transformer.py 56.7 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
2
3
4

"""Transformer."""
import math
5
from contextlib import nullcontext
6
import torch
7
import torch.nn.functional as F
8

9
from megatron import get_timers, get_args, core, get_num_microbatches
10
from .module import MegatronModule
11
from megatron.core import mpu, tensor_parallel
12
from megatron.core.enums import ModelType
13
from megatron.model import LayerNorm
14
from megatron.model.enums import AttnMaskType, LayerType, AttnType
15
16
from megatron.model.fused_softmax import FusedScaleMaskSoftmax
from megatron.model.fused_bias_gelu import bias_gelu_impl
Mostofa Patwary's avatar
Mostofa Patwary committed
17
from megatron.model.rotary_pos_embedding import apply_rotary_pos_emb
18
from megatron.model.utils import attention_mask_func, openai_gelu, erf_gelu
19

20
21
22
23
24
25
26
27
28
29
try:
    from einops import rearrange
except ImportError:
    rearrange = None

try:
    from flash_attn.flash_attn_interface import flash_attn_unpadded_func
except ImportError:
    flash_attn_unpadded_func = None

30
31
32
33
34
35
36
37
38
39
""" We use the following notation throughout this file:
     h: hidden size
     n: number of attention heads
     p: number of model parallel partitions
     np: n/p
     hp: h/p
     hn: h/n
     b: batch size
     s: sequence length
     l: number of layers
40
    Transformer takes input of size [s, b, h] and returns a
41
42
43
44
    tensor of the same size. We use the following arguments:
        hyperparameters: transformer hyperparameters
"""

45
class DropPath(MegatronModule):
46
    """Drop paths (Stochastic Depth) per sample
47
48
49
    (when applied in main path of residual blocks).
    """

Vijay Korthikanti's avatar
Vijay Korthikanti committed
50
    def __init__(self, drop_prob=0.):
51
52
53
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

Vijay Korthikanti's avatar
Vijay Korthikanti committed
54
    def forward(self, hidden_state):
55
        if self.drop_prob == 0. or not self.training:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
56
            return hidden_state
57
58
        keep_prob = 1 - self.drop_prob
        # work with diff dim tensors, not just 2D ConvNets
59
60
        # hidden_state: [s, b, h]
        shape = (1,) + (hidden_state.shape[1],) + (1,) * (hidden_state.ndim - 2)
61
        random_tensor = keep_prob + \
Vijay Korthikanti's avatar
Vijay Korthikanti committed
62
            torch.rand(shape, dtype=hidden_state.dtype, device=hidden_state.device)
63
        random_tensor.floor_()  # binarize
Vijay Korthikanti's avatar
Vijay Korthikanti committed
64
        output = hidden_state.div(keep_prob) * random_tensor
65
66
        return output

67
68
69
70
71
72
73
74
75
76
77
def _args_to_kwargs():
    args = get_args()

    common_kwargs = {
        "params_dtype": args.params_dtype,
        "use_cpu_initialization": args.use_cpu_initialization,
        "perform_initialization": args.perform_initialization,
        "gradient_accumulation_fusion": args.gradient_accumulation_fusion,
        "sequence_parallel_enabled": args.sequence_parallel,
    }
    return common_kwargs
78

79
80
81
82
83
class ParallelMLP(MegatronModule):
    """MLP.

    MLP will take the input with h hidden state, project it to 4*h
    hidden dimension, perform nonlinear transformation, and project the
hwijeen's avatar
hwijeen committed
84
    state back into h hidden dimension.
85
86
    """

87
    def __init__(self, init_method, output_layer_init_method):
88
        super(ParallelMLP, self).__init__()
Mohammad's avatar
Mohammad committed
89
        args = get_args()
90

91
        self.add_bias = args.add_bias_linear
92

93
        # Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
94
        self.dense_h_to_4h = tensor_parallel.ColumnParallelLinear(
Mohammad's avatar
Mohammad committed
95
            args.hidden_size,
96
97
            args.ffn_hidden_size * 2 if args.swiglu else args.ffn_hidden_size,
            bias=self.add_bias,
98
            gather_output=False,
99
            init_method=init_method,
100
101
102
            skip_bias_add=True,
            async_tensor_model_parallel_allreduce=args.async_tensor_model_parallel_allreduce,
            **_args_to_kwargs())
103

104
105
106
107
        self.bias_gelu_fusion = False
        self.activation_func = None
        self.swiglu = args.swiglu

108
109
110
111
        if args.openai_gelu:
            self.activation_func = openai_gelu
        elif args.onnx_safe:
            self.activation_func = erf_gelu
112
113
114
115
116
117
118
119
120
121
122
123
        elif args.swiglu:
            def swiglu(x):
                x = torch.chunk(x, 2, dim=-1)
                return F.silu(x[0]) * x[1]
            self.activation_func = swiglu
        elif args.squared_relu:
            def squared_relu(x):
                return torch.pow(F.relu(x), 2)
            self.activation_func = squared_relu
        else:
            self.bias_gelu_fusion = args.bias_gelu_fusion
            self.activation_func = F.gelu
124
125

        # Project back to h.
126
        self.dense_4h_to_h = tensor_parallel.RowParallelLinear(
127
            args.ffn_hidden_size,
Mohammad's avatar
Mohammad committed
128
            args.hidden_size,
129
            bias=self.add_bias,
130
            input_is_parallel=True,
131
            init_method=output_layer_init_method,
132
133
            skip_bias_add=True,
            **_args_to_kwargs())
134

135
136
    def forward(self, hidden_states):

137
138
        # [s, b, 4hp]
        intermediate_parallel, bias_parallel = self.dense_h_to_4h(hidden_states)
139

140
        if self.bias_gelu_fusion:
141
142
143
            assert self.add_bias is True
            assert self.activation_func == F.gelu
            intermediate_parallel = bias_gelu_impl(intermediate_parallel, bias_parallel)
144
        else:
Jared Casper's avatar
Jared Casper committed
145
            if bias_parallel is not None:
146
147
                intermediate_parallel = intermediate_parallel + bias_parallel
            intermediate_parallel = self.activation_func(intermediate_parallel)
148
149
150
151

        # [s, b, h]
        output, output_bias = self.dense_4h_to_h(intermediate_parallel)
        return output, output_bias
152

rprenger's avatar
rprenger committed
153
154
155
156
class SwitchMLP(MegatronModule):
    """
    Routes input to one of N MLP "experts"
    """
rprenger's avatar
rprenger committed
157
    def __init__(self, init_method, output_layer_init_method):
rprenger's avatar
rprenger committed
158
159
        super(SwitchMLP, self).__init__()
        args = get_args()
rprenger's avatar
rprenger committed
160
        self.router = torch.nn.Linear(args.hidden_size, args.num_experts)
rprenger's avatar
rprenger committed
161
        self.experts = torch.nn.ModuleList()
rprenger's avatar
rprenger committed
162
        for i in range(args.num_experts):
rprenger's avatar
rprenger committed
163
            self.experts.append(ParallelMLP(init_method, output_layer_init_method))
164

rprenger's avatar
rprenger committed
165
    def forward(self, hidden_states):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
166
167
168
        # hidden_states: [s, b, h]
        s = hidden_states.size(0)
        b = hidden_states.size(1)
rprenger's avatar
rprenger committed
169
170
        h = hidden_states.size(2)
        route = self.router(hidden_states)
rprenger's avatar
rprenger committed
171
        route = torch.nn.functional.softmax(route, dim=2)
rprenger's avatar
rprenger committed
172
        max_prob, max_ind = torch.max(route, dim=2)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
173
        max_prob = torch.unsqueeze(max_prob, 2) # [s b 1]
174

