transformer.py 15.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Transformer."""

import math

import torch
from apex.normalization.fused_layer_norm import FusedLayerNorm as LayerNorm

Mohammad's avatar
Mohammad committed
23
from megatron import get_args
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from megatron import mpu
from megatron.module import MegatronModule


""" We use the following notation throughout this file:
     h: hidden size
     n: number of attention heads
     p: number of model parallel partitions
     np: n/p
     hp: h/p
     hn: h/n
     b: batch size
     s: sequence length
     l: number of layers
    Transformer takes input of size [b, s, h] and returns a
    tensor of the same size. We use the following arguments:
        hyperparameters: transformer hyperparameters
        attention_mask_func: a function that takes `unmaksed-attention-scores`
            with size [b, np, s, s] and an `attention-mask` and will apply
            the masking. The function should return a masked score of the
            same size [b, np, s, s].
               masked-attention-scores = attention_mask_func(
                                     unmaksed-attention-scores, attention-mask)
"""

class ParallelMLP(MegatronModule):
    """MLP.

    MLP will take the input with h hidden state, project it to 4*h
    hidden dimension, perform nonlinear transformation, and project the
    state back into h hidden dimension. At the end, dropout is also
    applied.
    """

Mohammad's avatar
Mohammad committed
58
59
    def __init__(self, mlp_activation_func, init_method,
                 output_layer_init_method):
60
        super(ParallelMLP, self).__init__()
Mohammad's avatar
Mohammad committed
61
        args = get_args()
62
63
64

        # Project to 4h.
        self.dense_h_to_4h = mpu.ColumnParallelLinear(
Mohammad's avatar
Mohammad committed
65
66
            args.hidden_size,
            4*args.hidden_size,
67
            gather_output=False,
Mohammad's avatar
Mohammad committed
68
            init_method=init_method)
69

Mohammad's avatar
Mohammad committed
70
        self.activation_func = mlp_activation_func
71
72
73

        # Project back to h.
        self.dense_4h_to_h = mpu.RowParallelLinear(
Mohammad's avatar
Mohammad committed
74
75
            4*args.hidden_size,
            args.hidden_size,
76
            input_is_parallel=True,
Mohammad's avatar
Mohammad committed
77
            init_method=output_layer_init_method)
78

Mohammad's avatar
Mohammad committed
79
        self.dropout = torch.nn.Dropout(args.hidden_dropout)
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100


    def forward(self, hidden_states):

        # [b, s, 4hp]
        intermediate_parallel = self.dense_h_to_4h(hidden_states)
        intermediate_parallel = self.activation_func(intermediate_parallel)

        # [b, s, h]
        output = self.dense_4h_to_h(intermediate_parallel)
        output = self.dropout(output)
        return output



class ParallelSelfAttention(MegatronModule):
    """Parallel self-attention layer abstract class.

    Self-attention layer takes input with size [b, s, h]
    and returns output of the same size.
    """
Mohammad's avatar
Mohammad committed
101
102
    def __init__(self, attention_mask_func, init_method,
                 output_layer_init_method, layer_number):
103
        super(ParallelSelfAttention, self).__init__()
Mohammad's avatar
Mohammad committed
104
        args = get_args()
Mohammad's avatar
Mohammad committed
105
        self.fp16 = args.fp16
106
107

        self.attention_mask_func = attention_mask_func
Mohammad's avatar
Mohammad committed
108
109
        self.apply_query_key_layer_scaling = args.apply_query_key_layer_scaling
        self.attention_softmax_in_fp32 = args.attention_softmax_in_fp32
110
111
112
        if self.apply_query_key_layer_scaling:
            self.attention_softmax_in_fp32 = True
        self.layer_number = max(1, layer_number)
113
114
115

        # Per attention head and per partition values.
        world_size = mpu.get_model_parallel_world_size()
Mohammad's avatar
Mohammad committed
116
117
        self.hidden_size_per_partition = mpu.divide(args.hidden_size,
                                                    world_size)
118
        self.hidden_size_per_attention_head = mpu.divide(
Mohammad's avatar
Mohammad committed
119
            args.hidden_size, args.num_attention_heads)
120
        self.num_attention_heads_per_partition = mpu.divide(
Mohammad's avatar
Mohammad committed
121
            args.num_attention_heads, world_size)
122
123
124

        # Strided linear layer.
        self.query_key_value = mpu.ColumnParallelLinear(
Mohammad's avatar
Mohammad committed
125
126
            args.hidden_size,
            3*args.hidden_size,
127
128
            stride=3,
            gather_output=False,
Mohammad's avatar
Mohammad committed
129
            init_method=init_method)
130
131
132
133

        # Dropout. Note that for a single iteration, this layer will generate
        # different outputs on different number of parallel partitions but
        # on average it should not be partition dependent.
Mohammad's avatar
Mohammad committed
134
        self.attention_dropout = torch.nn.Dropout(args.attention_dropout)
135
136
137

