transformer.py 29 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Transformer."""
import math
import torch
19
import torch.nn.functional as F
20

Mohammad's avatar
Mohammad committed
21
from megatron import get_args
22
from megatron import mpu
23
from .module import MegatronModule
24
from megatron.model.enums import AttnMaskType, ModelType, LayerType, AttnType
25
from megatron.model import LayerNorm
26
27
from megatron.model.fused_softmax import FusedScaleMaskSoftmax
from megatron.model.fused_bias_gelu import bias_gelu_impl
28
from megatron.model.utils import attention_mask_func, openai_gelu, erf_gelu
29
30
31
32
33
34
35
36
37
38
39
40


""" We use the following notation throughout this file:
     h: hidden size
     n: number of attention heads
     p: number of model parallel partitions
     np: n/p
     hp: h/p
     hn: h/n
     b: batch size
     s: sequence length
     l: number of layers
41
    Transformer takes input of size [s, b, h] and returns a
42
43
44
45
46
47
48
49
50
    tensor of the same size. We use the following arguments:
        hyperparameters: transformer hyperparameters
"""

class ParallelMLP(MegatronModule):
    """MLP.

    MLP will take the input with h hidden state, project it to 4*h
    hidden dimension, perform nonlinear transformation, and project the
hwijeen's avatar
hwijeen committed
51
    state back into h hidden dimension.
52
53
    """

54
    def __init__(self, init_method, output_layer_init_method):
55
        super(ParallelMLP, self).__init__()
Mohammad's avatar
Mohammad committed
56
        args = get_args()
57
58
59

        # Project to 4h.
        self.dense_h_to_4h = mpu.ColumnParallelLinear(
Mohammad's avatar
Mohammad committed
60
            args.hidden_size,
61
            args.ffn_hidden_size,
62
            gather_output=False,
63
64
            init_method=init_method,
            skip_bias_add=True)
65

66
67
68
69
70
71
        self.bias_gelu_fusion = args.bias_gelu_fusion
        self.activation_func = F.gelu
        if args.openai_gelu:
            self.activation_func = openai_gelu
        elif args.onnx_safe:
            self.activation_func = erf_gelu
72
73
74

        # Project back to h.
        self.dense_4h_to_h = mpu.RowParallelLinear(
75
            args.ffn_hidden_size,
Mohammad's avatar
Mohammad committed
76
            args.hidden_size,
77
            input_is_parallel=True,
78
79
            init_method=output_layer_init_method,
            skip_bias_add=True)
80

81
82
    def forward(self, hidden_states):

83
84
        # [s, b, 4hp]
        intermediate_parallel, bias_parallel = self.dense_h_to_4h(hidden_states)
85

86
87
88
89
90
91
92
93
94
95
        if self.bias_gelu_fusion:
             intermediate_parallel = \
                     bias_gelu_impl(intermediate_parallel, bias_parallel)
        else:
            intermediate_parallel = \
                self.activation_func(intermediate_parallel + bias_parallel)

        # [s, b, h]
        output, output_bias = self.dense_4h_to_h(intermediate_parallel)
        return output, output_bias
96
97


98
class ParallelAttention(MegatronModule):
99
100
101
102
103
    """Parallel self-attention layer abstract class.

    Self-attention layer takes input with size [b, s, h]
    and returns output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
104

105
    def __init__(self, init_method,
106
107
108
109
                 output_layer_init_method, layer_number,
                 attention_type=AttnType.self_attn,
                 attn_mask_type=AttnMaskType.padding):
        super(ParallelAttention, self).__init__()
Mohammad's avatar
Mohammad committed
110
        args = get_args()
Mohammad's avatar
Mohammad committed
111
        self.fp16 = args.fp16
112
        self.bf16 = args.bf16
113

