transformer.py 51.7 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
2
3
4

"""Transformer."""
import math
5
from contextlib import nullcontext
6
import torch
7
import torch.nn.functional as F
8

9
from megatron import get_timers, get_args, core, get_num_microbatches
10
from .module import MegatronModule
11
from megatron.core import mpu, tensor_parallel
12
from megatron.model.enums import AttnMaskType, ModelType, LayerType, AttnType
13
from megatron.model import LayerNorm
14
15
from megatron.model.fused_softmax import FusedScaleMaskSoftmax
from megatron.model.fused_bias_gelu import bias_gelu_impl
16
from megatron.model.utils import attention_mask_func, openai_gelu, erf_gelu
17

18
19
20
21
22
23
24
25
26
27
try:
    from einops import rearrange
except ImportError:
    rearrange = None

try:
    from flash_attn.flash_attn_interface import flash_attn_unpadded_func
except ImportError:
    flash_attn_unpadded_func = None

28
29
30
31
32
33
34
35
36
37
""" We use the following notation throughout this file:
     h: hidden size
     n: number of attention heads
     p: number of model parallel partitions
     np: n/p
     hp: h/p
     hn: h/n
     b: batch size
     s: sequence length
     l: number of layers
38
    Transformer takes input of size [s, b, h] and returns a
39
40
41
42
    tensor of the same size. We use the following arguments:
        hyperparameters: transformer hyperparameters
"""

43
class DropPath(MegatronModule):
44
    """Drop paths (Stochastic Depth) per sample
45
46
47
    (when applied in main path of residual blocks).
    """

Vijay Korthikanti's avatar
Vijay Korthikanti committed
48
    def __init__(self, drop_prob=0.):
49
50
51
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

Vijay Korthikanti's avatar
Vijay Korthikanti committed
52
    def forward(self, hidden_state):
53
        if self.drop_prob == 0. or not self.training:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
54
            return hidden_state
55
56
        keep_prob = 1 - self.drop_prob
        # work with diff dim tensors, not just 2D ConvNets
57
58
        # hidden_state: [s, b, h]
        shape = (1,) + (hidden_state.shape[1],) + (1,) * (hidden_state.ndim - 2)
59
        random_tensor = keep_prob + \
Vijay Korthikanti's avatar
Vijay Korthikanti committed
60
            torch.rand(shape, dtype=hidden_state.dtype, device=hidden_state.device)
61
        random_tensor.floor_()  # binarize
Vijay Korthikanti's avatar
Vijay Korthikanti committed
62
        output = hidden_state.div(keep_prob) * random_tensor
63
64
        return output

65
66
67
68
69
70
71
72
73
74
75
def _args_to_kwargs():
    args = get_args()

    common_kwargs = {
        "params_dtype": args.params_dtype,
        "use_cpu_initialization": args.use_cpu_initialization,
        "perform_initialization": args.perform_initialization,
        "gradient_accumulation_fusion": args.gradient_accumulation_fusion,
        "sequence_parallel_enabled": args.sequence_parallel,
    }
    return common_kwargs
76

77
78
79
80
81
class ParallelMLP(MegatronModule):
    """MLP.

    MLP will take the input with h hidden state, project it to 4*h
    hidden dimension, perform nonlinear transformation, and project the
hwijeen's avatar
hwijeen committed
82
    state back into h hidden dimension.
83
84
    """

85
    def __init__(self, init_method, output_layer_init_method):
86
        super(ParallelMLP, self).__init__()
Mohammad's avatar
Mohammad committed
87
        args = get_args()
88

89

90
        # Project to 4h.
91
        self.dense_h_to_4h = tensor_parallel.ColumnParallelLinear(
Mohammad's avatar
Mohammad committed
92
            args.hidden_size,
93
            args.ffn_hidden_size,
94
            gather_output=False,
95
            init_method=init_method,
96
97
98
            skip_bias_add=True,
            async_tensor_model_parallel_allreduce=args.async_tensor_model_parallel_allreduce,
            **_args_to_kwargs())
99

100
101
102
103
104
105
        self.bias_gelu_fusion = args.bias_gelu_fusion
        self.activation_func = F.gelu
        if args.openai_gelu:
            self.activation_func = openai_gelu
        elif args.onnx_safe:
            self.activation_func = erf_gelu
106
107

        # Project back to h.
108
        self.dense_4h_to_h = tensor_parallel.RowParallelLinear(
109
            args.ffn_hidden_size,
Mohammad's avatar
Mohammad committed
110
            args.hidden_size,
111
            input_is_parallel=True,
112
            init_method=output_layer_init_method,
113
114
            skip_bias_add=True,
            **_args_to_kwargs())
115

116
117
    def forward(self, hidden_states):

118
119
        # [s, b, 4hp]
        intermediate_parallel, bias_parallel = self.dense_h_to_4h(hidden_states)
120

121
122
123
124
125
126
127
128
129
130
        if self.bias_gelu_fusion:
             intermediate_parallel = \
                     bias_gelu_impl(intermediate_parallel, bias_parallel)
        else:
            intermediate_parallel = \
                self.activation_func(intermediate_parallel + bias_parallel)

        # [s, b, h]
        output, output_bias = self.dense_4h_to_h(intermediate_parallel)
        return output, output_bias
131

rprenger's avatar
rprenger committed
132
133
134
135
class SwitchMLP(MegatronModule):
    """
    Routes input to one of N MLP "experts"
    """
rprenger's avatar
rprenger committed
136
    def __init__(self, init_method, output_layer_init_method):
rprenger's avatar
rprenger committed
137
138
        super(SwitchMLP, self).__init__()
        args = get_args()
rprenger's avatar
rprenger committed
139
        self.router = torch.nn.Linear(args.hidden_size, args.num_experts)
rprenger's avatar
rprenger committed
140
        self.experts = torch.nn.ModuleList()
rprenger's avatar
rprenger committed
141
        for i in range(args.num_experts):
rprenger's avatar
rprenger committed
142
            self.experts.append(ParallelMLP(init_method, output_layer_init_method))
143

rprenger's avatar
rprenger committed
144
    def forward(self, hidden_states):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
145
146
147
        # hidden_states: [s, b, h]
        s = hidden_states.size(0)
        b = hidden_states.size(1)
rprenger's avatar
rprenger committed
148
149
        h = hidden_states.size(2)
        route = self.router(hidden_states)
rprenger's avatar
rprenger committed
150
        route = torch.nn.functional.softmax(route, dim=2)
rprenger's avatar
rprenger committed
151
        max_prob, max_ind = torch.max(route, dim=2)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
152
        max_prob = torch.unsqueeze(max_prob, 2) # [s b 1]
153

