transformer.py 38.3 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Transformer."""
import math
18
from contextlib import nullcontext
19
import torch
20
import torch.nn.functional as F
21

22
from megatron import get_timers, get_args
23
from megatron import mpu
24
from .module import MegatronModule
25
from megatron.model.enums import AttnMaskType, ModelType, LayerType, AttnType
26
from megatron.model import LayerNorm
27
28
from megatron.model.fused_softmax import FusedScaleMaskSoftmax
from megatron.model.fused_bias_gelu import bias_gelu_impl
29
from megatron.model.utils import attention_mask_func, openai_gelu, erf_gelu
30

31

32
33
34
35
36
37
38
39
40
41
""" We use the following notation throughout this file:
     h: hidden size
     n: number of attention heads
     p: number of model parallel partitions
     np: n/p
     hp: h/p
     hn: h/n
     b: batch size
     s: sequence length
     l: number of layers
42
    Transformer takes input of size [s, b, h] and returns a
43
44
45
46
    tensor of the same size. We use the following arguments:
        hyperparameters: transformer hyperparameters
"""

47
48
49
50
51
class DropPath(MegatronModule):
    """Drop paths (Stochastic Depth) per sample 
    (when applied in main path of residual blocks).
    """

Vijay Korthikanti's avatar
Vijay Korthikanti committed
52
    def __init__(self, drop_prob=0.):
53
54
55
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

Vijay Korthikanti's avatar
Vijay Korthikanti committed
56
    def forward(self, hidden_state):
57
        if self.drop_prob == 0. or not self.training:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
58
            return hidden_state
59
60
        keep_prob = 1 - self.drop_prob
        # work with diff dim tensors, not just 2D ConvNets
Vijay Korthikanti's avatar
Vijay Korthikanti committed
61
        shape = (hidden_state.shape[0],) + (1,) * (hidden_state.ndim - 1)
62
        random_tensor = keep_prob + \
Vijay Korthikanti's avatar
Vijay Korthikanti committed
63
            torch.rand(shape, dtype=hidden_state.dtype, device=hidden_state.device)
64
        random_tensor.floor_()  # binarize
Vijay Korthikanti's avatar
Vijay Korthikanti committed
65
        output = hidden_state.div(keep_prob) * random_tensor
66
67
68
        return output


69
70
71
72
73
class ParallelMLP(MegatronModule):
    """MLP.

    MLP will take the input with h hidden state, project it to 4*h
    hidden dimension, perform nonlinear transformation, and project the
hwijeen's avatar
hwijeen committed
74
    state back into h hidden dimension.
75
76
    """

77
    def __init__(self, init_method, output_layer_init_method):
78
        super(ParallelMLP, self).__init__()
Mohammad's avatar
Mohammad committed
79
        args = get_args()
80
81
82

        # Project to 4h.
        self.dense_h_to_4h = mpu.ColumnParallelLinear(
Mohammad's avatar
Mohammad committed
83
            args.hidden_size,
84
            args.ffn_hidden_size,
85
            gather_output=False,
86
87
            init_method=init_method,
            skip_bias_add=True)
88

89
90
91
92
93
94
        self.bias_gelu_fusion = args.bias_gelu_fusion
        self.activation_func = F.gelu
        if args.openai_gelu:
            self.activation_func = openai_gelu
        elif args.onnx_safe:
            self.activation_func = erf_gelu
95
96
97

        # Project back to h.
        self.dense_4h_to_h = mpu.RowParallelLinear(
98
            args.ffn_hidden_size,
Mohammad's avatar
Mohammad committed
99
            args.hidden_size,
100
            input_is_parallel=True,
101
102
            init_method=output_layer_init_method,
            skip_bias_add=True)
103

104
105
    def forward(self, hidden_states):

106
107
        # [s, b, 4hp]
        intermediate_parallel, bias_parallel = self.dense_h_to_4h(hidden_states)
108

109
110
111
112
113
114
115
116
117
118
        if self.bias_gelu_fusion:
             intermediate_parallel = \
                     bias_gelu_impl(intermediate_parallel, bias_parallel)
        else:
            intermediate_parallel = \
                self.activation_func(intermediate_parallel + bias_parallel)

        # [s, b, h]
        output, output_bias = self.dense_4h_to_h(intermediate_parallel)
        return output, output_bias
119

rprenger's avatar
rprenger committed
120
121
122
123
class SwitchMLP(MegatronModule):
    """
    Routes input to one of N MLP "experts"
    """
rprenger's avatar
rprenger committed
124
    def __init__(self, init_method, output_layer_init_method):
rprenger's avatar
rprenger committed
125
126
        super(SwitchMLP, self).__init__()
        args = get_args()
rprenger's avatar
rprenger committed
127
        self.router = torch.nn.Linear(args.hidden_size, args.num_experts)
rprenger's avatar
rprenger committed
128
        self.experts = torch.nn.ModuleList()
rprenger's avatar
rprenger committed
129
        for i in range(args.num_experts):
rprenger's avatar
rprenger committed
130
            self.experts.append(ParallelMLP(init_method, output_layer_init_method))
131