rprenger's avatar
rprenger committed
175
        # TODO (rprenger) TODO this could be made easier to read
Vijay Korthikanti's avatar
Vijay Korthikanti committed
176
        # Converting [s, b, h] to [s*b, h].
177
        # Each vector could be routed differently
Vijay Korthikanti's avatar
Vijay Korthikanti committed
178
179
180
        hidden_states = hidden_states.view(-1, hidden_states.size(2)) # [s*b h]
        max_prob = max_prob.view(-1, max_prob.size(2)) # [s*b 1]
        max_ind = max_ind.view(-1) # [s*b]
rprenger's avatar
rprenger committed
181
182
183

        output_total = torch.empty_like(hidden_states)
        output_bias_total = torch.empty_like(hidden_states)
rprenger's avatar
rprenger committed
184
        #TODO (rprenger) This does each expert in serial, but it could be parallelized
185

rprenger's avatar
rprenger committed
186
        for expert_num, expert in enumerate(self.experts):
187
188
            local_indices = (max_ind == expert_num).nonzero()
            hidden = hidden_states[local_indices,:]
rprenger's avatar
rprenger committed
189
190
            output, output_bias = expert(hidden)
            output_bias = output_bias.expand_as(output)
191
192
193
            output_total[local_indices,:] = output
            output_bias_total[local_indices,:] = output_bias

rprenger's avatar
rprenger committed
194
195
        output_total = output_total*max_prob
        output_bias_total = output_bias_total*max_prob
Vijay Korthikanti's avatar
Vijay Korthikanti committed
196
197
        output_total = output_total.view(s, b, h)
        output_bias_total = output_bias_total.view(s, b, h)
rprenger's avatar
rprenger committed
198
199

        return output_total, output_bias_total
200

201
202

class CoreAttention(MegatronModule):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
203

204
205
206
207
208
209
210
211
212
213
214
215
216
    def __init__(self, layer_number,
                 attn_mask_type=AttnMaskType.padding):
        super(CoreAttention, self).__init__()
        args = get_args()
        self.fp16 = args.fp16
        self.bf16 = args.bf16

        self.apply_query_key_layer_scaling = args.apply_query_key_layer_scaling
        self.attention_softmax_in_fp32 = args.attention_softmax_in_fp32
        if self.apply_query_key_layer_scaling:
            self.attention_softmax_in_fp32 = True
        self.layer_number = max(1, layer_number)
        self.attn_mask_type = attn_mask_type
Vijay Korthikanti's avatar
Vijay Korthikanti committed
217
        self.sequence_parallel = args.sequence_parallel
218
219
220
221

        projection_size = args.kv_channels * args.num_attention_heads

        # Per attention head and per partition values.
222
        world_size = mpu.get_tensor_model_parallel_world_size()
223
224
225
        self.hidden_size_per_partition = core.utils.divide(projection_size,
                                                           world_size)
        self.hidden_size_per_attention_head = core.utils.divide(
226
            projection_size, args.num_attention_heads)
227
        self.num_attention_heads_per_partition = core.utils.divide(
228
            args.num_attention_heads, world_size)
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

        coeff = None
        self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
        if self.apply_query_key_layer_scaling:
            coeff = self.layer_number
            self.norm_factor *= coeff

        self.scale_mask_softmax = FusedScaleMaskSoftmax(
            self.fp16, self.bf16,
            self.attn_mask_type,
            args.masked_softmax_fusion,
            attention_mask_func,
            self.attention_softmax_in_fp32,
            coeff)

        # Dropout. Note that for a single iteration, this layer will generate
        # different outputs on different number of parallel partitions but
        # on average it should not be partition dependent.
        self.attention_dropout = torch.nn.Dropout(args.attention_dropout)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
248

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
    def forward(self, query_layer, key_layer,
                value_layer, attention_mask):

        # ===================================
        # Raw attention scores. [b, np, s, s]
        # ===================================

        # [b, np, sq, sk]
        output_size = (query_layer.size(1),
                       query_layer.size(2),
                       query_layer.size(0),
                       key_layer.size(0))

        # [sq, b, np, hn] -> [sq, b * np, hn]
        query_layer = query_layer.view(output_size[2],
                                       output_size[0] * output_size[1], -1)
        # [sk, b, np, hn] -> [sk, b * np, hn]
        key_layer = key_layer.view(output_size[3],
                                   output_size[0] * output_size[1], -1)

Vijay Korthikanti's avatar
Vijay Korthikanti committed
269
        # preallocting input tensor: [b * np, sq, sk]
270
        matmul_input_buffer = mpu.get_global_memory_buffer().get_tensor(
271
            (output_size[0]*output_size[1], output_size[2], output_size[3]),
Vijay Korthikanti's avatar
Vijay Korthikanti committed
272
            query_layer.dtype, "mpu")
273
274
275

        # Raw attention scores. [b * np, sq, sk]
        matmul_result = torch.baddbmm(
Vijay Korthikanti's avatar
Vijay Korthikanti committed
276
            matmul_input_buffer,
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
            query_layer.transpose(0, 1),   # [b * np, sq, hn]
            key_layer.transpose(0, 1).transpose(1, 2),  # [b * np, hn, sk]
            beta=0.0, alpha=(1.0/self.norm_factor))

        # change view to [b, np, sq, sk]
        attention_scores = matmul_result.view(*output_size)

        # ===========================
        # Attention probs and dropout
        # ===========================

        # attention scores and attention mask [b, np, sq, sk]
        attention_probs = self.scale_mask_softmax(attention_scores,
                                                  attention_mask)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
294
        if not self.sequence_parallel:
295
            with tensor_parallel.get_cuda_rng_tracker().fork():
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
                attention_probs = self.attention_dropout(attention_probs)
        else:
            attention_probs = self.attention_dropout(attention_probs)

        # =========================
        # Context layer. [sq, b, hp]
        # =========================

        # value_layer -> context layer.
        # [sk, b, np, hn] --> [b, np, sq, hn]

        # context layer shape: [b, np, sq, hn]
        output_size = (value_layer.size(1),
                       value_layer.size(2),
                       query_layer.size(0),
                       value_layer.size(3))

        # change view [sk, b * np, hn]
        value_layer = value_layer.view(value_layer.size(0),
                                       output_size[0] * output_size[1], -1)

        # change view [b * np, sq, sk]
        attention_probs = attention_probs.view(output_size[0] * output_size[1],
                                               output_size[2], -1)

        # matmul: [b * np, sq, hn]
        context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))

        # change view [b, np, sq, hn]
        context_layer = context_layer.view(*output_size)

        # [b, np, sq, hn] --> [sq, b, np, hn]
        context_layer = context_layer.permute(2, 0, 1, 3).contiguous()

        # [sq, b, np, hn] --> [sq, b, hp]
        new_context_layer_shape = context_layer.size()[:-2] + \
            (self.hidden_size_per_partition,)
        context_layer = context_layer.view(*new_context_layer_shape)

        return context_layer


338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
class FlashSelfAttention(torch.nn.Module):
    """Implement the scaled dot product attention with softmax.
    Arguments
    ---------
        softmax_scale: The temperature to use for the softmax attention.
                      (default: 1/sqrt(d_keys) where d_keys is computed at
                      runtime)
        attention_dropout: The dropout rate to apply to the attention
                           (default: 0.0)
    """
    def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0,
                 device=None, dtype=None):
        super().__init__()
        assert flash_attn_unpadded_func is not None, ('Please install FlashAttention first, '
                                                      'e.g., with pip install flash-attn')
        assert rearrange is not None, 'Please install einops first, e.g., with pip install einops'
        self.causal = causal
        self.softmax_scale = softmax_scale
        self.dropout_p = attention_dropout

    def forward(self, q, k, v):
        """Implements the multihead softmax attention.
        Arguments
        ---------
            q, k, v: The tensor containing the query, key, and value. (B, S, H, D)
        """
Jimmy Zhang's avatar
Jimmy Zhang committed
364
365
366

        assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q,k,v)))
        assert all((i.is_cuda for i in (q,k,v)))
Jimmy Zhang's avatar
Jimmy Zhang committed
367
368

        batch_size, seqlen_q = q.shape[0], q.shape[1]
Jimmy Zhang's avatar
Jimmy Zhang committed
369
        seqlen_k = k.shape[1]
Jimmy Zhang's avatar
Jimmy Zhang committed
370