Mohammad's avatar
Mohammad committed
114
115
        self.apply_query_key_layer_scaling = args.apply_query_key_layer_scaling
        self.attention_softmax_in_fp32 = args.attention_softmax_in_fp32
116
117
118
        if self.apply_query_key_layer_scaling:
            self.attention_softmax_in_fp32 = True
        self.layer_number = max(1, layer_number)
119
120
        self.attention_type = attention_type
        self.attn_mask_type = attn_mask_type
121
        self.params_dtype = args.params_dtype
122
123

        projection_size = args.kv_channels * args.num_attention_heads
124
125

        # Per attention head and per partition values.
126
        world_size = mpu.get_tensor_model_parallel_world_size()
127
        self.hidden_size_per_partition = mpu.divide(projection_size,
Mohammad's avatar
Mohammad committed
128
                                                    world_size)
129
        self.hidden_size_per_attention_head = mpu.divide(
130
            projection_size, args.num_attention_heads)
131
        self.num_attention_heads_per_partition = mpu.divide(
Mohammad's avatar
Mohammad committed
132
            args.num_attention_heads, world_size)
133
134

        # Strided linear layer.
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
        if attention_type == AttnType.self_attn:
            self.query_key_value = mpu.ColumnParallelLinear(
                args.hidden_size,
                3 * projection_size,
                gather_output=False,
                init_method=init_method)
        else:
            assert attention_type == AttnType.cross_attn
            self.query = mpu.ColumnParallelLinear(
                args.hidden_size,
                projection_size,
                gather_output=False,
                init_method=init_method)

            self.key_value = mpu.ColumnParallelLinear(
                args.hidden_size,
                2 * projection_size,
                gather_output=False,
                init_method=init_method)
154

155
156
157
158
159
160
161
        coeff = None
        self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
        if self.apply_query_key_layer_scaling:
            coeff = self.layer_number
            self.norm_factor *= coeff

        self.scale_mask_softmax = FusedScaleMaskSoftmax(
162
            self.fp16, self.bf16,
163
164
            self.attn_mask_type,
            args.masked_softmax_fusion,
165
            attention_mask_func,
166
167
168
            self.attention_softmax_in_fp32,
            coeff)

169
170
171
        # Dropout. Note that for a single iteration, this layer will generate
        # different outputs on different number of parallel partitions but
        # on average it should not be partition dependent.
Mohammad's avatar
Mohammad committed
172
        self.attention_dropout = torch.nn.Dropout(args.attention_dropout)
173
174
175

        # Output.
        self.dense = mpu.RowParallelLinear(
176
            projection_size,
Mohammad's avatar
Mohammad committed
177
            args.hidden_size,
178
            input_is_parallel=True,
179
180
            init_method=output_layer_init_method,
            skip_bias_add=True)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
181

182
        # Inference key-value memory
mshoeybi's avatar
mshoeybi committed
183
184
        self.inference_key_memory = None
        self.inference_value_memory = None
185
186
187
188
189
190
191
192
193
194
195
196
197


    def _allocate_memory(self, inference_max_sequence_len, batch_size):
        return torch.empty(
            inference_max_sequence_len,
            batch_size,
            self.num_attention_heads_per_partition,
            self.hidden_size_per_attention_head,
            dtype=self.params_dtype,
            device=torch.cuda.current_device())
        

    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
198
                encoder_output=None, inference_params=None):
199
        # hidden_states: [sq, b, h]
200

201
202
203
204

        # =================================================
        # Pre-allocate memory for key-values for inference.
        # =================================================
mshoeybi's avatar
mshoeybi committed
205
206
207
        if inference_params:
            if inference_params.allocate_key_value_memory:
                inf_max_seq_len = inference_params.max_sequence_len
mshoeybi's avatar
mshoeybi committed
208
209
210
211
212
                inf_max_batch_size = inference_params.max_batch_size
                self.inference_key_memory = self._allocate_memory(
                    inf_max_seq_len, inf_max_batch_size)
                self.inference_value_memory = self._allocate_memory(
                    inf_max_seq_len, inf_max_batch_size)
mshoeybi's avatar
mshoeybi committed
213
        # This is added for safety. In case inference_params
214
215
        # is not provided, make sure there is no potential memory left
        # from previous inference.
mshoeybi's avatar
mshoeybi committed
216
        else:
mshoeybi's avatar
mshoeybi committed
217
218
            self.inference_value_memory = None
            self.inference_current_sequence_len = None
219

220
221
222
        # =====================
        # Query, Key, and Value
        # =====================
223

