_viewless_tensor() here is
        #   likely redundant, since p2p_communication.py (likely originator)
        #   already creates viewless tensors. That said, make_viewless_tensor()
        #   is called here to be future-proof and corner-case-proof.
1260
        hidden_states = core.utils.make_viewless_tensor(
1261
            hidden_states,
1262
1263
            requires_grad=True,
            keep_graph=True,
1264
1265
        )

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1266
        if self.sequence_parallel:
1267
            rng_context = tensor_parallel.get_cuda_rng_tracker().fork()
1268
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1269
            rng_context = nullcontext()
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1270
1271

        with rng_context:
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
            # The fp8_autocast context manager is a no-op when enabled=True
            # The if...else serves to short circuit name resolution for fp8_autocast
            with transformer_engine.pytorch.fp8_autocast(
                enabled=self.use_fp8,
                fp8_recipe=self.fp8_recipe,
                fp8_group=self.fp8_group
            ) if self.use_fp8 else nullcontext():
                # Determine if the current iteration is first microbatch
                if self.num_microbatches_in_previous_step != get_num_microbatches():
                    self.microbatch_count = 0 # Reset count on new batch size rampup interval
                self.num_microbatches_in_previous_step = get_num_microbatches()
                is_first_microbatch = self.microbatch_count % get_num_microbatches() == 0

                # Forward pass.
                if self.recompute_granularity == 'full':
                    hidden_states = self._checkpointed_forward(hidden_states,
                                                               attention_mask,
                                                               encoder_output,
                                                               enc_dec_attn_mask,
Mostofa Patwary's avatar
Mostofa Patwary committed
1291
                                                               rotary_pos_emb,
1292
1293
1294
1295
1296
1297
                                                               is_first_microbatch)
                else:
                    forward_kwargs = {
                        'encoder_output': encoder_output,
                        'enc_dec_attn_mask': enc_dec_attn_mask,
                        'inference_params': inference_params,
Mostofa Patwary's avatar
Mostofa Patwary committed
1298
                        'rotary_pos_emb': rotary_pos_emb,
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
                    }

                    if self.transformer_impl == 'transformer_engine':
                        forward_kwargs['is_first_microbatch'] = is_first_microbatch
                        forward_kwargs['checkpoint_core_attention'] = self.checkpoint_core_attention

                    for index in range(self.num_layers):
                        layer = self._get_layer(index)

                        hidden_states = layer(
                            hidden_states,
                            attention_mask,
                            **forward_kwargs)

                # Skip counter update for eval and activation checkpointing
                if torch.is_grad_enabled() and self.training:
                    self.microbatch_count += 1
mshoeybi's avatar
mshoeybi committed
1316

1317
        # Final layer norm.
1318
        if self.post_process and self.post_layer_norm:
1319
1320
            hidden_states = self.final_layernorm(hidden_states)

1321
        return hidden_states