Jimmy Zhang's avatar
Jimmy Zhang committed
371
372
        q, k, v = [rearrange(x, 'b s ... -> (b s) ...') for x in [q, k, v]]
        cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32,
Jimmy Zhang's avatar
Jimmy Zhang committed
373
374
                                    device=q.device)

Jimmy Zhang's avatar
Jimmy Zhang committed
375
376
377
378
379
380
381
        if self.training:
            # during training q,k,v always have same seqlen
            assert seqlen_k == seqlen_q

            is_causal = self.causal
            cu_seqlens_k = cu_seqlens_q
        else:
Jimmy Zhang's avatar
Jimmy Zhang committed
382
            # turn off FA causal mask after first inference autoregressive iteration
Jimmy Zhang's avatar
Jimmy Zhang committed
383
            # only on first autoregressive step q,k,v have same seqlen
Jimmy Zhang's avatar
Jimmy Zhang committed
384
385
            is_causal = seqlen_q == seqlen_k
            cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32,
Jimmy Zhang's avatar
Jimmy Zhang committed
386
                        device=q.device)
Jimmy Zhang's avatar
Jimmy Zhang committed
387

Jimmy Zhang's avatar
Jimmy Zhang committed
388
389
390
391
392
        output = flash_attn_unpadded_func(
            q, k, v, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen_k,
            0.0,
            softmax_scale=self.softmax_scale, causal=is_causal
        )
Jimmy Zhang's avatar
Jimmy Zhang committed
393

394
395
396
397
        output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
        return output


398
class ParallelAttention(MegatronModule):
399
400
    """Parallel self-attention layer abstract class.

Vijay Korthikanti's avatar
Vijay Korthikanti committed
401
    Self-attention layer takes input with size [s, b, h]
402
403
    and returns output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
404

405
    def __init__(self, init_method,
406
407
408
409
                 output_layer_init_method, layer_number,
                 attention_type=AttnType.self_attn,
                 attn_mask_type=AttnMaskType.padding):
        super(ParallelAttention, self).__init__()
Mohammad's avatar
Mohammad committed
410
        args = get_args()
411
        self.layer_number = max(1, layer_number)
412
413
        self.attention_type = attention_type
        self.attn_mask_type = attn_mask_type
414
        self.params_dtype = args.params_dtype
415
416
417
418
419
420
421
422
423
424
425
426
427
        self.sequence_parallel = args.sequence_parallel

        self.use_flash_attn = args.use_flash_attn
        if self.use_flash_attn:
            if flash_attn_unpadded_func is None:
                raise ImportError('FlashAttention is not installed, please install with '
                                  'pip install flash-attn')
            assert attention_type == AttnType.self_attn, ('FlashAttention code path only supports '
                                                          'self-attention for now')
            assert self.attn_mask_type == AttnMaskType.causal, ('FlashAttention code path only '
                                                                'supports causal mask for now')
            if rearrange is None:
                raise ImportError('einops is not installed, please install with pip install einops')
428
429

        projection_size = args.kv_channels * args.num_attention_heads
430
431

        # Per attention head and per partition values.
432
        world_size = mpu.get_tensor_model_parallel_world_size()
433
        self.hidden_size_per_attention_head = core.utils.divide(
434
            projection_size, args.num_attention_heads)
435
        self.num_attention_heads_per_partition = core.utils.divide(
Mohammad's avatar
Mohammad committed
436
            args.num_attention_heads, world_size)
437
438

        # Strided linear layer.
439
        if attention_type == AttnType.self_attn:
440
            self.query_key_value = tensor_parallel.ColumnParallelLinear(
441
442
                args.hidden_size,
                3 * projection_size,
443
                bias=args.add_bias_linear,
444
                gather_output=False,
445
446
447
                init_method=init_method,
                async_tensor_model_parallel_allreduce=args.async_tensor_model_parallel_allreduce,
                **_args_to_kwargs())
448
449
        else:
            assert attention_type == AttnType.cross_attn
450
            self.query = tensor_parallel.ColumnParallelLinear(
451
452
                args.hidden_size,
                projection_size,
453
                bias=args.add_bias_linear,
454
                gather_output=False,
455
456
457
                init_method=init_method,
                async_tensor_model_parallel_allreduce=args.async_tensor_model_parallel_allreduce,
                **_args_to_kwargs())
458

459

460
            self.key_value = tensor_parallel.ColumnParallelLinear(
461
462
                args.hidden_size,
                2 * projection_size,
463
                bias=args.add_bias_linear,
464
                gather_output=False,
465
466
467
                init_method=init_method,
                async_tensor_model_parallel_allreduce=args.async_tensor_model_parallel_allreduce,
                **_args_to_kwargs())
468

469
470
        self.core_attention = CoreAttention(self.layer_number,
                                            self.attn_mask_type)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
471
        self.checkpoint_core_attention = args.recompute_granularity == 'selective'
472

473
474
475
476
477
        if self.use_flash_attn:
            self.core_attention_flash = FlashSelfAttention(
                causal=True, attention_dropout=args.attention_dropout
            )

478
        # Output.
479
        self.dense = tensor_parallel.RowParallelLinear(
480
            projection_size,
Mohammad's avatar
Mohammad committed
481
            args.hidden_size,
482
            bias=args.add_bias_linear,
483
            input_is_parallel=True,
484
            init_method=output_layer_init_method,
485
486
            skip_bias_add=True,
            **_args_to_kwargs())
Vijay Korthikanti's avatar
Vijay Korthikanti committed
487

488
    def _checkpointed_attention_forward(self, query_layer, key_layer,
Mostofa Patwary's avatar
Mostofa Patwary committed
489
490
                                        value_layer, attention_mask,
                                        rotary_pos_emb=None):
491
492
493
494
495
496
497
498
499
500
        """Forward method with activation checkpointing."""
        def custom_forward(*inputs):
            query_layer = inputs[0]
            key_layer = inputs[1]
            value_layer = inputs[2]
            attention_mask = inputs[3]
            output_ = self.core_attention(query_layer, key_layer,
                                          value_layer, attention_mask)
            return output_

Mostofa Patwary's avatar
Mostofa Patwary committed
501
502
503
        q_pos_emb, k_pos_emb = (None, None) if rotary_pos_emb is None \
            else rotary_pos_emb

504
        hidden_states = tensor_parallel.checkpoint(
505
            custom_forward,
Mostofa Patwary's avatar
Mostofa Patwary committed
506
507
            False, query_layer, key_layer, value_layer, attention_mask,
            q_pos_emb, k_pos_emb)
508
509

        return hidden_states
510
511
512
513
514
515
516
517
518
519
520

    def _allocate_memory(self, inference_max_sequence_len, batch_size):
        return torch.empty(
            inference_max_sequence_len,
            batch_size,
            self.num_attention_heads_per_partition,
            self.hidden_size_per_attention_head,
            dtype=self.params_dtype,
            device=torch.cuda.current_device())

    def forward(self, hidden_states, attention_mask,
Mostofa Patwary's avatar
Mostofa Patwary committed
521
522
                encoder_output=None, inference_params=None,
                rotary_pos_emb=None):
523
        # hidden_states: [sq, b, h]
524