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
        if self.attention_type == AttnType.self_attn:
            # Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
            mixed_x_layer, _ = self.query_key_value(hidden_states)

            # [sq, b, (np * 3 * hn)] --> [sq, b, np, 3 * hn]
            new_tensor_shape = mixed_x_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 3 * self.hidden_size_per_attention_head)
            mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)

            # [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
            (query_layer,
             key_layer,
             value_layer) = mpu.split_tensor_along_last_dim(mixed_x_layer, 3)
        else:
            # Attention heads [sk, b, h] --> [sk, b, (np * 2 * hn)]
            mixed_kv_layer, _ = self.key_value(encoder_output)

            # [sk, b, (np * 2 * hn)] --> [sk, b, np, 2 * hn]
            new_tensor_shape = mixed_kv_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 2 * self.hidden_size_per_attention_head)
            mixed_kv_layer = mixed_kv_layer.view(*new_tensor_shape)

            # [sk, b, np, 2 * hn] --> 2 [sk, b, np, hn]
            (key_layer,
             value_layer) = mpu.split_tensor_along_last_dim(mixed_kv_layer, 2)

            # Attention head [sq, b, h] --> [sq, b, hp]
            query_layer, _ = self.query(hidden_states)
            # [sq, b, hp] --> [sq, b, np, hn]
            new_tensor_shape = query_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 self.hidden_size_per_attention_head)
            query_layer = query_layer.view(*new_tensor_shape)
259
260


mshoeybi's avatar
mshoeybi committed
261
262
263
        # ==================================
        # Adjust key and value for inference
        # ==================================
264

mshoeybi's avatar
mshoeybi committed
265
        if inference_params:
mshoeybi's avatar
mshoeybi committed
266
267
268
269
270
271
            batch_start = inference_params.batch_size_offset
            batch_end = batch_start + key_layer.size(1)
            assert batch_end <= self.inference_key_memory.size(1)
            sequence_start = inference_params.sequence_len_offset
            sequence_end = sequence_start + key_layer.size(0)
            assert sequence_end <= self.inference_key_memory.size(0)
272
            # Copy key and values.
mshoeybi's avatar
mshoeybi committed
273
274
275
276
277
278
279
280
281
282
            self.inference_key_memory[sequence_start:sequence_end,
                                      batch_start:batch_end,
                                      ...] = key_layer
            self.inference_value_memory[sequence_start:sequence_end,
                                        batch_start:batch_end,
                                        ...] = value_layer
            key_layer = self.inference_key_memory[
                :sequence_end, batch_start:batch_end, ...]
            value_layer = self.inference_value_memory[
                :sequence_end, batch_start:batch_end, ...]
283

284

285
286
287
        # ===================================
        # Raw attention scores. [b, np, s, s]
        # ===================================
288

289
        # [b, np, sq, sk]
290
291
292
        output_size = (query_layer.size(1),
                       query_layer.size(2),
                       query_layer.size(0),
293
                       key_layer.size(0))
294

295
        # [sq, b, np, hn] -> [sq, b * np, hn]
296
297
        query_layer = query_layer.view(output_size[2],
                                       output_size[0] * output_size[1], -1)
298
        # [sk, b, np, hn] -> [sk, b * np, hn]
299
300
301
        key_layer = key_layer.view(output_size[3],
                                   output_size[0] * output_size[1], -1)

302
        # preallocting result tensor: [b * np, sq, sk]
303
        matmul_result = torch.empty(
304
305
            output_size[0]*output_size[1],
            output_size[2],
306
            output_size[3],
307
            dtype=query_layer.dtype,
308
309
            device=torch.cuda.current_device())

310
        # Raw attention scores. [b * np, sq, sk]
311
312
        matmul_result = torch.baddbmm(
            matmul_result,
313
            query_layer.transpose(0, 1),   # [b * np, sq, hn]
314
            key_layer.transpose(0, 1).transpose(1, 2),  # [b * np, hn, sk]
315
316
            beta=0.0, alpha=(1.0/self.norm_factor))

317
        # change view to [b, np, sq, sk]
318
319
        attention_scores = matmul_result.view(*output_size)