rprenger's avatar
rprenger committed
132
    def forward(self, hidden_states):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
133
134
135
        # hidden_states: [s, b, h]
        s = hidden_states.size(0)
        b = hidden_states.size(1)
rprenger's avatar
rprenger committed
136
137
        h = hidden_states.size(2)
        route = self.router(hidden_states)
rprenger's avatar
rprenger committed
138
        route = torch.nn.functional.softmax(route, dim=2)
rprenger's avatar
rprenger committed
139
        max_prob, max_ind = torch.max(route, dim=2)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
140
        max_prob = torch.unsqueeze(max_prob, 2) # [s b 1]
141

rprenger's avatar
rprenger committed
142
        # TODO (rprenger) TODO this could be made easier to read
Vijay Korthikanti's avatar
Vijay Korthikanti committed
143
        # Converting [s, b, h] to [s*b, h].
144
        # Each vector could be routed differently
Vijay Korthikanti's avatar
Vijay Korthikanti committed
145
146
147
        hidden_states = hidden_states.view(-1, hidden_states.size(2)) # [s*b h]
        max_prob = max_prob.view(-1, max_prob.size(2)) # [s*b 1]
        max_ind = max_ind.view(-1) # [s*b]
rprenger's avatar
rprenger committed
148
149
150

        output_total = torch.empty_like(hidden_states)
        output_bias_total = torch.empty_like(hidden_states)
rprenger's avatar
rprenger committed
151
        #TODO (rprenger) This does each expert in serial, but it could be parallelized
152
        
rprenger's avatar
rprenger committed
153
        for expert_num, expert in enumerate(self.experts):
154
155
            local_indices = (max_ind == expert_num).nonzero()
            hidden = hidden_states[local_indices,:]
rprenger's avatar
rprenger committed
156
157
            output, output_bias = expert(hidden)
            output_bias = output_bias.expand_as(output)
158
159
160
            output_total[local_indices,:] = output
            output_bias_total[local_indices,:] = output_bias

rprenger's avatar
rprenger committed
161
162
        output_total = output_total*max_prob
        output_bias_total = output_bias_total*max_prob
Vijay Korthikanti's avatar
Vijay Korthikanti committed
163
164
        output_total = output_total.view(s, b, h)
        output_bias_total = output_bias_total.view(s, b, h)
rprenger's avatar
rprenger committed
165
166

        return output_total, output_bias_total
167

168
169

class CoreAttention(MegatronModule):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
170
    matmul_input_buffer = None
Vijay Korthikanti's avatar
Vijay Korthikanti committed
171

172
173
174
175
176
177
178
179
180
181
182
183
184
    def __init__(self, layer_number,
                 attn_mask_type=AttnMaskType.padding):
        super(CoreAttention, self).__init__()
        args = get_args()
        self.fp16 = args.fp16
        self.bf16 = args.bf16

        self.apply_query_key_layer_scaling = args.apply_query_key_layer_scaling
        self.attention_softmax_in_fp32 = args.attention_softmax_in_fp32
        if self.apply_query_key_layer_scaling:
            self.attention_softmax_in_fp32 = True
        self.layer_number = max(1, layer_number)
        self.attn_mask_type = attn_mask_type
Vijay Korthikanti's avatar
Vijay Korthikanti committed
185
        self.sequence_parallel = args.sequence_parallel
186
187
188
189
190
191
192
193
194

        projection_size = args.kv_channels * args.num_attention_heads

        # Per attention head and per partition values.
        world_size = mpu.get_tensor_model_parallel_world_size()
        self.hidden_size_per_partition = mpu.divide(projection_size,
                                                    world_size)
        self.hidden_size_per_attention_head = mpu.divide(
            projection_size, args.num_attention_heads)
195
196
        self.num_attention_heads_per_partition = mpu.divide(
            args.num_attention_heads, world_size)
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

        coeff = None
        self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
        if self.apply_query_key_layer_scaling:
            coeff = self.layer_number
            self.norm_factor *= coeff

        self.scale_mask_softmax = FusedScaleMaskSoftmax(
            self.fp16, self.bf16,
            self.attn_mask_type,
            args.masked_softmax_fusion,
            attention_mask_func,
            self.attention_softmax_in_fp32,
            coeff)

        # Dropout. Note that for a single iteration, this layer will generate
        # different outputs on different number of parallel partitions but
        # on average it should not be partition dependent.
        self.attention_dropout = torch.nn.Dropout(args.attention_dropout)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
216

217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
    def forward(self, query_layer, key_layer,
                value_layer, attention_mask):

        # ===================================
        # Raw attention scores. [b, np, s, s]
        # ===================================

        # [b, np, sq, sk]
        output_size = (query_layer.size(1),
                       query_layer.size(2),
                       query_layer.size(0),
                       key_layer.size(0))

        # [sq, b, np, hn] -> [sq, b * np, hn]
        query_layer = query_layer.view(output_size[2],
                                       output_size[0] * output_size[1], -1)
        # [sk, b, np, hn] -> [sk, b * np, hn]
        key_layer = key_layer.view(output_size[3],
                                   output_size[0] * output_size[1], -1)