        # Output.
        self.dense = mpu.RowParallelLinear(
Mohammad's avatar
Mohammad committed
138
139
            args.hidden_size,
            args.hidden_size,
140
            input_is_parallel=True,
Mohammad's avatar
Mohammad committed
141
142
            init_method=output_layer_init_method)
        self.output_dropout = torch.nn.Dropout(args.hidden_dropout)
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175


    def _transpose_for_scores(self, tensor):
        """Transpose a 3D tensor [b, s, np*hn] into a 4D tensor with
        size [b, np, s, hn].
        """
        new_tensor_shape = tensor.size()[:-1] + \
                           (self.num_attention_heads_per_partition,
                            self.hidden_size_per_attention_head)
        tensor = tensor.view(*new_tensor_shape)
        return tensor.permute(0, 2, 1, 3)


    def _get_query_key_value(self, hidden_states):
        """Get query, key, and value and transpose to
        get size [b, np, s, hn].
        """
        # Attention heads. [b, s, hp]
        mixed_x_layer = self.query_key_value(hidden_states)
        (mixed_query_layer,
         mixed_key_layer,
         mixed_value_layer) = mpu.split_tensor_along_last_dim(mixed_x_layer, 3)

        # Reshape and transpose [b, np, s, hn]
        query_layer = self._transpose_for_scores(mixed_query_layer)
        key_layer = self._transpose_for_scores(mixed_key_layer)
        value_layer = self._transpose_for_scores(mixed_value_layer)

        return query_layer, key_layer, value_layer


    def _get_unmasked_attention_scores(self, query_layer, key_layer):
        """Unmasked attention scores with size [b, np, s, s]."""
176
177
178
179
180
        coeff = 1
        if self.apply_query_key_layer_scaling:
            coeff = self.layer_number
        norm_factor = math.sqrt(coeff *
                                math.sqrt(self.hidden_size_per_attention_head))
181
182
183
184
185
186
187
188
189
190
        # Raw attention scores. [b, np, s, s]
        return torch.matmul(query_layer/norm_factor,
                            key_layer.transpose(-1, -2)/norm_factor)


    def _get_attention_probs(self, attention_scores):
        """Attention probabilies with dropout. The output has
        the size [b, np, s, s].
        """
        # Attention probabilities. [b, np, s, s]
191
192
        if self.apply_query_key_layer_scaling:
            attention_scores = attention_scores * self.layer_number
193
        attention_probs = torch.nn.Softmax(dim=-1)(attention_scores)
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        with mpu.get_cuda_rng_tracker().fork():
            attention_probs = self.attention_dropout(attention_probs)

        return attention_probs


    def _get_attended_context(self, attention_probs, value_layer):
        """Final attended tesnor and transposed back to [b, s, hp]."""
        # Context layer.
        # [b, np, s, hn]
        context_layer = torch.matmul(attention_probs, value_layer)
        # [b, s, np, hn]
        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + \
                                  (self.hidden_size_per_partition,)
        # [b, s, hp]
        context_layer = context_layer.view(*new_context_layer_shape)

        return context_layer


    def _get_output(self, context_layer):
        """Output layer with dropout."""
        # Output. [b, s, h]
        output = self.dense(context_layer)
        output = self.output_dropout(output)

        return output


    def forward(self, hidden_states, attention_mask, layer_past=None,
                get_key_value=False):
        # hidden_states: [b, s, h]

        # Attention heads. [b, np, s, hn]
        query_layer, key_layer, value_layer = self._get_query_key_value(
            hidden_states)

        if layer_past is not None:
            past_key, past_value = layer_past
            key_layer = torch.cat((past_key.type_as(key_layer),
                                   key_layer), dim=-2)
            value_layer = torch.cat((past_value.type_as(value_layer),
                                     value_layer), dim=-2)
        if get_key_value:
            present = (key_layer, value_layer)

        # Raw attention scores. [b, np, s, s]
        attention_scores = self._get_unmasked_attention_scores(
            query_layer, key_layer)

247
        # fp32 conversion.
Mohammad's avatar
Mohammad committed
248
        if self.fp16 and self.attention_softmax_in_fp32:
249
250
            attention_scores = attention_scores.float()

251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
        # Apply attention mask. [b, np, s, s]
        if get_key_value:
            with torch.no_grad():
                if layer_past is not None:
                    attention_mask = attention_mask[
                        ...,
                        attention_scores.size(3)-1,
                        :attention_scores.size(3)].unsqueeze(2)
                else:
                    attention_mask = attention_mask[
                        ...,
                        :attention_scores.size(3),
                        :attention_scores.size(3)]
        attention_scores = self.attention_mask_func(attention_scores,
                                                    attention_mask)

        # Attention probabilities. [b, np, s, s]
        attention_probs = self._get_attention_probs(attention_scores)

270
        # fp16 conversion
Mohammad's avatar
Mohammad committed
271
        if self.fp16 and self.attention_softmax_in_fp32:
272
273
            attention_probs = attention_probs.half()

274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
        # Context layer. [b, s, hp]
        context_layer = self._get_attended_context(attention_probs, value_layer)

        # Output. [b, s, h]
        output = self._get_output(context_layer)

        if get_key_value:
            output = [output, present]

        return output



class ParallelTransformerLayer(MegatronModule):
    """A single transformer layer.