320

321
322
323
        # ===========================
        # Attention probs and dropout
        # ===========================
324

325
        # attention scores and attention mask [b, np, sq, sk]
326
327
        attention_probs = self.scale_mask_softmax(attention_scores,
                                                  attention_mask)
328

329
330
331
332
333
334
        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        with mpu.get_cuda_rng_tracker().fork():
            attention_probs = self.attention_dropout(attention_probs)

        # =========================
335
        # Context layer. [sq, b, hp]
336
337
        # =========================

338
339
        # value_layer -> context layer.
        # [sk, b, np, hn] --> [b, np, sq, hn]
340

341
        # context layer shape: [b, np, sq, hn]
342
343
344
345
        output_size = (value_layer.size(1),
                       value_layer.size(2),
                       query_layer.size(0),
                       value_layer.size(3))
346

347
        # change view [sk, b * np, hn]
348
        value_layer = value_layer.view(value_layer.size(0),
349
                                       output_size[0] * output_size[1], -1)
350

351
        # change view [b * np, sq, sk]
352
353
        attention_probs = attention_probs.view(output_size[0] * output_size[1],
                                               output_size[2], -1)
354

355
        # matmul: [b * np, sq, hn]
356
        context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))
357

358
        # change view [b, np, sq, hn]
359
360
        context_layer = context_layer.view(*output_size)

361
        # [b, np, sq, hn] --> [sq, b, np, hn]
362
363
        context_layer = context_layer.permute(2, 0, 1, 3).contiguous()

364
        # [sq, b, np, hn] --> [sq, b, hp]
365
366
367
368
369
        new_context_layer_shape = context_layer.size()[:-2] + \
            (self.hidden_size_per_partition,)
        context_layer = context_layer.view(*new_context_layer_shape)

        # =================
370
        # Output. [sq, b, h]
371
372
373
        # =================

        output, bias = self.dense(context_layer)
374

375
376
377
        return output, bias


378
def bias_dropout_add(x, bias, residual, prob, training):
379
380
381
382
383
384
385
386
387
388
389
390
391
    # type: (Tensor, Tensor, Tensor, float, bool) -> Tensor
    out = torch.nn.functional.dropout(x + bias, p=prob, training=training)
    out = residual + out
    return out


def get_bias_dropout_add(training):
    def _bias_dropout_add(x, bias, residual, prob):
        return bias_dropout_add(x, bias, residual, prob, training)
    return _bias_dropout_add


@torch.jit.script
392
393
394
395
def bias_dropout_add_fused_train(x: torch.Tensor,
                                 bias: torch.Tensor,
                                 residual: torch.Tensor,
                                 prob: float) -> torch.Tensor:
396
397
398
399
    return bias_dropout_add(x, bias, residual, prob, True)


@torch.jit.script
400
401
402
403
def bias_dropout_add_fused_inference(x: torch.Tensor,
                                     bias: torch.Tensor,
                                     residual: torch.Tensor,
                                     prob: float) -> torch.Tensor:
404
    return bias_dropout_add(x, bias, residual, prob, False)
405
406
407
408
409


class ParallelTransformerLayer(MegatronModule):
    """A single transformer layer.

410
    Transformer layer takes input with size [b, s, h] and returns an
411
412
    output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
413

414
415
    def __init__(self, init_method, output_layer_init_method,
                 layer_number, layer_type=LayerType.encoder,
416
                 self_attn_mask_type=AttnMaskType.padding):
Mohammad's avatar
Mohammad committed
417
        args = get_args()
418
419

        super(ParallelTransformerLayer, self).__init__()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
420
        self.layer_number = layer_number
421
        self.layer_type = layer_type
422
423

        self.apply_residual_connection_post_layernorm \
Mohammad's avatar
Mohammad committed
424
            = args.apply_residual_connection_post_layernorm
425

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
426
427
428
        self.bf16 = args.bf16
        self.fp32_residual_connection = args.fp32_residual_connection

429
430
        # Layernorm on the input data.
        self.input_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
431
432
            args.hidden_size,
            eps=args.layernorm_epsilon)
433
434