Vijay Korthikanti's avatar
Vijay Korthikanti committed
237
        # preallocting input tensor: [b * np, sq, sk]
Vijay Korthikanti's avatar
Vijay Korthikanti committed
238
239
        if CoreAttention.matmul_input_buffer is None:
            CoreAttention.matmul_input_buffer = torch.empty(
Vijay Korthikanti's avatar
Vijay Korthikanti committed
240
241
242
243
244
                output_size[0]*output_size[1],
                output_size[2],
                output_size[3],
                dtype=query_layer.dtype,
                device=torch.cuda.current_device())
245
246
247

        # Raw attention scores. [b * np, sq, sk]
        matmul_result = torch.baddbmm(
Vijay Korthikanti's avatar
Vijay Korthikanti committed
248
            CoreAttention.matmul_input_buffer,
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
            query_layer.transpose(0, 1),   # [b * np, sq, hn]
            key_layer.transpose(0, 1).transpose(1, 2),  # [b * np, hn, sk]
            beta=0.0, alpha=(1.0/self.norm_factor))

        # change view to [b, np, sq, sk]
        attention_scores = matmul_result.view(*output_size)

        # ===========================
        # Attention probs and dropout
        # ===========================

        # attention scores and attention mask [b, np, sq, sk]
        attention_probs = self.scale_mask_softmax(attention_scores,
                                                  attention_mask)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.

Vijay Korthikanti's avatar
Vijay Korthikanti committed
267
        if not self.sequence_parallel:
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
            with mpu.get_cuda_rng_tracker().fork():
                attention_probs = self.attention_dropout(attention_probs)
        else:
            attention_probs = self.attention_dropout(attention_probs)

        # =========================
        # Context layer. [sq, b, hp]
        # =========================

        # value_layer -> context layer.
        # [sk, b, np, hn] --> [b, np, sq, hn]

        # context layer shape: [b, np, sq, hn]
        output_size = (value_layer.size(1),
                       value_layer.size(2),
                       query_layer.size(0),
                       value_layer.size(3))

        # change view [sk, b * np, hn]
        value_layer = value_layer.view(value_layer.size(0),
                                       output_size[0] * output_size[1], -1)

        # change view [b * np, sq, sk]
        attention_probs = attention_probs.view(output_size[0] * output_size[1],
                                               output_size[2], -1)

        # matmul: [b * np, sq, hn]
        context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))

        # change view [b, np, sq, hn]
        context_layer = context_layer.view(*output_size)

        # [b, np, sq, hn] --> [sq, b, np, hn]
        context_layer = context_layer.permute(2, 0, 1, 3).contiguous()

        # [sq, b, np, hn] --> [sq, b, hp]
        new_context_layer_shape = context_layer.size()[:-2] + \
            (self.hidden_size_per_partition,)
        context_layer = context_layer.view(*new_context_layer_shape)

        return context_layer


311
class ParallelAttention(MegatronModule):
312
313
    """Parallel self-attention layer abstract class.

Vijay Korthikanti's avatar
Vijay Korthikanti committed
314
    Self-attention layer takes input with size [s, b, h]
315
316
    and returns output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
317

318
    def __init__(self, init_method,
319
320
321
322
                 output_layer_init_method, layer_number,
                 attention_type=AttnType.self_attn,
                 attn_mask_type=AttnMaskType.padding):
        super(ParallelAttention, self).__init__()
Mohammad's avatar
Mohammad committed
323
        args = get_args()
324
        self.layer_number = max(1, layer_number)
325
326
        self.attention_type = attention_type
        self.attn_mask_type = attn_mask_type
327
        self.params_dtype = args.params_dtype
328
329

        projection_size = args.kv_channels * args.num_attention_heads
330
331

        # Per attention head and per partition values.
332
        world_size = mpu.get_tensor_model_parallel_world_size()
333
        self.hidden_size_per_attention_head = mpu.divide(
334
            projection_size, args.num_attention_heads)
335
        self.num_attention_heads_per_partition = mpu.divide(
Mohammad's avatar
Mohammad committed
336
            args.num_attention_heads, world_size)
337
338

        # Strided linear layer.
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
        if attention_type == AttnType.self_attn:
            self.query_key_value = mpu.ColumnParallelLinear(
                args.hidden_size,
                3 * projection_size,
                gather_output=False,
                init_method=init_method)
        else:
            assert attention_type == AttnType.cross_attn
            self.query = mpu.ColumnParallelLinear(
                args.hidden_size,
                projection_size,
                gather_output=False,
                init_method=init_method)

            self.key_value = mpu.ColumnParallelLinear(
                args.hidden_size,
                2 * projection_size,
                gather_output=False,
                init_method=init_method)
358

359
360
        self.core_attention = CoreAttention(self.layer_number,
                                            self.attn_mask_type)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
361
        self.checkpoint_core_attention = args.checkpoint_granularity == 'selective'
362
363
364