rprenger's avatar
rprenger committed
154
        # TODO (rprenger) TODO this could be made easier to read
Vijay Korthikanti's avatar
Vijay Korthikanti committed
155
        # Converting [s, b, h] to [s*b, h].
156
        # Each vector could be routed differently
Vijay Korthikanti's avatar
Vijay Korthikanti committed
157
158
159
        hidden_states = hidden_states.view(-1, hidden_states.size(2)) # [s*b h]
        max_prob = max_prob.view(-1, max_prob.size(2)) # [s*b 1]
        max_ind = max_ind.view(-1) # [s*b]
rprenger's avatar
rprenger committed
160
161
162

        output_total = torch.empty_like(hidden_states)
        output_bias_total = torch.empty_like(hidden_states)
rprenger's avatar
rprenger committed
163
        #TODO (rprenger) This does each expert in serial, but it could be parallelized
164

rprenger's avatar
rprenger committed
165
        for expert_num, expert in enumerate(self.experts):
166
167
            local_indices = (max_ind == expert_num).nonzero()
            hidden = hidden_states[local_indices,:]
rprenger's avatar
rprenger committed
168
169
            output, output_bias = expert(hidden)
            output_bias = output_bias.expand_as(output)
170
171
172
            output_total[local_indices,:] = output
            output_bias_total[local_indices,:] = output_bias

rprenger's avatar
rprenger committed
173
174
        output_total = output_total*max_prob
        output_bias_total = output_bias_total*max_prob
Vijay Korthikanti's avatar
Vijay Korthikanti committed
175
176
        output_total = output_total.view(s, b, h)
        output_bias_total = output_bias_total.view(s, b, h)
rprenger's avatar
rprenger committed
177
178

        return output_total, output_bias_total
179

180
181

class CoreAttention(MegatronModule):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
182

183
184
185
186
187
188
189
190
191
192
193
194
195
    def __init__(self, layer_number,
                 attn_mask_type=AttnMaskType.padding):
        super(CoreAttention, self).__init__()
        args = get_args()
        self.fp16 = args.fp16
        self.bf16 = args.bf16

        self.apply_query_key_layer_scaling = args.apply_query_key_layer_scaling
        self.attention_softmax_in_fp32 = args.attention_softmax_in_fp32
        if self.apply_query_key_layer_scaling:
            self.attention_softmax_in_fp32 = True
        self.layer_number = max(1, layer_number)
        self.attn_mask_type = attn_mask_type
Vijay Korthikanti's avatar
Vijay Korthikanti committed
196
        self.sequence_parallel = args.sequence_parallel
197
198
199
200

        projection_size = args.kv_channels * args.num_attention_heads

        # Per attention head and per partition values.
201
        world_size = mpu.get_tensor_model_parallel_world_size()
202
203
204
        self.hidden_size_per_partition = core.utils.divide(projection_size,
                                                           world_size)
        self.hidden_size_per_attention_head = core.utils.divide(
205
            projection_size, args.num_attention_heads)
206
        self.num_attention_heads_per_partition = core.utils.divide(
207
            args.num_attention_heads, world_size)
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

        coeff = None
        self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
        if self.apply_query_key_layer_scaling:
            coeff = self.layer_number
            self.norm_factor *= coeff

        self.scale_mask_softmax = FusedScaleMaskSoftmax(
            self.fp16, self.bf16,
            self.attn_mask_type,
            args.masked_softmax_fusion,
            attention_mask_func,
            self.attention_softmax_in_fp32,
            coeff)

        # Dropout. Note that for a single iteration, this layer will generate
        # different outputs on different number of parallel partitions but
        # on average it should not be partition dependent.
        self.attention_dropout = torch.nn.Dropout(args.attention_dropout)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
227

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
    def forward(self, query_layer, key_layer,
                value_layer, attention_mask):

        # ===================================
        # Raw attention scores. [b, np, s, s]
        # ===================================

        # [b, np, sq, sk]
        output_size = (query_layer.size(1),
                       query_layer.size(2),
                       query_layer.size(0),
                       key_layer.size(0))

        # [sq, b, np, hn] -> [sq, b * np, hn]
        query_layer = query_layer.view(output_size[2],
                                       output_size[0] * output_size[1], -1)
        # [sk, b, np, hn] -> [sk, b * np, hn]
        key_layer = key_layer.view(output_size[3],
                                   output_size[0] * output_size[1], -1)

Vijay Korthikanti's avatar
Vijay Korthikanti committed
248
        # preallocting input tensor: [b * np, sq, sk]
249
        matmul_input_buffer = mpu.get_global_memory_buffer().get_tensor(
250
            (output_size[0]*output_size[1], output_size[2], output_size[3]),
Vijay Korthikanti's avatar
Vijay Korthikanti committed
251
            query_layer.dtype, "mpu")
252
253
254

        # Raw attention scores. [b * np, sq, sk]
        matmul_result = torch.baddbmm(
Vijay Korthikanti's avatar
Vijay Korthikanti committed
255
            matmul_input_buffer,
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
            query_layer.transpose(0, 1),   # [b * np, sq, hn]
            key_layer.transpose(0, 1).transpose(1, 2),  # [b * np, hn, sk]
            beta=0.0, alpha=(1.0/self.norm_factor))

        # change view to [b, np, sq, sk]
        attention_scores = matmul_result.view(*output_size)

        # ===========================
        # Attention probs and dropout
        # ===========================

        # attention scores and attention mask [b, np, sq, sk]
        attention_probs = self.scale_mask_softmax(attention_scores,
                                                  attention_mask)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
273
        if not self.sequence_parallel:
274
            with tensor_parallel.get_cuda_rng_tracker().fork():
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
                attention_probs = self.attention_dropout(attention_probs)
        else:
            attention_probs = self.attention_dropout(attention_probs)

        # =========================
        # Context layer. [sq, b, hp]
        # =========================

        # value_layer -> context layer.
        # [sk, b, np, hn] --> [b, np, sq, hn]

        # context layer shape: [b, np, sq, hn]
        output_size = (value_layer.size(1),
                       value_layer.size(2),
                       query_layer.size(0),
                       value_layer.size(3))

        # change view [sk, b * np, hn]
        value_layer = value_layer.view(value_layer.size(0),
                                       output_size[0] * output_size[1], -1)

        # change view [b * np, sq, sk]
        attention_probs = attention_probs.view(output_size[0] * output_size[1],
                                               output_size[2], -1)