    Transformore layer takes input with size [b, s, h] and returns an
    output of the same size.
    """
Mohammad's avatar
Mohammad committed
293
294
295
    def __init__(self, attention_mask_func, mlp_activation_func,
                 init_method, output_layer_init_method, layer_number):
        args = get_args()
296
297

        super(ParallelTransformerLayer, self).__init__()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
298
        self.layer_number = layer_number
299
300

        self.apply_residual_connection_post_layernorm \
Mohammad's avatar
Mohammad committed
301
            = args.apply_residual_connection_post_layernorm
302
303
304

        # Layernorm on the input data.
        self.input_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
305
306
            args.hidden_size,
            eps=args.layernorm_epsilon)
307
308

        # Self attention.
Mohammad's avatar
Mohammad committed
309
310
311
        self.attention = ParallelSelfAttention(attention_mask_func, init_method,
                                               output_layer_init_method,
                                               layer_number)
312
313
314

        # Layernorm on the input data.
        self.post_attention_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
315
316
            args.hidden_size,
            eps=args.layernorm_epsilon)
317
318

        # MLP
Mohammad's avatar
Mohammad committed
319
320
        self.mlp = ParallelMLP(mlp_activation_func, init_method,
                               output_layer_init_method)
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361


    def forward(self, hidden_states, attention_mask, layer_past=None,
                get_key_value=False):
        # hidden_states: [b, s, h]

        # Layer norm at the begining of the transformer layer.
        layernorm_output = self.input_layernorm(hidden_states)
        # Self attention.
        attention_output = self.attention(layernorm_output,
                                          attention_mask,
                                          layer_past=layer_past,
                                          get_key_value=get_key_value)
        if get_key_value:
            attention_output, presents = attention_output

        # Residual connection.
        if self.apply_residual_connection_post_layernorm:
            layernorm_input = layernorm_output + attention_output
        else:
            layernorm_input = hidden_states + attention_output
        # Layer norm post the self attention.
        layernorm_output = self.post_attention_layernorm(layernorm_input)

        # MLP.
        mlp_output = self.mlp(layernorm_output)
        # Second residual connection.
        if self.apply_residual_connection_post_layernorm:
            output = layernorm_output + mlp_output
        else:
            output = layernorm_input + mlp_output

        if get_key_value:
            output = [output, presents]

        return output


class ParallelTransformer(MegatronModule):
    """Transformer class."""

Mohammad's avatar
Mohammad committed
362
363
    def __init__(self, attention_mask_func, mlp_activation_func,
                 init_method, output_layer_init_method):
364
        super(ParallelTransformer, self).__init__()
Mohammad's avatar
Mohammad committed
365
        args = get_args()
366
367

        # Store activation checkpoiting flag.
Mohammad's avatar
Mohammad committed
368
369
        self.checkpoint_activations = args.checkpoint_activations
        self.checkpoint_num_layers = args.checkpoint_num_layers
370

371
        def get_layer(layer_number):
372
            return ParallelTransformerLayer(
Mohammad's avatar
Mohammad committed
373
374
                attention_mask_func, mlp_activation_func,
                init_method, output_layer_init_method, layer_number)
375
376
377

        # Transformer layers.
        self.layers = torch.nn.ModuleList(
Mohammad's avatar
Mohammad committed
378
            [get_layer(i+1) for i in range(args.num_layers)])
379
380
381

        # Final layer norm before output.
        self.final_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
382
383
            args.hidden_size,
            eps=args.layernorm_epsilon)
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444


    def _checkpointed_forward(self, hidden_states, attention_mask):
        """Forward method with activation checkpointing."""
        def custom(start, end):
            def custom_forward(*inputs):
                layers_ = self.layers[start:end]
                x_ = inputs[0]
                for layer in layers_:
                    x_ = layer(x_, inputs[1])
                return x_
            return custom_forward

        l = 0
        num_layers = len(self.layers)
        while l < num_layers:
            hidden_states = mpu.checkpoint(
                custom(l, l+self.checkpoint_num_layers),
                hidden_states, attention_mask)
            l += self.checkpoint_num_layers

        return hidden_states


    def forward(self, hidden_states, attention_mask, layer_past=None,
                get_key_value=False):

        # Checks
        if layer_past is not None:
            assert get_key_value, \
                'for not None values in layer_past, ' \
                'expected get_key_value to be set'
        if get_key_value:
            assert not self.checkpoint_activations, \
                'get_key_value does not work with ' \
                'activation checkpointing'

        if self.checkpoint_activations:
            hidden_states = self._checkpointed_forward(hidden_states,
                                                       attention_mask)
        else:
            if get_key_value:
                presents = []
            for i, layer in enumerate(self.layers):
                past = None
                if layer_past is not None:
                    past = layer_past[i]
                hidden_states = layer(hidden_states,
                                      attention_mask,
                                      layer_past=past,
                                      get_key_value=get_key_value)
                if get_key_value:
                    hidden_states, present = hidden_states
                    presents.append(present)

        # Final layer norm.
        output = self.final_layernorm(hidden_states)
        if get_key_value:
            output = [output, presents]

        return output