        # Output.
        self.dense = mpu.RowParallelLinear(
365
            projection_size,
Mohammad's avatar
Mohammad committed
366
            args.hidden_size,
367
            input_is_parallel=True,
368
369
            init_method=output_layer_init_method,
            skip_bias_add=True)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
370

371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
    def _checkpointed_attention_forward(self, query_layer, key_layer,
                                        value_layer, attention_mask):
        """Forward method with activation checkpointing."""
        def custom_forward(*inputs):
            query_layer = inputs[0]
            key_layer = inputs[1]
            value_layer = inputs[2]
            attention_mask = inputs[3]
            output_ = self.core_attention(query_layer, key_layer,
                                          value_layer, attention_mask)
            return output_

        hidden_states = mpu.checkpoint(
            custom_forward,
            False, query_layer, key_layer, value_layer, attention_mask)

        return hidden_states
388
389
390
391
392
393
394
395
396
397
398

    def _allocate_memory(self, inference_max_sequence_len, batch_size):
        return torch.empty(
            inference_max_sequence_len,
            batch_size,
            self.num_attention_heads_per_partition,
            self.hidden_size_per_attention_head,
            dtype=self.params_dtype,
            device=torch.cuda.current_device())

    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
399
                encoder_output=None, inference_params=None):
400
        # hidden_states: [sq, b, h]
401

402
403
404
        # =================================================
        # Pre-allocate memory for key-values for inference.
        # =================================================
mshoeybi's avatar
mshoeybi committed
405
        if inference_params:
406
            if self.layer_number not in inference_params.key_value_memory_dict:
mshoeybi's avatar
mshoeybi committed
407
                inf_max_seq_len = inference_params.max_sequence_len
mshoeybi's avatar
mshoeybi committed
408
                inf_max_batch_size = inference_params.max_batch_size
409
                inference_key_memory = self._allocate_memory(
mshoeybi's avatar
mshoeybi committed
410
                    inf_max_seq_len, inf_max_batch_size)
411
                inference_value_memory = self._allocate_memory(
mshoeybi's avatar
mshoeybi committed
412
                    inf_max_seq_len, inf_max_batch_size)
413
414
415
416
417
                inference_params.key_value_memory_dict[self.layer_number] = (
                    inference_key_memory, inference_value_memory)
            else:
                inference_key_memory, inference_value_memory = \
                    inference_params.key_value_memory_dict[self.layer_number]
mshoeybi's avatar
mshoeybi committed
418

419
420
421
        # =====================
        # Query, Key, and Value
        # =====================
422

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
        if self.attention_type == AttnType.self_attn:
            # Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
            mixed_x_layer, _ = self.query_key_value(hidden_states)

            # [sq, b, (np * 3 * hn)] --> [sq, b, np, 3 * hn]
            new_tensor_shape = mixed_x_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 3 * self.hidden_size_per_attention_head)
            mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)

            # [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
            (query_layer,
             key_layer,
             value_layer) = mpu.split_tensor_along_last_dim(mixed_x_layer, 3)
        else:
            # Attention heads [sk, b, h] --> [sk, b, (np * 2 * hn)]
            mixed_kv_layer, _ = self.key_value(encoder_output)

            # [sk, b, (np * 2 * hn)] --> [sk, b, np, 2 * hn]
            new_tensor_shape = mixed_kv_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 2 * self.hidden_size_per_attention_head)
            mixed_kv_layer = mixed_kv_layer.view(*new_tensor_shape)

            # [sk, b, np, 2 * hn] --> 2 [sk, b, np, hn]
            (key_layer,
             value_layer) = mpu.split_tensor_along_last_dim(mixed_kv_layer, 2)

            # Attention head [sq, b, h] --> [sq, b, hp]
            query_layer, _ = self.query(hidden_states)
            # [sq, b, hp] --> [sq, b, np, hn]
            new_tensor_shape = query_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 self.hidden_size_per_attention_head)
            query_layer = query_layer.view(*new_tensor_shape)
458

mshoeybi's avatar
mshoeybi committed
459
460
461
        # ==================================
        # Adjust key and value for inference
        # ==================================
462

mshoeybi's avatar
mshoeybi committed
463
        if inference_params:
mshoeybi's avatar
mshoeybi committed
464
465
            batch_start = inference_params.batch_size_offset
            batch_end = batch_start + key_layer.size(1)
466
            assert batch_end <= inference_key_memory.size(1)
mshoeybi's avatar
mshoeybi committed
467
468
            sequence_start = inference_params.sequence_len_offset
            sequence_end = sequence_start + key_layer.size(0)
469
            assert sequence_end <= inference_key_memory.size(0)
470
            # Copy key and values.
471
472
473
474
475
            inference_key_memory[sequence_start:sequence_end,
                                 batch_start:batch_end, ...] = key_layer
            inference_value_memory[sequence_start:sequence_end,
                                   batch_start:batch_end, ...] = value_layer
            key_layer = inference_key_memory[
mshoeybi's avatar
mshoeybi committed
476
                :sequence_end, batch_start:batch_end, ...]
477
            value_layer = inference_value_memory[
mshoeybi's avatar
mshoeybi committed
478
                :sequence_end, batch_start:batch_end, ...]
479