525
526
527
        # =================================================
        # Pre-allocate memory for key-values for inference.
        # =================================================
Mostofa Patwary's avatar
Mostofa Patwary committed
528
        is_first_step = False
mshoeybi's avatar
mshoeybi committed
529
        if inference_params:
530
            if self.layer_number not in inference_params.key_value_memory_dict:
mshoeybi's avatar
mshoeybi committed
531
                inf_max_seq_len = inference_params.max_sequence_len
mshoeybi's avatar
mshoeybi committed
532
                inf_max_batch_size = inference_params.max_batch_size
533
                inference_key_memory = self._allocate_memory(
mshoeybi's avatar
mshoeybi committed
534
                    inf_max_seq_len, inf_max_batch_size)
535
                inference_value_memory = self._allocate_memory(
mshoeybi's avatar
mshoeybi committed
536
                    inf_max_seq_len, inf_max_batch_size)
537
538
                inference_params.key_value_memory_dict[self.layer_number] = (
                    inference_key_memory, inference_value_memory)
Mostofa Patwary's avatar
Mostofa Patwary committed
539
                is_first_step = True
540
541
542
            else:
                inference_key_memory, inference_value_memory = \
                    inference_params.key_value_memory_dict[self.layer_number]
mshoeybi's avatar
mshoeybi committed
543

544
545
546
        # =====================
        # Query, Key, and Value
        # =====================
547

548
549
550
551
552
553
554
555
556
557
558
559
560
        if self.attention_type == AttnType.self_attn:
            # Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
            mixed_x_layer, _ = self.query_key_value(hidden_states)

            # [sq, b, (np * 3 * hn)] --> [sq, b, np, 3 * hn]
            new_tensor_shape = mixed_x_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 3 * self.hidden_size_per_attention_head)
            mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)

            # [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
            (query_layer,
             key_layer,
561
             value_layer) = tensor_parallel.split_tensor_along_last_dim(mixed_x_layer, 3)
562
563
564
565
566
567
568
569
570
571
572
573
        else:
            # Attention heads [sk, b, h] --> [sk, b, (np * 2 * hn)]
            mixed_kv_layer, _ = self.key_value(encoder_output)

            # [sk, b, (np * 2 * hn)] --> [sk, b, np, 2 * hn]
            new_tensor_shape = mixed_kv_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 2 * self.hidden_size_per_attention_head)
            mixed_kv_layer = mixed_kv_layer.view(*new_tensor_shape)

            # [sk, b, np, 2 * hn] --> 2 [sk, b, np, hn]
            (key_layer,
574
             value_layer) = tensor_parallel.split_tensor_along_last_dim(mixed_kv_layer, 2)
575
576
577
578
579
580
581
582

            # Attention head [sq, b, h] --> [sq, b, hp]
            query_layer, _ = self.query(hidden_states)
            # [sq, b, hp] --> [sq, b, np, hn]
            new_tensor_shape = query_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 self.hidden_size_per_attention_head)
            query_layer = query_layer.view(*new_tensor_shape)
583

mshoeybi's avatar
mshoeybi committed
584
585
586
        # ==================================
        # Adjust key and value for inference
        # ==================================
587

Mostofa Patwary's avatar
Mostofa Patwary committed
588
589
        # duplicate the pos_emb for self attention
        if rotary_pos_emb is not None:
Mostofa Patwary's avatar
Mostofa Patwary committed
590
591
592
593
            if isinstance(rotary_pos_emb, tuple):
                rotary_pos_emb = rotary_pos_emb
            else:
                rotary_pos_emb = ((rotary_pos_emb,) * 2)
Mostofa Patwary's avatar
Mostofa Patwary committed
594

mshoeybi's avatar
mshoeybi committed
595
        if inference_params:
mshoeybi's avatar
mshoeybi committed
596
597
            batch_start = inference_params.batch_size_offset
            batch_end = batch_start + key_layer.size(1)
598
            assert batch_end <= inference_key_memory.size(1)
mshoeybi's avatar
mshoeybi committed
599
600
            sequence_start = inference_params.sequence_len_offset
            sequence_end = sequence_start + key_layer.size(0)
601
            assert sequence_end <= inference_key_memory.size(0)
602
            # Copy key and values.
603
604
605
606
607
            inference_key_memory[sequence_start:sequence_end,
                                 batch_start:batch_end, ...] = key_layer
            inference_value_memory[sequence_start:sequence_end,
                                   batch_start:batch_end, ...] = value_layer
            key_layer = inference_key_memory[
mshoeybi's avatar
mshoeybi committed
608
                :sequence_end, batch_start:batch_end, ...]
609
            value_layer = inference_value_memory[
mshoeybi's avatar
mshoeybi committed
610
                :sequence_end, batch_start:batch_end, ...]
611

Mostofa Patwary's avatar
Mostofa Patwary committed
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633

            # adjust the key rotary positional embedding
            if rotary_pos_emb is not None:
                q_pos_emb, k_pos_emb = rotary_pos_emb
                # need to cross check this condition during inference
                # if not set_inference_key_value_memory:
                if not is_first_step:
                    # In inference, we compute one token at a time.
                    # Select the correct positional embedding
                    # (only the last token in the sequence)
                    q_pos_emb = q_pos_emb[sequence_end - 1 : sequence_end]
                else:
                    # In the first forward pass of inference,
                    # we use the entire provided prefix.
                    # q_pos_emb here has the rope embeddings of the entire
                    # prefix + to-be-generated output so
                    # we slice to just the prefix.
                    q_pos_emb = q_pos_emb[:sequence_end, :, :, :]
                k_pos_emb = k_pos_emb[:sequence_end, :, :, :]
                rotary_pos_emb = (q_pos_emb, k_pos_emb)


634
635
636
        # ==================================
        # core attention computation
        # ==================================
637

Mostofa Patwary's avatar
Mostofa Patwary committed
638
639
640
641
642
643
644
645
646
647
        # apply relative positional encoding (rotary embedding)
        if rotary_pos_emb is not None:
            q_pos_emb, k_pos_emb = rotary_pos_emb
            query_layer = apply_rotary_pos_emb(query_layer, q_pos_emb)
            key_layer = apply_rotary_pos_emb(key_layer, k_pos_emb)
            # TODO, can apply positional embedding to value_layer so it has
            # absolute positional embedding.
            # otherwise, only relative positional embedding takes effect
            # value_layer = apply_rotary_pos_emb(value_layer, k_pos_emb)

648
649
650
651
652
653
654
        if not self.use_flash_attn:
            if self.checkpoint_core_attention:
                context_layer = self._checkpointed_attention_forward(
                    query_layer, key_layer, value_layer, attention_mask)
            else:
                context_layer = self.core_attention(
                    query_layer, key_layer, value_layer, attention_mask)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
655
        else:
656
657
658
659
660
661
662
663
            q, k, v = [rearrange(x, 's b ... -> b s ...').contiguous()
                       for x in (query_layer, key_layer, value_layer)]
            if not self.sequence_parallel:
                with tensor_parallel.get_cuda_rng_tracker().fork():
                    context_layer = self.core_attention_flash(q, k, v)
            else:
                context_layer = self.core_attention_flash(q, k, v)
            context_layer = rearrange(context_layer, 'b s h d -> s b (h d)').contiguous()
664
665

        # =================
666
        # Output. [sq, b, h]
667
668
669
        # =================

        output, bias = self.dense(context_layer)
670

671
672
673
        return output, bias


674
def bias_dropout_add(x, bias, residual, prob, training):
675
    # type: (Tensor, Tensor, Tensor, float, bool) -> Tensor
676
677
678
    if bias is not None:
        x = x + bias
    out = torch.nn.functional.dropout(x, p=prob, training=training)
679
680
681
682
683
684
685
686
687
688
689
    out = residual + out
    return out


def get_bias_dropout_add(training):
    def _bias_dropout_add(x, bias, residual, prob):
        return bias_dropout_add(x, bias, residual, prob, training)
    return _bias_dropout_add


@torch.jit.script
690
691
692
693
def bias_dropout_add_fused_train(x: torch.Tensor,
                                 bias: torch.Tensor,
                                 residual: torch.Tensor,
                                 prob: float) -> torch.Tensor:
694
695
696
697
    return bias_dropout_add(x, bias, residual, prob, True)


@torch.jit.script
698
699
700
701
def bias_dropout_add_fused_inference(x: torch.Tensor,
                                     bias: torch.Tensor,
                                     residual: torch.Tensor,
                                     prob: float) -> torch.Tensor:
702
    return bias_dropout_add(x, bias, residual, prob, False)
703
704
705
706
707


class ParallelTransformerLayer(MegatronModule):
    """A single transformer layer.