        # matmul: [b * np, sq, hn]
        context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))

        # change view [b, np, sq, hn]
        context_layer = context_layer.view(*output_size)

        # [b, np, sq, hn] --> [sq, b, np, hn]
        context_layer = context_layer.permute(2, 0, 1, 3).contiguous()

        # [sq, b, np, hn] --> [sq, b, hp]
        new_context_layer_shape = context_layer.size()[:-2] + \
            (self.hidden_size_per_partition,)
        context_layer = context_layer.view(*new_context_layer_shape)

        return context_layer


317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
class FlashSelfAttention(torch.nn.Module):
    """Implement the scaled dot product attention with softmax.
    Arguments
    ---------
        softmax_scale: The temperature to use for the softmax attention.
                      (default: 1/sqrt(d_keys) where d_keys is computed at
                      runtime)
        attention_dropout: The dropout rate to apply to the attention
                           (default: 0.0)
    """
    def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0,
                 device=None, dtype=None):
        super().__init__()
        assert flash_attn_unpadded_func is not None, ('Please install FlashAttention first, '
                                                      'e.g., with pip install flash-attn')
        assert rearrange is not None, 'Please install einops first, e.g., with pip install einops'
        self.causal = causal
        self.softmax_scale = softmax_scale
        self.dropout_p = attention_dropout

    def forward(self, q, k, v):
        """Implements the multihead softmax attention.
        Arguments
        ---------
            q, k, v: The tensor containing the query, key, and value. (B, S, H, D)
        """
        assert q.dtype in [torch.float16, torch.bfloat16]
        assert q.is_cuda
        batch_size, seqlen = q.shape[0], q.shape[1]
        q, k, v = [rearrange(x, 'b s ... -> (b s) ...') for x in [q, k, v]]
        max_s = seqlen
        cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
                                  device=q.device)
        output = flash_attn_unpadded_func(
            q, k, v, cu_seqlens, cu_seqlens, max_s, max_s,
            self.dropout_p if self.training else 0.0,
            softmax_scale=self.softmax_scale, causal=self.causal
        )
        output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
        return output


359
class ParallelAttention(MegatronModule):
360
361
    """Parallel self-attention layer abstract class.

Vijay Korthikanti's avatar
Vijay Korthikanti committed
362
    Self-attention layer takes input with size [s, b, h]
363
364
    and returns output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
365

366
    def __init__(self, init_method,
367
368
369
370
                 output_layer_init_method, layer_number,
                 attention_type=AttnType.self_attn,
                 attn_mask_type=AttnMaskType.padding):
        super(ParallelAttention, self).__init__()
Mohammad's avatar
Mohammad committed
371
        args = get_args()
372
        self.layer_number = max(1, layer_number)
373
374
        self.attention_type = attention_type
        self.attn_mask_type = attn_mask_type
375
        self.params_dtype = args.params_dtype
376
377
378
379
380
381
382
383
384
385
386
387
388
        self.sequence_parallel = args.sequence_parallel

        self.use_flash_attn = args.use_flash_attn
        if self.use_flash_attn:
            if flash_attn_unpadded_func is None:
                raise ImportError('FlashAttention is not installed, please install with '
                                  'pip install flash-attn')
            assert attention_type == AttnType.self_attn, ('FlashAttention code path only supports '
                                                          'self-attention for now')
            assert self.attn_mask_type == AttnMaskType.causal, ('FlashAttention code path only '
                                                                'supports causal mask for now')
            if rearrange is None:
                raise ImportError('einops is not installed, please install with pip install einops')
389
390

        projection_size = args.kv_channels * args.num_attention_heads
391
392

        # Per attention head and per partition values.
393
        world_size = mpu.get_tensor_model_parallel_world_size()
394
        self.hidden_size_per_attention_head = core.utils.divide(
395
            projection_size, args.num_attention_heads)
396
        self.num_attention_heads_per_partition = core.utils.divide(
Mohammad's avatar
Mohammad committed
397
            args.num_attention_heads, world_size)
398
399

        # Strided linear layer.
400
        if attention_type == AttnType.self_attn:
401
            self.query_key_value = tensor_parallel.ColumnParallelLinear(
402
403
404
                args.hidden_size,
                3 * projection_size,
                gather_output=False,
405
406
407
                init_method=init_method,
                async_tensor_model_parallel_allreduce=args.async_tensor_model_parallel_allreduce,
                **_args_to_kwargs())
408
409
        else:
            assert attention_type == AttnType.cross_attn
410
            self.query = tensor_parallel.ColumnParallelLinear(
411
412
413
                args.hidden_size,
                projection_size,
                gather_output=False,
414
415
416
                init_method=init_method,
                async_tensor_model_parallel_allreduce=args.async_tensor_model_parallel_allreduce,
                **_args_to_kwargs())
417

418

419
            self.key_value = tensor_parallel.ColumnParallelLinear(
420
421
422
                args.hidden_size,
                2 * projection_size,
                gather_output=False,
423
424
425
                init_method=init_method,
                async_tensor_model_parallel_allreduce=args.async_tensor_model_parallel_allreduce,
                **_args_to_kwargs())
426

427
428
        self.core_attention = CoreAttention(self.layer_number,
                                            self.attn_mask_type)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
429
        self.checkpoint_core_attention = args.recompute_granularity == 'selective'
430

431
432
433
434
435
        if self.use_flash_attn:
            self.core_attention_flash = FlashSelfAttention(
                causal=True, attention_dropout=args.attention_dropout
            )

436
        # Output.
437
        self.dense = tensor_parallel.RowParallelLinear(
438
            projection_size,
Mohammad's avatar
Mohammad committed
439
            args.hidden_size,
440
            input_is_parallel=True,
441
            init_method=output_layer_init_method,
442
443
            skip_bias_add=True,
            **_args_to_kwargs())
Vijay Korthikanti's avatar
Vijay Korthikanti committed
444

445
446
447
448
449
450
451
452
453
454
455
456
    def _checkpointed_attention_forward(self, query_layer, key_layer,
                                        value_layer, attention_mask):
        """Forward method with activation checkpointing."""
        def custom_forward(*inputs):
            query_layer = inputs[0]
            key_layer = inputs[1]
            value_layer = inputs[2]
            attention_mask = inputs[3]
            output_ = self.core_attention(query_layer, key_layer,
                                          value_layer, attention_mask)
            return output_

457
        hidden_states = tensor_parallel.checkpoint(
458
459
460
461
            custom_forward,
            False, query_layer, key_layer, value_layer, attention_mask)

        return hidden_states
462
463
464
465
466
467
468
469
470
471
472

    def _allocate_memory(self, inference_max_sequence_len, batch_size):
        return torch.empty(
            inference_max_sequence_len,
            batch_size,
            self.num_attention_heads_per_partition,
            self.hidden_size_per_attention_head,
            dtype=self.params_dtype,
            device=torch.cuda.current_device())