480
481
482
        # ==================================
        # core attention computation
        # ==================================
483

Vijay Korthikanti's avatar
Vijay Korthikanti committed
484
        if self.checkpoint_core_attention:
485
486
            context_layer = self._checkpointed_attention_forward(
                query_layer, key_layer, value_layer, attention_mask)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
487
        else:
488
489
            context_layer = self.core_attention(
                query_layer, key_layer, value_layer, attention_mask)
490
491

        # =================
492
        # Output. [sq, b, h]
493
494
495
        # =================

        output, bias = self.dense(context_layer)
496

497
498
499
        return output, bias


500
def bias_dropout_add(x, bias, residual, prob, training):
501
502
503
504
505
506
507
508
509
510
511
512
513
    # type: (Tensor, Tensor, Tensor, float, bool) -> Tensor
    out = torch.nn.functional.dropout(x + bias, p=prob, training=training)
    out = residual + out
    return out


def get_bias_dropout_add(training):
    def _bias_dropout_add(x, bias, residual, prob):
        return bias_dropout_add(x, bias, residual, prob, training)
    return _bias_dropout_add


@torch.jit.script
514
515
516
517
def bias_dropout_add_fused_train(x: torch.Tensor,
                                 bias: torch.Tensor,
                                 residual: torch.Tensor,
                                 prob: float) -> torch.Tensor:
518
519
520
521
    return bias_dropout_add(x, bias, residual, prob, True)


@torch.jit.script
522
523
524
525
def bias_dropout_add_fused_inference(x: torch.Tensor,
                                     bias: torch.Tensor,
                                     residual: torch.Tensor,
                                     prob: float) -> torch.Tensor:
526
    return bias_dropout_add(x, bias, residual, prob, False)
527
528
529
530
531


class ParallelTransformerLayer(MegatronModule):
    """A single transformer layer.

Vijay Korthikanti's avatar
Vijay Korthikanti committed
532
    Transformer layer takes input with size [s, b, h] and returns an
533
534
    output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
535

536
537
    def __init__(self, init_method, output_layer_init_method,
                 layer_number, layer_type=LayerType.encoder,
538
539
                 self_attn_mask_type=AttnMaskType.padding,
                 drop_path_rate=0.):
Mohammad's avatar
Mohammad committed
540
        args = get_args()
541
542

        super(ParallelTransformerLayer, self).__init__()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
543
        self.layer_number = layer_number
544
        self.layer_type = layer_type
545
546

        self.apply_residual_connection_post_layernorm \
Mohammad's avatar
Mohammad committed
547
            = args.apply_residual_connection_post_layernorm
548

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
549
550
551
        self.bf16 = args.bf16
        self.fp32_residual_connection = args.fp32_residual_connection

552
553
        # Layernorm on the input data.
        self.input_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
554
            args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
555
            eps=args.layernorm_epsilon,
556
            no_persist_layer_norm=args.no_persist_layer_norm,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
557
            sequence_parallel=args.sequence_parallel)
558
559

        # Self attention.
560
561
562
563
564
565
        self.self_attention = ParallelAttention(
            init_method,
            output_layer_init_method,
            layer_number,
            attention_type=AttnType.self_attn,
            attn_mask_type=self_attn_mask_type)
566
567
        self.hidden_dropout = args.hidden_dropout
        self.bias_dropout_fusion = args.bias_dropout_fusion
Vijay Korthikanti's avatar
Vijay Korthikanti committed
568
        self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else None
569

570
        # Layernorm on the attention output
571
        self.post_attention_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
572
            args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
573
            eps=args.layernorm_epsilon,
574
            no_persist_layer_norm=args.no_persist_layer_norm,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
575
            sequence_parallel=args.sequence_parallel)
576

577
578
579
580
581
582
583
584
585
        if self.layer_type == LayerType.decoder:
            self.inter_attention = ParallelAttention(
                init_method,
                output_layer_init_method,
                layer_number,
                attention_type=AttnType.cross_attn)
            # Layernorm on the attention output.
            self.post_inter_attention_layernorm = LayerNorm(
                args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
586
                eps=args.layernorm_epsilon,
587
                no_persist_layer_norm=args.no_persist_layer_norm,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
588
                sequence_parallel=args.sequence_parallel)
589

590
        # MLP
rprenger's avatar
rprenger committed
591
592
593
594
        if args.num_experts is not None:
            self.mlp = SwitchMLP(init_method, output_layer_init_method)
        else:
            self.mlp = ParallelMLP(init_method, output_layer_init_method)
595

596
597
598
599
600
601
602
        # Set bias+dropout+add fusion grad_enable execution handler.
        TORCH_MAJOR = int(torch.__version__.split('.')[0])
        TORCH_MINOR = int(torch.__version__.split('.')[1])
        use_nvfuser = TORCH_MAJOR > 1 or (TORCH_MAJOR == 1 and TORCH_MINOR >= 10)
        self.bias_dropout_add_exec_handler = \
                nullcontext if use_nvfuser else torch.enable_grad

603
    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
604
605
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
606
        # hidden_states: [s, b, h]
607