Vijay Korthikanti's avatar
Vijay Korthikanti committed
708
    Transformer layer takes input with size [s, b, h] and returns an
709
710
    output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
711

712
713
    def __init__(self, init_method, output_layer_init_method,
                 layer_number, layer_type=LayerType.encoder,
714
715
                 self_attn_mask_type=AttnMaskType.padding,
                 drop_path_rate=0.):
Mohammad's avatar
Mohammad committed
716
        args = get_args()
717
718

        super(ParallelTransformerLayer, self).__init__()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
719
        self.layer_number = layer_number
720
        self.layer_type = layer_type
721
722

        self.apply_residual_connection_post_layernorm \
Mohammad's avatar
Mohammad committed
723
            = args.apply_residual_connection_post_layernorm
724

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
725
726
727
        self.bf16 = args.bf16
        self.fp32_residual_connection = args.fp32_residual_connection

728
729
        # Layernorm on the input data.
        self.input_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
730
            args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
731
            eps=args.layernorm_epsilon,
732
            no_persist_layer_norm=args.no_persist_layer_norm,
Mostofa Patwary's avatar
Mostofa Patwary committed
733
            sequence_parallel=args.sequence_parallel,
Jared Casper's avatar
Jared Casper committed
734
            apply_layernorm_1p=args.apply_layernorm_1p)
735
736

        # Self attention.
737
738
739
740
741
742
        self.self_attention = ParallelAttention(
            init_method,
            output_layer_init_method,
            layer_number,
            attention_type=AttnType.self_attn,
            attn_mask_type=self_attn_mask_type)
743
744
        self.hidden_dropout = args.hidden_dropout
        self.bias_dropout_fusion = args.bias_dropout_fusion
Vijay Korthikanti's avatar
Vijay Korthikanti committed
745
        self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else None
746

747
        # Layernorm on the attention output
748
        self.post_attention_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
749
            args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
750
            eps=args.layernorm_epsilon,
751
            no_persist_layer_norm=args.no_persist_layer_norm,
Mostofa Patwary's avatar
Mostofa Patwary committed
752
            sequence_parallel=args.sequence_parallel,
Jared Casper's avatar
Jared Casper committed
753
            apply_layernorm_1p=args.apply_layernorm_1p)
754

755
756
757
758
759
760
761
762
763
        if self.layer_type == LayerType.decoder:
            self.inter_attention = ParallelAttention(
                init_method,
                output_layer_init_method,
                layer_number,
                attention_type=AttnType.cross_attn)
            # Layernorm on the attention output.
            self.post_inter_attention_layernorm = LayerNorm(
                args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
764
                eps=args.layernorm_epsilon,
765
                no_persist_layer_norm=args.no_persist_layer_norm,
Mostofa Patwary's avatar
Mostofa Patwary committed
766
                sequence_parallel=args.sequence_parallel,
Jared Casper's avatar
Jared Casper committed
767
                apply_layernorm_1p=args.apply_layernorm_1p)
768

769
        # MLP
rprenger's avatar
rprenger committed
770
771
772
773
        if args.num_experts is not None:
            self.mlp = SwitchMLP(init_method, output_layer_init_method)
        else:
            self.mlp = ParallelMLP(init_method, output_layer_init_method)
774

775
776
777
778
779
780
781
        # Set bias+dropout+add fusion grad_enable execution handler.
        TORCH_MAJOR = int(torch.__version__.split('.')[0])
        TORCH_MINOR = int(torch.__version__.split('.')[1])
        use_nvfuser = TORCH_MAJOR > 1 or (TORCH_MAJOR == 1 and TORCH_MINOR >= 10)
        self.bias_dropout_add_exec_handler = \
                nullcontext if use_nvfuser else torch.enable_grad

782
    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
783
                encoder_output=None, enc_dec_attn_mask=None,
Mostofa Patwary's avatar
Mostofa Patwary committed
784
                inference_params=None, rotary_pos_emb=None):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
785
        # hidden_states: [s, b, h]
786

787
        # Layer norm at the beginning of the transformer layer.
788
789
        layernorm_output = self.input_layernorm(hidden_states)
        # Self attention.
790
        attention_output, attention_bias = \
791
792
793
            self.self_attention(
                layernorm_output,
                attention_mask,
Mostofa Patwary's avatar
Mostofa Patwary committed
794
                inference_params=inference_params,
Mostofa Patwary's avatar
Mostofa Patwary committed
795
                rotary_pos_emb=rotary_pos_emb)
796

797
798
        # Residual connection.
        if self.apply_residual_connection_post_layernorm:
799
800
801
802
            residual = layernorm_output
        else:
            residual = hidden_states

Vijay Korthikanti's avatar
Vijay Korthikanti committed
803
        if self.drop_path is None:
804
805
806
807
808
809
810
811
812
            # jit scripting for a nn.module (with dropout) is not
            # trigerring the fusion kernel. For now, we use two
            # different nn.functional routines to account for varying
            # dropout semantics during training and inference phases.
            if self.bias_dropout_fusion:
                if self.training:
                    bias_dropout_add_func = bias_dropout_add_fused_train
                else:
                    bias_dropout_add_func = bias_dropout_add_fused_inference
813
            else:
814
                bias_dropout_add_func = get_bias_dropout_add(self.training)
815

816
817
            if attention_bias is not None:
                attention_bias = attention_bias.expand_as(residual)
818
            with self.bias_dropout_add_exec_handler():
819
820
                layernorm_input = bias_dropout_add_func(
                    attention_output,
821
                    attention_bias,
822
823
824
825
826
827
828
                    residual,
                    self.hidden_dropout)
        else:
            out = torch.nn.functional.dropout(attention_output + attention_bias,
                                              p=self.hidden_dropout,
                                              training=self.training)
            layernorm_input = residual + self.drop_path(out)
829

830
831
832
        # Layer norm post the self attention.
        layernorm_output = self.post_attention_layernorm(layernorm_input)

833
834
835
836
837
838
839
840
841
842
843
        if self.layer_type == LayerType.decoder:
            attention_output, attention_bias = \
                self.inter_attention(layernorm_output,
                                     enc_dec_attn_mask,
                                     encoder_output=encoder_output)
            # residual connection
            if self.apply_residual_connection_post_layernorm:
                residual = layernorm_output
            else:
                residual = layernorm_input

844
845
846
            if attention_bias is not None:
                attention_bias = attention_bias.expand_as(residual)

847
            with self.bias_dropout_add_exec_handler():
848
849
                layernorm_input = bias_dropout_add_func(
                    attention_output,
850
                    attention_bias,
851
852
853
854
855
856
                    residual,
                    self.hidden_dropout)