    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
473
                encoder_output=None, inference_params=None):
474
        # hidden_states: [sq, b, h]
475

476
477
478
        # =================================================
        # Pre-allocate memory for key-values for inference.
        # =================================================
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
479

mshoeybi's avatar
mshoeybi committed
480
        if inference_params:
481
            if self.layer_number not in inference_params.key_value_memory_dict:
mshoeybi's avatar
mshoeybi committed
482
                inf_max_seq_len = inference_params.max_sequence_len
mshoeybi's avatar
mshoeybi committed
483
                inf_max_batch_size = inference_params.max_batch_size
484
                inference_key_memory = self._allocate_memory(
mshoeybi's avatar
mshoeybi committed
485
                    inf_max_seq_len, inf_max_batch_size)
486
                inference_value_memory = self._allocate_memory(
mshoeybi's avatar
mshoeybi committed
487
                    inf_max_seq_len, inf_max_batch_size)
488
489
490
491
492
                inference_params.key_value_memory_dict[self.layer_number] = (
                    inference_key_memory, inference_value_memory)
            else:
                inference_key_memory, inference_value_memory = \
                    inference_params.key_value_memory_dict[self.layer_number]
mshoeybi's avatar
mshoeybi committed
493

494
495
496
        # =====================
        # Query, Key, and Value
        # =====================
497

498
499
500
501
502
503
504
505
506
507
508
509
510
        if self.attention_type == AttnType.self_attn:
            # Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
            mixed_x_layer, _ = self.query_key_value(hidden_states)

            # [sq, b, (np * 3 * hn)] --> [sq, b, np, 3 * hn]
            new_tensor_shape = mixed_x_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 3 * self.hidden_size_per_attention_head)
            mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)

            # [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
            (query_layer,
             key_layer,
511
             value_layer) = tensor_parallel.split_tensor_along_last_dim(mixed_x_layer, 3)
512
513
514
515
516
517
518
519
520
521
522
523
        else:
            # Attention heads [sk, b, h] --> [sk, b, (np * 2 * hn)]
            mixed_kv_layer, _ = self.key_value(encoder_output)

            # [sk, b, (np * 2 * hn)] --> [sk, b, np, 2 * hn]
            new_tensor_shape = mixed_kv_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 2 * self.hidden_size_per_attention_head)
            mixed_kv_layer = mixed_kv_layer.view(*new_tensor_shape)

            # [sk, b, np, 2 * hn] --> 2 [sk, b, np, hn]
            (key_layer,
524
             value_layer) = tensor_parallel.split_tensor_along_last_dim(mixed_kv_layer, 2)
525
526
527
528
529
530
531
532

            # Attention head [sq, b, h] --> [sq, b, hp]
            query_layer, _ = self.query(hidden_states)
            # [sq, b, hp] --> [sq, b, np, hn]
            new_tensor_shape = query_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 self.hidden_size_per_attention_head)
            query_layer = query_layer.view(*new_tensor_shape)
533

mshoeybi's avatar
mshoeybi committed
534
535
536
        # ==================================
        # Adjust key and value for inference
        # ==================================
537

mshoeybi's avatar
mshoeybi committed
538
        if inference_params:
mshoeybi's avatar
mshoeybi committed
539
540
            batch_start = inference_params.batch_size_offset
            batch_end = batch_start + key_layer.size(1)
541
            assert batch_end <= inference_key_memory.size(1)
mshoeybi's avatar
mshoeybi committed
542
543
            sequence_start = inference_params.sequence_len_offset
            sequence_end = sequence_start + key_layer.size(0)
544
            assert sequence_end <= inference_key_memory.size(0)
545
            # Copy key and values.
546
547
548
549
550
            inference_key_memory[sequence_start:sequence_end,
                                 batch_start:batch_end, ...] = key_layer
            inference_value_memory[sequence_start:sequence_end,
                                   batch_start:batch_end, ...] = value_layer
            key_layer = inference_key_memory[
mshoeybi's avatar
mshoeybi committed
551
                :sequence_end, batch_start:batch_end, ...]
552
            value_layer = inference_value_memory[
mshoeybi's avatar
mshoeybi committed
553
                :sequence_end, batch_start:batch_end, ...]
554

555
556
557
        # ==================================
        # core attention computation
        # ==================================
558

559
560
561
562
563
564
565
        if not self.use_flash_attn:
            if self.checkpoint_core_attention:
                context_layer = self._checkpointed_attention_forward(
                    query_layer, key_layer, value_layer, attention_mask)
            else:
                context_layer = self.core_attention(
                    query_layer, key_layer, value_layer, attention_mask)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
566
        else:
567
568
569
570
571
572
573
574
            q, k, v = [rearrange(x, 's b ... -> b s ...').contiguous()
                       for x in (query_layer, key_layer, value_layer)]
            if not self.sequence_parallel:
                with tensor_parallel.get_cuda_rng_tracker().fork():
                    context_layer = self.core_attention_flash(q, k, v)
            else:
                context_layer = self.core_attention_flash(q, k, v)
            context_layer = rearrange(context_layer, 'b s h d -> s b (h d)').contiguous()
575
576

        # =================
577
        # Output. [sq, b, h]
578
579
580
        # =================

        output, bias = self.dense(context_layer)
581

582
583
584
        return output, bias


585
def bias_dropout_add(x, bias, residual, prob, training):
586
587
588
589
590
591
592
593
594
595
596
597
598
    # type: (Tensor, Tensor, Tensor, float, bool) -> Tensor
    out = torch.nn.functional.dropout(x + bias, p=prob, training=training)
    out = residual + out
    return out


def get_bias_dropout_add(training):
    def _bias_dropout_add(x, bias, residual, prob):
        return bias_dropout_add(x, bias, residual, prob, training)
    return _bias_dropout_add


@torch.jit.script
599
600
601
602
def bias_dropout_add_fused_train(x: torch.Tensor,
                                 bias: torch.Tensor,
                                 residual: torch.Tensor,
                                 prob: float) -> torch.Tensor:
603
604
605
606
    return bias_dropout_add(x, bias, residual, prob, True)


@torch.jit.script
607
608
609
610
def bias_dropout_add_fused_inference(x: torch.Tensor,
                                     bias: torch.Tensor,
                                     residual: torch.Tensor,
                                     prob: float) -> torch.Tensor:
611
    return bias_dropout_add(x, bias, residual, prob, False)
612
613
614
615
616


class ParallelTransformerLayer(MegatronModule):
    """A single transformer layer.