608
        # Layer norm at the beginning of the transformer layer.
609
610
        layernorm_output = self.input_layernorm(hidden_states)
        # Self attention.
611
        attention_output, attention_bias = \
612
613
614
            self.self_attention(
                layernorm_output,
                attention_mask,
mshoeybi's avatar
mshoeybi committed
615
                inference_params=inference_params)
616

617
618
        # Residual connection.
        if self.apply_residual_connection_post_layernorm:
619
620
621
622
            residual = layernorm_output
        else:
            residual = hidden_states

Vijay Korthikanti's avatar
Vijay Korthikanti committed
623
        if self.drop_path is None:
624
625
626
627
628
629
630
631
632
            # jit scripting for a nn.module (with dropout) is not
            # trigerring the fusion kernel. For now, we use two
            # different nn.functional routines to account for varying
            # dropout semantics during training and inference phases.
            if self.bias_dropout_fusion:
                if self.training:
                    bias_dropout_add_func = bias_dropout_add_fused_train
                else:
                    bias_dropout_add_func = bias_dropout_add_fused_inference
633
            else:
634
                bias_dropout_add_func = get_bias_dropout_add(self.training)
635

636
            with self.bias_dropout_add_exec_handler():
637
638
639
640
641
642
643
644
645
646
                layernorm_input = bias_dropout_add_func(
                    attention_output,
                    attention_bias.expand_as(residual),
                    residual,
                    self.hidden_dropout)
        else:
            out = torch.nn.functional.dropout(attention_output + attention_bias,
                                              p=self.hidden_dropout,
                                              training=self.training)
            layernorm_input = residual + self.drop_path(out)
647

648
649
650
        # Layer norm post the self attention.
        layernorm_output = self.post_attention_layernorm(layernorm_input)

651
652
653
654
655
656
657
658
659
660
661
        if self.layer_type == LayerType.decoder:
            attention_output, attention_bias = \
                self.inter_attention(layernorm_output,
                                     enc_dec_attn_mask,
                                     encoder_output=encoder_output)
            # residual connection
            if self.apply_residual_connection_post_layernorm:
                residual = layernorm_output
            else:
                residual = layernorm_input

662
            with self.bias_dropout_add_exec_handler():
663
664
665
666
667
668
669
670
671
                layernorm_input = bias_dropout_add_func(
                    attention_output,
                    attention_bias.expand_as(residual),
                    residual,
                    self.hidden_dropout)

            # Layer norm post the decoder attention
            layernorm_output = self.post_inter_attention_layernorm(layernorm_input)

672
        # MLP.
673
        mlp_output, mlp_bias = self.mlp(layernorm_output)
674

675
676
        # Second residual connection.
        if self.apply_residual_connection_post_layernorm:
677
            residual = layernorm_output
678
        else:
679
680
            residual = layernorm_input

Vijay Korthikanti's avatar
Vijay Korthikanti committed
681
        if self.drop_path is None:
682
            with self.bias_dropout_add_exec_handler():
683
684
685
686
687
688
689
690
691
692
                output = bias_dropout_add_func(
                    mlp_output,
                    mlp_bias.expand_as(residual),
                    residual,
                    self.hidden_dropout)
        else:
            out = torch.nn.functional.dropout(mlp_output + mlp_bias,
                                              p=self.hidden_dropout,
                                              training=self.training)
            output = residual + self.drop_path(out)
693
694
695
696

        return output


697
698
699
class NoopTransformerLayer(MegatronModule):
    """A single 'no-op' transformer layer.

Lawrence McAfee's avatar
Lawrence McAfee committed
700
    The sole purpose of this layer is for when a standalone embedding layer
701
    is used (i.e., args.standalone_embedding_stage == True). In this case,
Lawrence McAfee's avatar
Lawrence McAfee committed
702
703
704
705
706
707
708
709
710
    zero transformer layers are assigned when pipeline rank == 0. Additionally,
    when virtual pipeline rank >= 1, zero total model parameters are created
    (virtual rank 0 contains the input embedding). This results in the model's
    input and output tensors being the same, which causes an error when
    performing certain memory optimiations on the output tensor (e.g.,
    deallocating it). Thus, this layer disconnects the input from the output
    via a clone. Since ranks containing a no-op layer are generally under-
    utilized (both compute and memory), there's no worry of any performance
    degredation.
711
712
713
714
715
716
717
718
719
720
721
722
    """

    def __init__(self, layer_number):
        super().__init__()
        self.layer_number = layer_number

    def forward(self, hidden_states, attention_mask,
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
        return hidden_states.clone()


723
724
725
class ParallelTransformer(MegatronModule):
    """Transformer class."""