            # Layer norm post the decoder attention
            layernorm_output = self.post_inter_attention_layernorm(layernorm_input)

857
        # MLP.
858
        mlp_output, mlp_bias = self.mlp(layernorm_output)
859

860
861
        # Second residual connection.
        if self.apply_residual_connection_post_layernorm:
862
            residual = layernorm_output
863
        else:
864
865
            residual = layernorm_input

Vijay Korthikanti's avatar
Vijay Korthikanti committed
866
        if self.drop_path is None:
867
868
            if mlp_bias is not None:
                mlp_bias = mlp_bias.expand_as(residual)
869
            with self.bias_dropout_add_exec_handler():
870
871
                output = bias_dropout_add_func(
                    mlp_output,
872
                    mlp_bias,
873
874
                    residual,
                    self.hidden_dropout)
875
876
877
878
879
880
881

            # Jit compiled function creates 'view' tensor. This tensor
            # potentially gets saved in the MPU checkpoint function context,
            # which rejects view tensors. While making a viewless tensor here
            # won't result in memory savings (like the data loader, or
            # p2p_communication), it serves to document the origin of this
            # 'view' tensor.
882
883
884
            output = core.utils.make_viewless_tensor(inp = output,
                                                     requires_grad = output.requires_grad,
                                                     keep_graph = True)
885

886
        else:
887
888
889
            if mlp_bias is not None:
                mlp_output = mlp_output + mlp_bias
            out = torch.nn.functional.dropout(mlp_output,
890
891
892
                                              p=self.hidden_dropout,
                                              training=self.training)
            output = residual + self.drop_path(out)
893
894
895
896

        return output


897
898
899
class NoopTransformerLayer(MegatronModule):
    """A single 'no-op' transformer layer.

Lawrence McAfee's avatar
Lawrence McAfee committed
900
    The sole purpose of this layer is for when a standalone embedding layer
901
    is used (i.e., args.standalone_embedding_stage == True). In this case,
Lawrence McAfee's avatar
Lawrence McAfee committed
902
903
904
905
906
907
908
909
910
    zero transformer layers are assigned when pipeline rank == 0. Additionally,
    when virtual pipeline rank >= 1, zero total model parameters are created
    (virtual rank 0 contains the input embedding). This results in the model's
    input and output tensors being the same, which causes an error when
    performing certain memory optimiations on the output tensor (e.g.,
    deallocating it). Thus, this layer disconnects the input from the output
    via a clone. Since ranks containing a no-op layer are generally under-
    utilized (both compute and memory), there's no worry of any performance
    degredation.
911
912
913
914
915
916
917
918
919
920
921
922
    """

    def __init__(self, layer_number):
        super().__init__()
        self.layer_number = layer_number

    def forward(self, hidden_states, attention_mask,
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
        return hidden_states.clone()


Jared Casper's avatar
Jared Casper committed
923
def _get_num_layers(args, is_encoder_and_decoder_model, is_decoder=False):
924
    """Compute the number of transformer layers resident on the current rank."""
Jared Casper's avatar
Jared Casper committed
925
    if mpu.get_pipeline_model_parallel_world_size() > 1:
926
927
928
929
930
931
932
933
934
935
936
937
938
        if is_encoder_and_decoder_model:
            assert args.pipeline_model_parallel_split_rank is not None

            # When a standalone embedding stage is used, a rank is taken from
            # the encoder's ranks, to be used for the encoder's embedding
            # layer. This way, the rank referenced by the 'split rank' remains
            # the same whether or not a standalone embedding stage is used.
            num_ranks_in_encoder = (
                args.pipeline_model_parallel_split_rank - 1
                if args.standalone_embedding_stage else
                args.pipeline_model_parallel_split_rank
            )
            num_ranks_in_decoder = args.transformer_pipeline_model_parallel_size - num_ranks_in_encoder
Jared Casper's avatar
Jared Casper committed
939
940
941
942
            assert args.encoder_num_layers % num_ranks_in_encoder == 0, \
                    'encoder_num_layers (%d) must be divisible by number of ranks given to encoder (%d)' % (args.encoder_num_layers, num_ranks_in_encoder)
            assert args.decoder_num_layers % num_ranks_in_decoder == 0, \
                    'decoder_num_layers (%d) must be divisible by number of ranks given to decoder (%d)' % (args.decoder_num_layers, num_ranks_in_decoder)
Jared Casper's avatar
Jared Casper committed
943
            if mpu.is_pipeline_stage_before_split():
944
945
946
                num_layers = (
                    0
                    if args.standalone_embedding_stage
Jared Casper's avatar
Jared Casper committed
947
                    and mpu.get_pipeline_model_parallel_rank() == 0 else
Jared Casper's avatar
Jared Casper committed
948
                    args.encoder_num_layers // num_ranks_in_encoder
949
950
                )
            else:
Jared Casper's avatar
Jared Casper committed
951
                num_layers = args.decoder_num_layers // num_ranks_in_decoder
952
        else:
Jared Casper's avatar
Jared Casper committed
953
            assert args.num_layers == args.encoder_num_layers
954
955
956
957
958
959
960
961
962
963
            assert args.num_layers % args.transformer_pipeline_model_parallel_size == 0, \
                'num_layers must be divisible by transformer_pipeline_model_parallel_size'

            # When a standalone embedding stage is used, all transformer layers
            # are divided among pipeline rank >= 1, while on pipeline rank 0,
            # ranks either contain the input embedding layer (virtual pp rank 0),
            # or no layers at all (virtual pp rank >= 1).
            num_layers = (
                0
                if args.standalone_embedding_stage
Jared Casper's avatar
Jared Casper committed
964
                and mpu.get_pipeline_model_parallel_rank() == 0 else
965
966
967
                args.num_layers // args.transformer_pipeline_model_parallel_size
            )
    else:
Jared Casper's avatar
Jared Casper committed
968
969
970
971
        if not is_decoder:
            num_layers = args.encoder_num_layers
        else:
            num_layers = args.decoder_num_layers
972
973
974
    return num_layers


975
976
977
class ParallelTransformer(MegatronModule):
    """Transformer class."""

978
    def __init__(self, init_method, output_layer_init_method,
979
                 layer_type=LayerType.encoder,
980
                 self_attn_mask_type=AttnMaskType.padding,
981
                 post_layer_norm=True,
982
983
                 pre_process=True, post_process=True,
                 drop_path_rate=0.0):
984
        super(ParallelTransformer, self).__init__()
Mohammad's avatar
Mohammad committed
985
        args = get_args()
986

987
988
        self.layer_type = layer_type
        self.model_type = args.model_type
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
989
        self.bf16 = args.bf16
990
        self.fp32_residual_connection = args.fp32_residual_connection
991
        self.post_layer_norm = post_layer_norm
992
993
994
        self.pre_process = pre_process
        self.post_process = post_process
        self.input_tensor = None
995
        self.drop_path_rate = drop_path_rate
996
        self.transformer_impl = args.transformer_impl
997

998
        # Store activation checkpoiting flag.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
999
1000
1001
        self.recompute_granularity = args.recompute_granularity
        self.recompute_method = args.recompute_method
        self.recompute_num_layers = args.recompute_num_layers
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1002
1003
        self.distribute_saved_activations = \
            args.distribute_saved_activations and not args.sequence_parallel
1004

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1005
        self.sequence_parallel = args.sequence_parallel
1006