Vijay Korthikanti's avatar
Vijay Korthikanti committed
617
    Transformer layer takes input with size [s, b, h] and returns an
618
619
    output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
620

621
622
    def __init__(self, init_method, output_layer_init_method,
                 layer_number, layer_type=LayerType.encoder,
623
624
                 self_attn_mask_type=AttnMaskType.padding,
                 drop_path_rate=0.):
Mohammad's avatar
Mohammad committed
625
        args = get_args()
626
627

        super(ParallelTransformerLayer, self).__init__()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
628
        self.layer_number = layer_number
629
        self.layer_type = layer_type
630
631

        self.apply_residual_connection_post_layernorm \
Mohammad's avatar
Mohammad committed
632
            = args.apply_residual_connection_post_layernorm
633

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
634
635
636
        self.bf16 = args.bf16
        self.fp32_residual_connection = args.fp32_residual_connection

637
638
        # Layernorm on the input data.
        self.input_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
639
            args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
640
            eps=args.layernorm_epsilon,
641
            no_persist_layer_norm=args.no_persist_layer_norm,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
642
            sequence_parallel=args.sequence_parallel)
643
644

        # Self attention.
645
646
647
648
649
650
        self.self_attention = ParallelAttention(
            init_method,
            output_layer_init_method,
            layer_number,
            attention_type=AttnType.self_attn,
            attn_mask_type=self_attn_mask_type)
651
652
        self.hidden_dropout = args.hidden_dropout
        self.bias_dropout_fusion = args.bias_dropout_fusion
Vijay Korthikanti's avatar
Vijay Korthikanti committed
653
        self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else None
654

655
        # Layernorm on the attention output
656
        self.post_attention_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
657
            args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
658
            eps=args.layernorm_epsilon,
659
            no_persist_layer_norm=args.no_persist_layer_norm,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
660
            sequence_parallel=args.sequence_parallel)
661

662
663
664
665
666
667
668
669
670
        if self.layer_type == LayerType.decoder:
            self.inter_attention = ParallelAttention(
                init_method,
                output_layer_init_method,
                layer_number,
                attention_type=AttnType.cross_attn)
            # Layernorm on the attention output.
            self.post_inter_attention_layernorm = LayerNorm(
                args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
671
                eps=args.layernorm_epsilon,
672
                no_persist_layer_norm=args.no_persist_layer_norm,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
673
                sequence_parallel=args.sequence_parallel)
674

675
        # MLP
rprenger's avatar
rprenger committed
676
677
678
679
        if args.num_experts is not None:
            self.mlp = SwitchMLP(init_method, output_layer_init_method)
        else:
            self.mlp = ParallelMLP(init_method, output_layer_init_method)
680

681
682
683
684
685
686
687
        # Set bias+dropout+add fusion grad_enable execution handler.
        TORCH_MAJOR = int(torch.__version__.split('.')[0])
        TORCH_MINOR = int(torch.__version__.split('.')[1])
        use_nvfuser = TORCH_MAJOR > 1 or (TORCH_MAJOR == 1 and TORCH_MINOR >= 10)
        self.bias_dropout_add_exec_handler = \
                nullcontext if use_nvfuser else torch.enable_grad

688
    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
689
690
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
691
        # hidden_states: [s, b, h]
692

693
        # Layer norm at the beginning of the transformer layer.
694
695
        layernorm_output = self.input_layernorm(hidden_states)
        # Self attention.
696
        attention_output, attention_bias = \
697
698
699
            self.self_attention(
                layernorm_output,
                attention_mask,
mshoeybi's avatar
mshoeybi committed
700
                inference_params=inference_params)
701

702
703
        # Residual connection.
        if self.apply_residual_connection_post_layernorm:
704
705
706
707
            residual = layernorm_output
        else:
            residual = hidden_states

Vijay Korthikanti's avatar
Vijay Korthikanti committed
708
        if self.drop_path is None:
709
710
711
712
713
714
715
716
717
            # jit scripting for a nn.module (with dropout) is not
            # trigerring the fusion kernel. For now, we use two
            # different nn.functional routines to account for varying
            # dropout semantics during training and inference phases.
            if self.bias_dropout_fusion:
                if self.training:
                    bias_dropout_add_func = bias_dropout_add_fused_train
                else:
                    bias_dropout_add_func = bias_dropout_add_fused_inference
718
            else:
719
                bias_dropout_add_func = get_bias_dropout_add(self.training)
720

721
            with self.bias_dropout_add_exec_handler():
722
723
724
725
726
727
728
729
730
731
                layernorm_input = bias_dropout_add_func(
                    attention_output,
                    attention_bias.expand_as(residual),
                    residual,
                    self.hidden_dropout)
        else:
            out = torch.nn.functional.dropout(attention_output + attention_bias,
                                              p=self.hidden_dropout,
                                              training=self.training)
            layernorm_input = residual + self.drop_path(out)
732

733
734
735
        # Layer norm post the self attention.
        layernorm_output = self.post_attention_layernorm(layernorm_input)

736
737
738
739
740
741
742
743
744
745
746
        if self.layer_type == LayerType.decoder:
            attention_output, attention_bias = \
                self.inter_attention(layernorm_output,
                                     enc_dec_attn_mask,
                                     encoder_output=encoder_output)
            # residual connection
            if self.apply_residual_connection_post_layernorm:
                residual = layernorm_output
            else:
                residual = layernorm_input

747
            with self.bias_dropout_add_exec_handler():
748
749
750
751
752
753
754
755
756
                layernorm_input = bias_dropout_add_func(
                    attention_output,
                    attention_bias.expand_as(residual),
                    residual,
                    self.hidden_dropout)

            # Layer norm post the decoder attention
            layernorm_output = self.post_inter_attention_layernorm(layernorm_input)

757
        # MLP.
758
        mlp_output, mlp_bias = self.mlp(layernorm_output)
759

760
761
        # Second residual connection.
        if self.apply_residual_connection_post_layernorm:
762
            residual = layernorm_output
763
        else:
764
765
            residual = layernorm_input

Vijay Korthikanti's avatar
Vijay Korthikanti committed
766
        if self.drop_path is None:
767
            with self.bias_dropout_add_exec_handler():
768
769
770
771
772
                output = bias_dropout_add_func(
                    mlp_output,
                    mlp_bias.expand_as(residual),
                    residual,
                    self.hidden_dropout)
773
774
775
776
777
778
779

            # Jit compiled function creates 'view' tensor. This tensor
            # potentially gets saved in the MPU checkpoint function context,
            # which rejects view tensors. While making a viewless tensor here
            # won't result in memory savings (like the data loader, or
            # p2p_communication), it serves to document the origin of this
            # 'view' tensor.
780
781
782
            output = core.utils.make_viewless_tensor(inp = output,
                                                     requires_grad = output.requires_grad,
                                                     keep_graph = True)
783

784
785
786
787
788
        else:
            out = torch.nn.functional.dropout(mlp_output + mlp_bias,
                                              p=self.hidden_dropout,
                                              training=self.training)
            output = residual + self.drop_path(out)
789
790
791
792

        return output


793
794
795
class NoopTransformerLayer(MegatronModule):
    """A single 'no-op' transformer layer.