        # Self attention.
435
436
437
438
439
440
        self.self_attention = ParallelAttention(
            init_method,
            output_layer_init_method,
            layer_number,
            attention_type=AttnType.self_attn,
            attn_mask_type=self_attn_mask_type)
441
442
        self.hidden_dropout = args.hidden_dropout
        self.bias_dropout_fusion = args.bias_dropout_fusion
443

444
        # Layernorm on the attention output
445
        self.post_attention_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
446
447
            args.hidden_size,
            eps=args.layernorm_epsilon)
448

449
450
451
452
453
454
455
456
457
458
459
        if self.layer_type == LayerType.decoder:
            self.inter_attention = ParallelAttention(
                init_method,
                output_layer_init_method,
                layer_number,
                attention_type=AttnType.cross_attn)
            # Layernorm on the attention output.
            self.post_inter_attention_layernorm = LayerNorm(
                args.hidden_size,
                eps=args.layernorm_epsilon)

460
        # MLP
461
        self.mlp = ParallelMLP(init_method,
Mohammad's avatar
Mohammad committed
462
                               output_layer_init_method)
463

464
    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
465
466
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
467
468
        # hidden_states: [b, s, h]

469
        # Layer norm at the beginning of the transformer layer.
470
471
        layernorm_output = self.input_layernorm(hidden_states)
        # Self attention.
472
        attention_output, attention_bias = \
473
474
475
            self.self_attention(
                layernorm_output,
                attention_mask,
mshoeybi's avatar
mshoeybi committed
476
                inference_params=inference_params)
477

478
479
        # Residual connection.
        if self.apply_residual_connection_post_layernorm:
480
481
482
483
            residual = layernorm_output
        else:
            residual = hidden_states

484
485
        # jit scripting for a nn.module (with dropout) is not
        # trigerring the fusion kernel. For now, we use two
486
487
488
489
490
491
492
        # different nn.functional routines to account for varying
        # dropout semantics during training and inference phases.
        if self.bias_dropout_fusion:
            if self.training:
                bias_dropout_add_func = bias_dropout_add_fused_train
            else:
                bias_dropout_add_func = bias_dropout_add_fused_inference
493
        else:
494
495
            bias_dropout_add_func = get_bias_dropout_add(self.training)

496
        # re-enable torch grad to enable fused optimization.
497
498
499
500
501
502
503
        with torch.enable_grad():
            layernorm_input = bias_dropout_add_func(
                attention_output,
                attention_bias.expand_as(residual),
                residual,
                self.hidden_dropout)

504
505
506
        # Layer norm post the self attention.
        layernorm_output = self.post_attention_layernorm(layernorm_input)

507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
        if self.layer_type == LayerType.decoder:
            attention_output, attention_bias = \
                self.inter_attention(layernorm_output,
                                     enc_dec_attn_mask,
                                     encoder_output=encoder_output)
            # residual connection
            if self.apply_residual_connection_post_layernorm:
                residual = layernorm_output
            else:
                residual = layernorm_input

            # re-enable torch grad to enable fused optimization.
            with torch.enable_grad():
                layernorm_input = bias_dropout_add_func(
                    attention_output,
                    attention_bias.expand_as(residual),
                    residual,
                    self.hidden_dropout)

            # Layer norm post the decoder attention
            layernorm_output = self.post_inter_attention_layernorm(layernorm_input)

529
        # MLP.
530
        mlp_output, mlp_bias = self.mlp(layernorm_output)
531

532
533
        # Second residual connection.
        if self.apply_residual_connection_post_layernorm:
534
            residual = layernorm_output
535
        else:
536
537
            residual = layernorm_input

538
        # re-enable torch grad to enable fused optimization.
539
540
541
542
543
544
        with torch.enable_grad():
            output = bias_dropout_add_func(
                mlp_output,
                mlp_bias.expand_as(residual),
                residual,
                self.hidden_dropout)
545
546
547
548
549
550
551

        return output


class ParallelTransformer(MegatronModule):
    """Transformer class."""