726
    def __init__(self, init_method, output_layer_init_method,
727
                 layer_type=LayerType.encoder,
728
                 self_attn_mask_type=AttnMaskType.padding,
729
                 post_layer_norm=True, 
730
731
                 pre_process=True, post_process=True,
                 drop_path_rate=0.0):
732
        super(ParallelTransformer, self).__init__()
Mohammad's avatar
Mohammad committed
733
        args = get_args()
734

735
736
        self.layer_type = layer_type
        self.model_type = args.model_type
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
737
        self.bf16 = args.bf16
738
        self.fp32_residual_connection = args.fp32_residual_connection
739
        self.post_layer_norm = post_layer_norm
740
741
742
        self.pre_process = pre_process
        self.post_process = post_process
        self.input_tensor = None
743
        self.drop_path_rate = drop_path_rate
744

745
        # Store activation checkpoiting flag.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
746
747
748
        self.checkpoint_granularity = args.checkpoint_granularity
        self.checkpoint_method = args.checkpoint_method
        self.checkpoint_num_layers = args.checkpoint_num_layers
749
        self.distribute_checkpointed_activations = \
Vijay Korthikanti's avatar
Vijay Korthikanti committed
750
            args.distribute_checkpointed_activations and not args.sequence_parallel
751

Vijay Korthikanti's avatar
Vijay Korthikanti committed
752
        self.sequence_parallel = args.sequence_parallel
753

754
        # Number of layers.
755
756
        self.num_layers = mpu.get_num_layers(
            args, args.model_type == ModelType.encoder_and_decoder)
Mohammad's avatar
Mohammad committed
757

Vijay Korthikanti's avatar
Vijay Korthikanti committed
758
        self.drop_path_rates = [rate.item() for rate in torch.linspace(0, self.drop_path_rate, args.num_layers)]
759

Mohammad's avatar
Mohammad committed
760
761
        # Transformer layers.
        def build_layer(layer_number):
762
            return ParallelTransformerLayer(
763
764
765
                init_method,
                output_layer_init_method,
                layer_number,
766
                layer_type=layer_type,
767
                self_attn_mask_type=self_attn_mask_type,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
768
                drop_path_rate=self.drop_path_rates[layer_number - 1])
769
770
        if args.virtual_pipeline_model_parallel_size is not None:
            assert args.num_layers % args.virtual_pipeline_model_parallel_size == 0, \
771
772
                'num_layers_per_stage must be divisible by ' \
                'virtual_pipeline_model_parallel_size'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
773
            assert args.model_type != ModelType.encoder_and_decoder
774
775
            # Number of layers in each model chunk is the number of layers in the stage,
            # divided by the number of model chunks in a stage.
776
            self.num_layers = self.num_layers // args.virtual_pipeline_model_parallel_size
777
778
779
780
781
782
783
784
            # With 8 layers, 2 stages, and 4 model chunks, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0]  [2]  [4]  [6]
            # Stage 1: [1]  [3]  [5]  [7]
            # With 8 layers, 2 stages, and 2 virtual stages, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0, 1]  [4, 5]
            # Stage 1: [2, 3]  [6, 7]
785
            offset = mpu.get_virtual_pipeline_model_parallel_rank() * (
786
                args.num_layers // args.virtual_pipeline_model_parallel_size) + \
787
788
                (mpu.get_pipeline_model_parallel_rank() * self.num_layers)
        else:
789
            # Each stage gets a contiguous set of layers.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
790
791
            if args.model_type == ModelType.encoder_and_decoder and \
                    mpu.get_pipeline_model_parallel_world_size() > 1:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
792
793
794
795
796
797
798
799
                pipeline_rank = mpu.get_pipeline_model_parallel_rank()
                if layer_type == LayerType.encoder:
                    offset = pipeline_rank * self.num_layers
                else:
                    num_ranks_in_enc = args.pipeline_model_parallel_split_rank
                    offset = (pipeline_rank - num_ranks_in_enc) * self.num_layers
            else:
                offset = mpu.get_pipeline_model_parallel_rank() * self.num_layers
800

801
        if self.num_layers == 0:
Lawrence McAfee's avatar
Lawrence McAfee committed
802
            # When a standalone embedding stage is used (e.g.,
803
            # args.standalone_embedding_stage == True), virtual pipeline ranks
804
            # on pipeline rank 0 will have zero transformer layers assigned to
Lawrence McAfee's avatar
Lawrence McAfee committed
805
806
807
808
809
            # them. This results in the model's input and output tensors to be
            # the same, which will cause failure for certain output tensor
            # optimizations (e.g., pipeline output deallocation). To remedy
            # this, we assign a 'no-op' layer on these ranks, which will
            # disconnect the input tensor from the output tensor.
810
811
812
813
814
            self.num_layers = 1
            self.layers = torch.nn.ModuleList([ NoopTransformerLayer(1) ])
        else:
            self.layers = torch.nn.ModuleList(
                [build_layer(i + 1 + offset) for i in range(self.num_layers)])
815

816
        if self.post_process and self.post_layer_norm:
817
818
819
            # Final layer norm before output.
            self.final_layernorm = LayerNorm(
                args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
820
                eps=args.layernorm_epsilon,
821
                no_persist_layer_norm=args.no_persist_layer_norm,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
822
                sequence_parallel=args.sequence_parallel)
823

Mohammad's avatar
Mohammad committed
824
    def _get_layer(self, layer_number):
825
        return self.layers[layer_number]
Mohammad's avatar
Mohammad committed
826