Lawrence McAfee's avatar
Lawrence McAfee committed
796
    The sole purpose of this layer is for when a standalone embedding layer
797
    is used (i.e., args.standalone_embedding_stage == True). In this case,
Lawrence McAfee's avatar
Lawrence McAfee committed
798
799
800
801
802
803
804
805
806
    zero transformer layers are assigned when pipeline rank == 0. Additionally,
    when virtual pipeline rank >= 1, zero total model parameters are created
    (virtual rank 0 contains the input embedding). This results in the model's
    input and output tensors being the same, which causes an error when
    performing certain memory optimiations on the output tensor (e.g.,
    deallocating it). Thus, this layer disconnects the input from the output
    via a clone. Since ranks containing a no-op layer are generally under-
    utilized (both compute and memory), there's no worry of any performance
    degredation.
807
808
809
810
811
812
813
814
815
816
817
818
    """

    def __init__(self, layer_number):
        super().__init__()
        self.layer_number = layer_number

    def forward(self, hidden_states, attention_mask,
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
        return hidden_states.clone()


Jared Casper's avatar
Jared Casper committed
819
def _get_num_layers(args, is_encoder_and_decoder_model, is_decoder=False):
820
    """Compute the number of transformer layers resident on the current rank."""
Jared Casper's avatar
Jared Casper committed
821
    if mpu.get_pipeline_model_parallel_world_size() > 1:
822
823
824
825
826
827
828
829
830
831
832
833
834
        if is_encoder_and_decoder_model:
            assert args.pipeline_model_parallel_split_rank is not None

            # When a standalone embedding stage is used, a rank is taken from
            # the encoder's ranks, to be used for the encoder's embedding
            # layer. This way, the rank referenced by the 'split rank' remains
            # the same whether or not a standalone embedding stage is used.
            num_ranks_in_encoder = (
                args.pipeline_model_parallel_split_rank - 1
                if args.standalone_embedding_stage else
                args.pipeline_model_parallel_split_rank
            )
            num_ranks_in_decoder = args.transformer_pipeline_model_parallel_size - num_ranks_in_encoder
Jared Casper's avatar
Jared Casper committed
835
836
837
838
            assert args.encoder_num_layers % num_ranks_in_encoder == 0, \
                    'encoder_num_layers (%d) must be divisible by number of ranks given to encoder (%d)' % (args.encoder_num_layers, num_ranks_in_encoder)
            assert args.decoder_num_layers % num_ranks_in_decoder == 0, \
                    'decoder_num_layers (%d) must be divisible by number of ranks given to decoder (%d)' % (args.decoder_num_layers, num_ranks_in_decoder)
Jared Casper's avatar
Jared Casper committed
839
            if mpu.is_pipeline_stage_before_split():
840
841
842
                num_layers = (
                    0
                    if args.standalone_embedding_stage
Jared Casper's avatar
Jared Casper committed
843
                    and mpu.get_pipeline_model_parallel_rank() == 0 else
Jared Casper's avatar
Jared Casper committed
844
                    args.encoder_num_layers // num_ranks_in_encoder
845
846
                )
            else:
Jared Casper's avatar
Jared Casper committed
847
                num_layers = args.decoder_num_layers // num_ranks_in_decoder
848
        else:
Jared Casper's avatar
Jared Casper committed
849
            assert args.num_layers == args.encoder_num_layers
850
851
852
853
854
855
856
857
858
859
            assert args.num_layers % args.transformer_pipeline_model_parallel_size == 0, \
                'num_layers must be divisible by transformer_pipeline_model_parallel_size'

            # When a standalone embedding stage is used, all transformer layers
            # are divided among pipeline rank >= 1, while on pipeline rank 0,
            # ranks either contain the input embedding layer (virtual pp rank 0),
            # or no layers at all (virtual pp rank >= 1).
            num_layers = (
                0
                if args.standalone_embedding_stage
Jared Casper's avatar
Jared Casper committed
860
                and mpu.get_pipeline_model_parallel_rank() == 0 else
861
862
863
                args.num_layers // args.transformer_pipeline_model_parallel_size
            )
    else:
Jared Casper's avatar
Jared Casper committed
864
865
866
867
        if not is_decoder:
            num_layers = args.encoder_num_layers
        else:
            num_layers = args.decoder_num_layers
868
869
870
    return num_layers


871
872
873
class ParallelTransformer(MegatronModule):
    """Transformer class."""

874
    def __init__(self, init_method, output_layer_init_method,
875
                 layer_type=LayerType.encoder,
876
                 self_attn_mask_type=AttnMaskType.padding,
877
                 post_layer_norm=True,
878
879
                 pre_process=True, post_process=True,
                 drop_path_rate=0.0):
880
        super(ParallelTransformer, self).__init__()
Mohammad's avatar
Mohammad committed
881
        args = get_args()
882

883
884
        self.layer_type = layer_type
        self.model_type = args.model_type
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
885
        self.bf16 = args.bf16
886
        self.fp32_residual_connection = args.fp32_residual_connection
887
        self.post_layer_norm = post_layer_norm
888
889
890
        self.pre_process = pre_process
        self.post_process = post_process
        self.input_tensor = None
891
        self.drop_path_rate = drop_path_rate
892
        self.transformer_impl = args.transformer_impl
893

894
        # Store activation checkpoiting flag.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
895
896
897
        self.recompute_granularity = args.recompute_granularity
        self.recompute_method = args.recompute_method
        self.recompute_num_layers = args.recompute_num_layers
Vijay Korthikanti's avatar
Vijay Korthikanti committed
898
899
        self.distribute_saved_activations = \
            args.distribute_saved_activations and not args.sequence_parallel
900

Vijay Korthikanti's avatar
Vijay Korthikanti committed
901
        self.sequence_parallel = args.sequence_parallel
902