552
    def __init__(self, init_method, output_layer_init_method,
553
                 layer_type=LayerType.encoder,
554
555
                 self_attn_mask_type=AttnMaskType.padding,
                 pre_process=True, post_process=True):
556
        super(ParallelTransformer, self).__init__()
Mohammad's avatar
Mohammad committed
557
        args = get_args()
558

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
559
        self.bf16 = args.bf16
560
        self.fp32_residual_connection = args.fp32_residual_connection
561
562
563
        self.pre_process = pre_process
        self.post_process = post_process
        self.input_tensor = None
564

565
        # Store activation checkpoiting flag.
566
567
        self.activations_checkpoint_method = args.activations_checkpoint_method
        self.activations_checkpoint_num_layers = args.activations_checkpoint_num_layers
mshoeybi's avatar
mshoeybi committed
568
        self.distribute_checkpointed_activations = args.distribute_checkpointed_activations
569

570
        # Number of layers.
571
572
        self.num_layers = mpu.get_num_layers(
            args, args.model_type == ModelType.encoder_and_decoder)
Mohammad's avatar
Mohammad committed
573
574
575

        # Transformer layers.
        def build_layer(layer_number):
576
            return ParallelTransformerLayer(
577
578
579
                init_method,
                output_layer_init_method,
                layer_number,
580
581
                layer_type=layer_type,
                self_attn_mask_type=self_attn_mask_type)
582
583
        if args.virtual_pipeline_model_parallel_size is not None:
            assert args.num_layers % args.virtual_pipeline_model_parallel_size == 0, \
584
585
586
587
                'num_layers_per_stage must be divisible by ' \
                'virtual_pipeline_model_parallel_size'
            # Number of layers in each model chunk is the number of layers in the stage,
            # divided by the number of model chunks in a stage.
588
            self.num_layers = self.num_layers // args.virtual_pipeline_model_parallel_size
589
590
591
592
593
594
595
596
            # With 8 layers, 2 stages, and 4 model chunks, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0]  [2]  [4]  [6]
            # Stage 1: [1]  [3]  [5]  [7]
            # With 8 layers, 2 stages, and 2 virtual stages, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0, 1]  [4, 5]
            # Stage 1: [2, 3]  [6, 7]
597
            offset = mpu.get_virtual_pipeline_model_parallel_rank() * (
598
                args.num_layers // args.virtual_pipeline_model_parallel_size) + \
599
600
                (mpu.get_pipeline_model_parallel_rank() * self.num_layers)
        else:
601
            # Each stage gets a contiguous set of layers.
602
            offset = mpu.get_pipeline_model_parallel_rank() * self.num_layers
603

604
        self.layers = torch.nn.ModuleList(
605
            [build_layer(i + 1 + offset) for i in range(self.num_layers)])
606

607
        if self.post_process:
608
609
610
611
            # Final layer norm before output.
            self.final_layernorm = LayerNorm(
                args.hidden_size,
                eps=args.layernorm_epsilon)
612

Mohammad's avatar
Mohammad committed
613
    def _get_layer(self, layer_number):
614
        return self.layers[layer_number]
Mohammad's avatar
Mohammad committed
615

616
617
    def _checkpointed_forward(self, hidden_states, attention_mask,
                              encoder_output, enc_dec_attn_mask):
618
619
620
621
        """Forward method with activation checkpointing."""
        def custom(start, end):
            def custom_forward(*inputs):
                x_ = inputs[0]
622
623
624
                attention_mask = inputs[1]
                encoder_output = inputs[2]
                enc_dec_attn_mask = inputs[3]
Mohammad's avatar
Mohammad committed
625
626
                for index in range(start, end):
                    layer = self._get_layer(index)
627
                    x_ = layer(x_, attention_mask, encoder_output, enc_dec_attn_mask)
628
629
630
                return x_
            return custom_forward

mshoeybi's avatar
mshoeybi committed
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
        def distribute_checkpointed_activations_helper(layer_number):
            """Distribute checkpointed activations across the tensor model
               Parallel ranks if the `distribute-checkpointed-activations
               is on and either of the following conditions is met:
                 - it is not the first layer in the in the pipeline stage.
                   The first layer is used in the pipeline parallelism 
                   and changing its shape throws error in the backward pass.
                 - we are at the first pipline stage so the input tensor is
                   not used in pipeline parallelism. Note that no pipeline
                   parallelism is a special case of this.
            """
            not_first_layer_in_pipeline_stage = (layer_number > 0)
            is_first_pipeline_stage = (
                mpu.get_pipeline_model_parallel_rank() == 0)
            return self.distribute_checkpointed_activations and \
                (not_first_layer_in_pipeline_stage or is_first_pipeline_stage)