1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
        # Transformer Engine Init.
        if self.transformer_impl == 'transformer_engine':
            global transformer_engine
            import transformer_engine
        self.use_fp8 = args.fp8_e4m3 or args.fp8_hybrid
        self.fp8_recipe = None
        self.fp8_group = mpu.get_data_parallel_group()
        if self.use_fp8:
            if args.fp8_e4m3:
                fp8_format = transformer_engine.common.recipe.Format.E4M3
            elif args.fp8_hybrid:
                fp8_format = transformer_engine.common.recipe.Format.HYBRID
            self.fp8_recipe = transformer_engine.common.recipe.DelayedScaling(
                margin=args.fp8_margin,
                interval=args.fp8_interval,
                fp8_format=fp8_format,
                amax_history_len=args.fp8_amax_history_len,
                amax_compute_algo=args.fp8_amax_compute_algo,
                override_linear_precision=(False, False, not args.fp8_wgrad),
            )

        self.num_microbatches_in_previous_step = -1
        self.microbatch_count = 0
        self.checkpoint_core_attention = args.recompute_granularity == 'selective'

1032
        # Number of layers.
1033
        self.num_layers = _get_num_layers(
1034
1035
1036
            args,
            args.model_type == ModelType.encoder_and_decoder,
            layer_type == LayerType.decoder)
Mohammad's avatar
Mohammad committed
1037

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1038
        self.drop_path_rates = [rate.item() for rate in torch.linspace(0, self.drop_path_rate, args.num_layers)]
1039

Mohammad's avatar
Mohammad committed
1040
1041
        # Transformer layers.
        def build_layer(layer_number):
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
            if args.transformer_impl == 'local':
                return ParallelTransformerLayer(
                    init_method,
                    output_layer_init_method,
                    layer_number,
                    layer_type=layer_type,
                    self_attn_mask_type=self_attn_mask_type,
                    drop_path_rate=self.drop_path_rates[layer_number - 1])
            else:
                return transformer_engine.pytorch.TransformerLayer(
                    args.hidden_size,
                    args.ffn_hidden_size,
                    args.num_attention_heads,
                    layernorm_epsilon=args.layernorm_epsilon,
                    hidden_dropout=args.hidden_dropout,
                    attention_dropout=args.attention_dropout,
                    init_method=init_method,
                    output_layer_init_method=output_layer_init_method,
                    layer_number=layer_number,
                    kv_channels=args.kv_channels,
                    self_attn_mask_type=self_attn_mask_type.name,
                    tp_group=mpu.get_tensor_model_parallel_group(),
                    get_rng_state_tracker=tensor_parallel.get_cuda_rng_tracker,
                    fuse_wgrad_accumulation=args.gradient_accumulation_fusion,
                    apply_query_key_layer_scaling=args.apply_query_key_layer_scaling,
                    attention_softmax_in_fp32=args.attention_softmax_in_fp32,
                    seq_length=args.seq_length,
                    micro_batch_size=args.micro_batch_size,
                    sequence_parallel=args.sequence_parallel,
                    params_dtype=args.params_dtype,
                    apply_residual_connection_post_layernorm=args.apply_residual_connection_post_layernorm,
                    output_layernorm=False,
                    layer_type="encoder",
                    drop_path_rate=self.drop_path_rates[layer_number - 1],
                    set_parallel_mode=True,
                    fuse_qkv_params=True)

1079
1080
        if args.virtual_pipeline_model_parallel_size is not None:
            assert args.num_layers % args.virtual_pipeline_model_parallel_size == 0, \
1081
1082
                'num_layers_per_stage must be divisible by ' \
                'virtual_pipeline_model_parallel_size'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1083
            assert args.model_type != ModelType.encoder_and_decoder
1084
1085
            # Number of layers in each model chunk is the number of layers in the stage,
            # divided by the number of model chunks in a stage.
1086
            self.num_layers = self.num_layers // args.virtual_pipeline_model_parallel_size
1087
1088
1089
1090
1091
1092
1093
1094
            # With 8 layers, 2 stages, and 4 model chunks, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0]  [2]  [4]  [6]
            # Stage 1: [1]  [3]  [5]  [7]
            # With 8 layers, 2 stages, and 2 virtual stages, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0, 1]  [4, 5]
            # Stage 1: [2, 3]  [6, 7]
1095
            offset = mpu.get_virtual_pipeline_model_parallel_rank() * (
1096
                args.num_layers // args.virtual_pipeline_model_parallel_size) + \
1097
                (mpu.get_pipeline_model_parallel_rank() * self.num_layers)
1098
        else:
1099
            # Each stage gets a contiguous set of layers.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1100
            if args.model_type == ModelType.encoder_and_decoder and \
1101
1102
                    mpu.get_pipeline_model_parallel_world_size() > 1:
                pipeline_rank = mpu.get_pipeline_model_parallel_rank()
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1103
1104
1105
1106
1107
1108
                if layer_type == LayerType.encoder:
                    offset = pipeline_rank * self.num_layers
                else:
                    num_ranks_in_enc = args.pipeline_model_parallel_split_rank
                    offset = (pipeline_rank - num_ranks_in_enc) * self.num_layers
            else:
1109
                offset = mpu.get_pipeline_model_parallel_rank() * self.num_layers
1110

1111
        if self.num_layers == 0:
Lawrence McAfee's avatar
Lawrence McAfee committed
1112
            # When a standalone embedding stage is used (e.g.,
1113
            # args.standalone_embedding_stage == True), virtual pipeline ranks
1114
            # on pipeline rank 0 will have zero transformer layers assigned to
Lawrence McAfee's avatar
Lawrence McAfee committed
1115
1116
1117
1118
1119
            # them. This results in the model's input and output tensors to be
            # the same, which will cause failure for certain output tensor
            # optimizations (e.g., pipeline output deallocation). To remedy
            # this, we assign a 'no-op' layer on these ranks, which will
            # disconnect the input tensor from the output tensor.
1120
1121
1122
1123
1124
            self.num_layers = 1
            self.layers = torch.nn.ModuleList([ NoopTransformerLayer(1) ])
        else:
            self.layers = torch.nn.ModuleList(
                [build_layer(i + 1 + offset) for i in range(self.num_layers)])
1125

1126
        if self.post_process and self.post_layer_norm:
1127
1128
1129
            # Final layer norm before output.
            self.final_layernorm = LayerNorm(
                args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
1130
                eps=args.layernorm_epsilon,
1131
                no_persist_layer_norm=args.no_persist_layer_norm,
Mostofa Patwary's avatar
Mostofa Patwary committed
1132
                sequence_parallel=args.sequence_parallel,
Jared Casper's avatar
Jared Casper committed
1133
                apply_layernorm_1p=args.apply_layernorm_1p)
1134

Mohammad's avatar
Mohammad committed
1135
    def _get_layer(self, layer_number):
1136
        return self.layers[layer_number]
Mohammad's avatar
Mohammad committed
1137

1138
    def _checkpointed_forward(self, hidden_states, attention_mask,
Mostofa Patwary's avatar
Mostofa Patwary committed
1139
1140
                              encoder_output, enc_dec_attn_mask,
                              rotary_pos_emb, is_first_microbatch):
1141
        """Forward method with activation checkpointing."""
1142
1143
        def custom(start, end, is_transformer_engine=False):
            def custom_forward(*args, **kwargs):
1144
                x_, *args = args
Mohammad's avatar
Mohammad committed
1145
1146
                for index in range(start, end):
                    layer = self._get_layer(index)
1147
                    x_ = layer(x_, *args, **kwargs)
1148
                return x_
1149
1150
1151
1152
1153
1154
            def custom_forward_transformer_engine(*args, **kwargs):
                return custom_forward(*args, is_first_microbatch=is_first_microbatch, **kwargs)
            if not is_transformer_engine:
                return custom_forward
            else:
                return custom_forward_transformer_engine
1155