827
828
    def _checkpointed_forward(self, hidden_states, attention_mask,
                              encoder_output, enc_dec_attn_mask):
829
830
831
832
        """Forward method with activation checkpointing."""
        def custom(start, end):
            def custom_forward(*inputs):
                x_ = inputs[0]
833
834
835
                attention_mask = inputs[1]
                encoder_output = inputs[2]
                enc_dec_attn_mask = inputs[3]
Mohammad's avatar
Mohammad committed
836
837
                for index in range(start, end):
                    layer = self._get_layer(index)
838
                    x_ = layer(x_, attention_mask, encoder_output, enc_dec_attn_mask)
839
840
841
                return x_
            return custom_forward

Vijay Korthikanti's avatar
Vijay Korthikanti committed
842
        if self.checkpoint_method == 'uniform':
843
844
845
846
847
848
            # Uniformly divide the total number of Transformer layers and checkpoint
            # the input activation of each divided chunk.
            # A method to further reduce memory usage reducing checkpoints.
            l = 0
            while l < self.num_layers:
                hidden_states = mpu.checkpoint(
Vijay Korthikanti's avatar
Vijay Korthikanti committed
849
                    custom(l, l + self.checkpoint_num_layers),
850
                    self.distribute_checkpointed_activations,
851
                    hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
852
                l += self.checkpoint_num_layers
853

Vijay Korthikanti's avatar
Vijay Korthikanti committed
854
        elif self.checkpoint_method == 'block':
855
856
857
858
            # Checkpoint the input activation of only a set number of individual
            # Transformer layers and skip the rest.
            # A method fully use the device memory removing redundant re-computation.
            for l in range(self.num_layers):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
859
                if l < self.checkpoint_num_layers:
860
861
                    hidden_states = mpu.checkpoint(
                        custom(l, l + 1),
862
                        self.distribute_checkpointed_activations,
863
864
865
866
867
868
                        hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
                else:
                    hidden_states = custom(l, l + 1)(
                        hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
        else:
            raise ValueError("Invalid activation checkpoint method.")
869
870
871

        return hidden_states

872
    def set_input_tensor(self, input_tensor):
873
874
875
876
877
878
879
        """Set input tensor to be used instead of forward()'s input.

        When doing pipeline parallelism the input from the previous
        stage comes from communication, not from the input, so the
        model's forward_step_func won't have it. This function is thus
        used by internal code to bypass the input provided by the
        forward_step_func"""
880
881
        self.input_tensor = input_tensor

882
    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
883
884
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
885
886
        # hidden_states: [s, b, h]

887
        # Checks.
mshoeybi's avatar
mshoeybi committed
888
        if inference_params:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
889
            assert self.checkpoint_granularity is None, \
890
                'inference does not work with activation checkpointing'
891

892
        if not self.pre_process:
893
            # See set_input_tensor()
894
            hidden_states = self.input_tensor
895

896
897
        # Viewless tensor.
        # - We only need to create a viewless tensor in the case of micro batch
898
899
900
901
        #   size (mbs) == 1, since in this case, 'hidden_states.transpose()'
        #   above creates a view tensor, and '.contiguous()' is a pass-through.
        #   For mbs >= 2, '.contiguous()' creates a new tensor, eliminating
        #   the need to make it viewless.
902
903
904
905
906
907
908
909
910
911
912
        #
        #   However, we don't explicitly check mbs == 1 here because
        #   make_viewless_tensor() has negligible overhead when its input
        #   is already viewless.
        # 
        # - For the 'else' case above, calling make_viewless_tensor() here is
        #   likely redundant, since p2p_communication.py (likely originator)
        #   already creates viewless tensors. That said, make_viewless_tensor()
        #   is called here to be future-proof and corner-case-proof.
        hidden_states = mpu.make_viewless_tensor(
            hidden_states,
913
914
            requires_grad=True,
            keep_graph=True,
915
916
        )

Vijay Korthikanti's avatar
Vijay Korthikanti committed
917
918
        if self.sequence_parallel:
            rng_context = mpu.get_cuda_rng_tracker().fork()
919
        else:
920
            rng_context = nullcontext
Vijay Korthikanti's avatar
Vijay Korthikanti committed
921
922

        with rng_context:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
923
            # Forward pass.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
924
            if self.checkpoint_granularity == 'full':
Vijay Korthikanti's avatar
Vijay Korthikanti committed
925
926
927
928
929
930
931
932
933
934
935
936
937
                hidden_states = self._checkpointed_forward(hidden_states,
                                                           attention_mask,
                                                           encoder_output,
                                                           enc_dec_attn_mask)
            else:
                for index in range(self.num_layers):
                    layer = self._get_layer(index)
                    hidden_states = layer(
                        hidden_states,
                        attention_mask,
                        encoder_output=encoder_output,
                        enc_dec_attn_mask=enc_dec_attn_mask,
                        inference_params=inference_params)
mshoeybi's avatar
mshoeybi committed
938

939
        # Final layer norm.
940
        if self.post_process and self.post_layer_norm:
941
942
            hidden_states = self.final_layernorm(hidden_states)

943
        return hidden_states