903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
        # Transformer Engine Init.
        if self.transformer_impl == 'transformer_engine':
            global transformer_engine
            import transformer_engine
        self.use_fp8 = args.fp8_e4m3 or args.fp8_hybrid
        self.fp8_recipe = None
        self.fp8_group = mpu.get_data_parallel_group()
        if self.use_fp8:
            if args.fp8_e4m3:
                fp8_format = transformer_engine.common.recipe.Format.E4M3
            elif args.fp8_hybrid:
                fp8_format = transformer_engine.common.recipe.Format.HYBRID
            self.fp8_recipe = transformer_engine.common.recipe.DelayedScaling(
                margin=args.fp8_margin,
                interval=args.fp8_interval,
                fp8_format=fp8_format,
                amax_history_len=args.fp8_amax_history_len,
                amax_compute_algo=args.fp8_amax_compute_algo,
                override_linear_precision=(False, False, not args.fp8_wgrad),
            )

        self.num_microbatches_in_previous_step = -1
        self.microbatch_count = 0
        self.checkpoint_core_attention = args.recompute_granularity == 'selective'

928
        # Number of layers.
929
        self.num_layers = _get_num_layers(
930
931
932
            args,
            args.model_type == ModelType.encoder_and_decoder,
            layer_type == LayerType.decoder)
Mohammad's avatar
Mohammad committed
933

Vijay Korthikanti's avatar
Vijay Korthikanti committed
934
        self.drop_path_rates = [rate.item() for rate in torch.linspace(0, self.drop_path_rate, args.num_layers)]
935

Mohammad's avatar
Mohammad committed
936
937
        # Transformer layers.
        def build_layer(layer_number):
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
            if args.transformer_impl == 'local':
                return ParallelTransformerLayer(
                    init_method,
                    output_layer_init_method,
                    layer_number,
                    layer_type=layer_type,
                    self_attn_mask_type=self_attn_mask_type,
                    drop_path_rate=self.drop_path_rates[layer_number - 1])
            else:
                return transformer_engine.pytorch.TransformerLayer(
                    args.hidden_size,
                    args.ffn_hidden_size,
                    args.num_attention_heads,
                    layernorm_epsilon=args.layernorm_epsilon,
                    hidden_dropout=args.hidden_dropout,
                    attention_dropout=args.attention_dropout,
                    init_method=init_method,
                    output_layer_init_method=output_layer_init_method,
                    layer_number=layer_number,
                    kv_channels=args.kv_channels,
                    self_attn_mask_type=self_attn_mask_type.name,
                    tp_group=mpu.get_tensor_model_parallel_group(),
                    get_rng_state_tracker=tensor_parallel.get_cuda_rng_tracker,
                    fuse_wgrad_accumulation=args.gradient_accumulation_fusion,
                    apply_query_key_layer_scaling=args.apply_query_key_layer_scaling,
                    attention_softmax_in_fp32=args.attention_softmax_in_fp32,
                    seq_length=args.seq_length,
                    micro_batch_size=args.micro_batch_size,
                    sequence_parallel=args.sequence_parallel,
                    params_dtype=args.params_dtype,
                    apply_residual_connection_post_layernorm=args.apply_residual_connection_post_layernorm,
                    output_layernorm=False,
                    layer_type="encoder",
                    drop_path_rate=self.drop_path_rates[layer_number - 1],
                    set_parallel_mode=True,
                    fuse_qkv_params=True)

975
976
        if args.virtual_pipeline_model_parallel_size is not None:
            assert args.num_layers % args.virtual_pipeline_model_parallel_size == 0, \
977
978
                'num_layers_per_stage must be divisible by ' \
                'virtual_pipeline_model_parallel_size'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
979
            assert args.model_type != ModelType.encoder_and_decoder
980
981
            # Number of layers in each model chunk is the number of layers in the stage,
            # divided by the number of model chunks in a stage.
982
            self.num_layers = self.num_layers // args.virtual_pipeline_model_parallel_size
983
984
985
986
987
988
989
990
            # With 8 layers, 2 stages, and 4 model chunks, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0]  [2]  [4]  [6]
            # Stage 1: [1]  [3]  [5]  [7]
            # With 8 layers, 2 stages, and 2 virtual stages, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0, 1]  [4, 5]
            # Stage 1: [2, 3]  [6, 7]
991
            offset = mpu.get_virtual_pipeline_model_parallel_rank() * (
992
                args.num_layers // args.virtual_pipeline_model_parallel_size) + \
993
                (mpu.get_pipeline_model_parallel_rank() * self.num_layers)
994
        else:
995
            # Each stage gets a contiguous set of layers.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
996
            if args.model_type == ModelType.encoder_and_decoder and \
997
998
                    mpu.get_pipeline_model_parallel_world_size() > 1:
                pipeline_rank = mpu.get_pipeline_model_parallel_rank()
Vijay Korthikanti's avatar
Vijay Korthikanti committed
999
1000
1001
1002
1003
1004
                if layer_type == LayerType.encoder:
                    offset = pipeline_rank * self.num_layers
                else:
                    num_ranks_in_enc = args.pipeline_model_parallel_split_rank
                    offset = (pipeline_rank - num_ranks_in_enc) * self.num_layers
            else:
1005
                offset = mpu.get_pipeline_model_parallel_rank() * self.num_layers
1006

1007
        if self.num_layers == 0:
Lawrence McAfee's avatar
Lawrence McAfee committed
1008
            # When a standalone embedding stage is used (e.g.,
1009
            # args.standalone_embedding_stage == True), virtual pipeline ranks
1010
            # on pipeline rank 0 will have zero transformer layers assigned to
Lawrence McAfee's avatar
Lawrence McAfee committed
1011
1012
1013
1014
1015
            # them. This results in the model's input and output tensors to be
            # the same, which will cause failure for certain output tensor
            # optimizations (e.g., pipeline output deallocation). To remedy
            # this, we assign a 'no-op' layer on these ranks, which will
            # disconnect the input tensor from the output tensor.
1016
1017
1018
1019
1020
            self.num_layers = 1
            self.layers = torch.nn.ModuleList([ NoopTransformerLayer(1) ])
        else:
            self.layers = torch.nn.ModuleList(
                [build_layer(i + 1 + offset) for i in range(self.num_layers)])
1021

1022
        if self.post_process and self.post_layer_norm:
1023
1024
1025
            # Final layer norm before output.
            self.final_layernorm = LayerNorm(
                args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
1026
                eps=args.layernorm_epsilon,
1027
                no_persist_layer_norm=args.no_persist_layer_norm,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1028
                sequence_parallel=args.sequence_parallel)
1029

Mohammad's avatar
Mohammad committed
1030
    def _get_layer(self, layer_number):
1031
        return self.layers[layer_number]
Mohammad's avatar
Mohammad committed
1032