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1156
        if self.recompute_method == 'uniform':
1157
1158
1159
1160
1161
            # Uniformly divide the total number of Transformer layers and checkpoint
            # the input activation of each divided chunk.
            # A method to further reduce memory usage reducing checkpoints.
            l = 0
            while l < self.num_layers:
1162
1163
1164
1165
1166
1167
                if self.transformer_impl == 'transformer_engine':
                    hidden_states = transformer_engine.pytorch.distributed.checkpoint(
                        custom(l, l + self.recompute_num_layers, is_transformer_engine=True),
                        self.distribute_saved_activations,
                        tensor_parallel.get_cuda_rng_tracker,
                        mpu.get_tensor_model_parallel_group(),
Mostofa Patwary's avatar
Mostofa Patwary committed
1168
1169
                        hidden_states, attention_mask, encoder_output,
                        enc_dec_attn_mask, rotary_pos_emb)
1170
1171
1172
1173
                else:
                    hidden_states = tensor_parallel.checkpoint(
                        custom(l, l + self.recompute_num_layers),
                        self.distribute_saved_activations,
Mostofa Patwary's avatar
Mostofa Patwary committed
1174
1175
                        hidden_states, attention_mask, encoder_output,
                        enc_dec_attn_mask, rotary_pos_emb)
1176

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1177
                l += self.recompute_num_layers
1178

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1179
        elif self.recompute_method == 'block':
1180
1181
1182
1183
            # Checkpoint the input activation of only a set number of individual
            # Transformer layers and skip the rest.
            # A method fully use the device memory removing redundant re-computation.
            for l in range(self.num_layers):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1184
                if l < self.recompute_num_layers:
1185
1186
1187
1188
1189
1190
                    if self.transformer_impl == 'transformer_engine':
                        hidden_states = transformer_engine.pytorch.distributed.checkpoint(
                            custom(l, l + 1, is_transformer_engine=True),
                            self.distribute_saved_activations,
                            tensor_parallel.get_cuda_rng_tracker,
                            mpu.get_tensor_model_parallel_group(),
Mostofa Patwary's avatar
Mostofa Patwary committed
1191
1192
                            hidden_states, attention_mask, encoder_output,
                            enc_dec_attn_mask, rotary_pos_emb)
1193
1194
1195
1196
                    else:
                        hidden_states = tensor_parallel.checkpoint(
                            custom(l, l + 1),
                            self.distribute_saved_activations,
Mostofa Patwary's avatar
Mostofa Patwary committed
1197
1198
                            hidden_states, attention_mask, encoder_output,
                            enc_dec_attn_mask, rotary_pos_emb)
1199
                else:
1200
1201
                    if self.transformer_impl == 'transformer_engine':
                        hidden_states = custom(l, l + 1, is_transformer_engine=True)(
Mostofa Patwary's avatar
Mostofa Patwary committed
1202
1203
                            hidden_states, attention_mask, encoder_output,
                            enc_dec_attn_mask, rotary_pos_emb)
1204
1205
                    else:
                        hidden_states = custom(l, l + 1)(
Mostofa Patwary's avatar
Mostofa Patwary committed
1206
1207
                            hidden_states, attention_mask, encoder_output,
                            enc_dec_attn_mask, rotary_pos_emb)
1208
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1209
            raise ValueError("Invalid activation recompute method.")
1210
1211
1212

        return hidden_states

1213
    def set_input_tensor(self, input_tensor):
1214
1215
1216
1217
1218
1219
1220
        """Set input tensor to be used instead of forward()'s input.

        When doing pipeline parallelism the input from the previous
        stage comes from communication, not from the input, so the
        model's forward_step_func won't have it. This function is thus
        used by internal code to bypass the input provided by the
        forward_step_func"""
1221
1222
        self.input_tensor = input_tensor

1223
    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
1224
                encoder_output=None, enc_dec_attn_mask=None,
Mostofa Patwary's avatar
Mostofa Patwary committed
1225
                inference_params=None, rotary_pos_emb=None):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1226
1227
        # hidden_states: [s, b, h]

1228
        # Checks.
mshoeybi's avatar
mshoeybi committed
1229
        if inference_params:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1230
            assert self.recompute_granularity is None, \
1231
                'inference does not work with activation checkpointing'
1232

1233
        if not self.pre_process:
1234
            # See set_input_tensor()
1235
            hidden_states = self.input_tensor
1236

1237
1238
        # Viewless tensor.
        # - We only need to create a viewless tensor in the case of micro batch
1239
1240
1241
1242
        #   size (mbs) == 1, since in this case, 'hidden_states.transpose()'
        #   above creates a view tensor, and '.contiguous()' is a pass-through.
        #   For mbs >= 2, '.contiguous()' creates a new tensor, eliminating
        #   the need to make it viewless.
1243
1244
1245
1246
        #
        #   However, we don't explicitly check mbs == 1 here because
        #   make_viewless_tensor() has negligible overhead when its input
        #   is already viewless.
1247
        #
1248
1249
1250
1251
        # - For the 'else' case above, calling make_viewless_tensor() here is
        #   likely redundant, since p2p_communication.py (likely originator)
        #   already creates viewless tensors. That said, make_viewless_tensor()
        #   is called here to be future-proof and corner-case-proof.
1252
        hidden_states = core.utils.make_viewless_tensor(
1253
            hidden_states,
1254
1255
            requires_grad=True,
            keep_graph=True,
1256
1257
        )

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1258
        if self.sequence_parallel:
1259
            rng_context = tensor_parallel.get_cuda_rng_tracker().fork()
1260
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1261
            rng_context = nullcontext()
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1262
1263

        with rng_context:
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
            # The fp8_autocast context manager is a no-op when enabled=True
            # The if...else serves to short circuit name resolution for fp8_autocast
            with transformer_engine.pytorch.fp8_autocast(
                enabled=self.use_fp8,
                fp8_recipe=self.fp8_recipe,
                fp8_group=self.fp8_group
            ) if self.use_fp8 else nullcontext():
                # Determine if the current iteration is first microbatch
                if self.num_microbatches_in_previous_step != get_num_microbatches():
                    self.microbatch_count = 0 # Reset count on new batch size rampup interval
                self.num_microbatches_in_previous_step = get_num_microbatches()
                is_first_microbatch = self.microbatch_count % get_num_microbatches() == 0

                # Forward pass.
                if self.recompute_granularity == 'full':
                    hidden_states = self._checkpointed_forward(hidden_states,
                                                               attention_mask,
                                                               encoder_output,
                                                               enc_dec_attn_mask,
Mostofa Patwary's avatar
Mostofa Patwary committed
1283
                                                               rotary_pos_emb,
1284
1285
1286
1287
1288
1289
                                                               is_first_microbatch)
                else:
                    forward_kwargs = {
                        'encoder_output': encoder_output,
                        'enc_dec_attn_mask': enc_dec_attn_mask,
                        'inference_params': inference_params,
Mostofa Patwary's avatar
Mostofa Patwary committed
1290
                        'rotary_pos_emb': rotary_pos_emb,
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
                    }

                    if self.transformer_impl == 'transformer_engine':
                        forward_kwargs['is_first_microbatch'] = is_first_microbatch
                        forward_kwargs['checkpoint_core_attention'] = self.checkpoint_core_attention

                    for index in range(self.num_layers):
                        layer = self._get_layer(index)

                        hidden_states = layer(
                            hidden_states,
                            attention_mask,
                            **forward_kwargs)

                # Skip counter update for eval and activation checkpointing
                if torch.is_grad_enabled() and self.training:
                    self.microbatch_count += 1
mshoeybi's avatar
mshoeybi committed
1308

1309
        # Final layer norm.
1310
        if self.post_process and self.post_layer_norm:
1311
1312
            hidden_states = self.final_layernorm(hidden_states)

1313
        return hidden_states