648
649
650
651
652
653
654
655
        if self.activations_checkpoint_method == 'uniform':
            # Uniformly divide the total number of Transformer layers and checkpoint
            # the input activation of each divided chunk.
            # A method to further reduce memory usage reducing checkpoints.
            l = 0
            while l < self.num_layers:
                hidden_states = mpu.checkpoint(
                    custom(l, l + self.activations_checkpoint_num_layers),
mshoeybi's avatar
mshoeybi committed
656
                    distribute_checkpointed_activations_helper(l),
657
658
659
660
661
662
663
664
665
666
                    hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
                l += self.activations_checkpoint_num_layers
        elif self.activations_checkpoint_method == 'block':
            # Checkpoint the input activation of only a set number of individual
            # Transformer layers and skip the rest.
            # A method fully use the device memory removing redundant re-computation.
            for l in range(self.num_layers):
                if l < self.activations_checkpoint_num_layers:
                    hidden_states = mpu.checkpoint(
                        custom(l, l + 1),
mshoeybi's avatar
mshoeybi committed
667
                        distribute_checkpointed_activations_helper(l),
668
669
670
671
672
673
                        hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
                else:
                    hidden_states = custom(l, l + 1)(
                        hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
        else:
            raise ValueError("Invalid activation checkpoint method.")
674
675
676

        return hidden_states

677
    def set_input_tensor(self, input_tensor):
678
679
680
681
682
683
684
        """Set input tensor to be used instead of forward()'s input.

        When doing pipeline parallelism the input from the previous
        stage comes from communication, not from the input, so the
        model's forward_step_func won't have it. This function is thus
        used by internal code to bypass the input provided by the
        forward_step_func"""
685
686
        self.input_tensor = input_tensor

687
    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
688
689
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
690

691
        # Checks.
mshoeybi's avatar
mshoeybi committed
692
        if inference_params:
693
            assert self.activations_checkpoint_method is None, \
694
                'inference does not work with activation checkpointing'
695

696
        if self.pre_process:
697
            # Data format change to avoid explicit tranposes : [b s h] --> [s b h].
mshoeybi's avatar
mshoeybi committed
698
            # If the input flag for fp32 residual connection is set, convert for float.
699
700
            if self.fp32_residual_connection:
                hidden_states = hidden_states.transpose(0, 1).contiguous().float()
mshoeybi's avatar
mshoeybi committed
701
            # Otherwise, leave it as is.
702
703
            else:
                hidden_states = hidden_states.transpose(0, 1).contiguous()
704
        else:
705
            # See set_input_tensor()
706
            hidden_states = self.input_tensor
707

Vijay Korthikanti's avatar
Vijay Korthikanti committed
708
709
        if encoder_output is not None:
             encoder_output = encoder_output.transpose(0, 1).contiguous()
710

711
        if self.activations_checkpoint_method is not None:
712
            hidden_states = self._checkpointed_forward(hidden_states,
713
714
715
                                                       attention_mask,
                                                       encoder_output,
                                                       enc_dec_attn_mask)
716
        else:
Mohammad's avatar
Mohammad committed
717
718
            for index in range(self.num_layers):
                layer = self._get_layer(index)
719
720
721
722
723
                hidden_states = layer(
                    hidden_states,
                    attention_mask,
                    encoder_output=encoder_output,
                    enc_dec_attn_mask=enc_dec_attn_mask,
mshoeybi's avatar
mshoeybi committed
724
725
                    inference_params=inference_params)

726

727
        # Final layer norm.
728
        if self.post_process:
729
730
            # Reverting data format change [s b h] --> [b s h].
            hidden_states = hidden_states.transpose(0, 1).contiguous()
731
732
733
            output = self.final_layernorm(hidden_states)
        else:
            output = hidden_states
734
        
735
        return output