1033
    def _checkpointed_forward(self, hidden_states, attention_mask,
1034
                              encoder_output, enc_dec_attn_mask, is_first_microbatch):
1035
        """Forward method with activation checkpointing."""
1036
1037
        def custom(start, end, is_transformer_engine=False):
            def custom_forward(*args, **kwargs):
Mohammad's avatar
Mohammad committed
1038
1039
                for index in range(start, end):
                    layer = self._get_layer(index)
1040
                    x_ = layer(*args, **kwargs)
1041
                return x_
1042
1043
1044
1045
1046
1047
            def custom_forward_transformer_engine(*args, **kwargs):
                return custom_forward(*args, is_first_microbatch=is_first_microbatch, **kwargs)
            if not is_transformer_engine:
                return custom_forward
            else:
                return custom_forward_transformer_engine
1048

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1049
        if self.recompute_method == 'uniform':
1050
1051
1052
1053
1054
            # Uniformly divide the total number of Transformer layers and checkpoint
            # the input activation of each divided chunk.
            # A method to further reduce memory usage reducing checkpoints.
            l = 0
            while l < self.num_layers:
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
                if self.transformer_impl == 'transformer_engine':
                    hidden_states = transformer_engine.pytorch.distributed.checkpoint(
                        custom(l, l + self.recompute_num_layers, is_transformer_engine=True),
                        self.distribute_saved_activations,
                        tensor_parallel.get_cuda_rng_tracker,
                        mpu.get_tensor_model_parallel_group(),
                        hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
                else:
                    hidden_states = tensor_parallel.checkpoint(
                        custom(l, l + self.recompute_num_layers),
                        self.distribute_saved_activations,
                        hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1068
                l += self.recompute_num_layers
1069

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1070
        elif self.recompute_method == 'block':
1071
1072
1073
1074
            # Checkpoint the input activation of only a set number of individual
            # Transformer layers and skip the rest.
            # A method fully use the device memory removing redundant re-computation.
            for l in range(self.num_layers):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1075
                if l < self.recompute_num_layers:
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
                    if self.transformer_impl == 'transformer_engine':
                        hidden_states = transformer_engine.pytorch.distributed.checkpoint(
                            custom(l, l + 1, is_transformer_engine=True),
                            self.distribute_saved_activations,
                            tensor_parallel.get_cuda_rng_tracker,
                            mpu.get_tensor_model_parallel_group(),
                            hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
                    else:
                        hidden_states = tensor_parallel.checkpoint(
                            custom(l, l + 1),
                            self.distribute_saved_activations,
                            hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
1088
                else:
1089
1090
1091
1092
1093
1094
                    if self.transformer_impl == 'transformer_engine':
                        hidden_states = custom(l, l + 1, is_transformer_engine=True)(
                            hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
                    else:
                        hidden_states = custom(l, l + 1)(
                            hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
1095
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1096
            raise ValueError("Invalid activation recompute method.")
1097
1098
1099

        return hidden_states

1100
    def set_input_tensor(self, input_tensor):
1101
1102
1103
1104
1105
1106
1107
        """Set input tensor to be used instead of forward()'s input.

        When doing pipeline parallelism the input from the previous
        stage comes from communication, not from the input, so the
        model's forward_step_func won't have it. This function is thus
        used by internal code to bypass the input provided by the
        forward_step_func"""
1108
1109
        self.input_tensor = input_tensor

1110
    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
1111
1112
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1113
1114
        # hidden_states: [s, b, h]

1115
        # Checks.
mshoeybi's avatar
mshoeybi committed
1116
        if inference_params:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1117
            assert self.recompute_granularity is None, \
1118
                'inference does not work with activation checkpointing'
1119

1120
        if not self.pre_process:
1121
            # See set_input_tensor()
1122
            hidden_states = self.input_tensor
1123

1124
1125
        # Viewless tensor.
        # - We only need to create a viewless tensor in the case of micro batch
1126
1127
1128
1129
        #   size (mbs) == 1, since in this case, 'hidden_states.transpose()'
        #   above creates a view tensor, and '.contiguous()' is a pass-through.
        #   For mbs >= 2, '.contiguous()' creates a new tensor, eliminating
        #   the need to make it viewless.
1130
1131
1132
1133
        #
        #   However, we don't explicitly check mbs == 1 here because
        #   make_viewless_tensor() has negligible overhead when its input
        #   is already viewless.
1134
        #
1135
1136
1137
1138
        # - For the 'else' case above, calling make_viewless_tensor() here is
        #   likely redundant, since p2p_communication.py (likely originator)
        #   already creates viewless tensors. That said, make_viewless_tensor()
        #   is called here to be future-proof and corner-case-proof.
1139
        hidden_states = core.utils.make_viewless_tensor(
1140
            hidden_states,
1141
1142
            requires_grad=True,
            keep_graph=True,
1143
1144
        )

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1145
        if self.sequence_parallel:
1146
            rng_context = tensor_parallel.get_cuda_rng_tracker().fork()
1147
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1148
            rng_context = nullcontext()
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1149
1150

        with rng_context:
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
            # The fp8_autocast context manager is a no-op when enabled=True
            # The if...else serves to short circuit name resolution for fp8_autocast
            with transformer_engine.pytorch.fp8_autocast(
                enabled=self.use_fp8,
                fp8_recipe=self.fp8_recipe,
                fp8_group=self.fp8_group
            ) if self.use_fp8 else nullcontext():
                # Determine if the current iteration is first microbatch
                if self.num_microbatches_in_previous_step != get_num_microbatches():
                    self.microbatch_count = 0 # Reset count on new batch size rampup interval
                self.num_microbatches_in_previous_step = get_num_microbatches()
                is_first_microbatch = self.microbatch_count % get_num_microbatches() == 0

                # Forward pass.
                if self.recompute_granularity == 'full':
                    hidden_states = self._checkpointed_forward(hidden_states,
                                                               attention_mask,
                                                               encoder_output,
                                                               enc_dec_attn_mask,
                                                               is_first_microbatch)
                else:
                    forward_kwargs = {
                        'encoder_output': encoder_output,
                        'enc_dec_attn_mask': enc_dec_attn_mask,
                        'inference_params': inference_params,
                    }

                    if self.transformer_impl == 'transformer_engine':
                        forward_kwargs['is_first_microbatch'] = is_first_microbatch
                        forward_kwargs['checkpoint_core_attention'] = self.checkpoint_core_attention

                    for index in range(self.num_layers):
                        layer = self._get_layer(index)

                        hidden_states = layer(
                            hidden_states,
                            attention_mask,
                            **forward_kwargs)

                # Skip counter update for eval and activation checkpointing
                if torch.is_grad_enabled() and self.training:
                    self.microbatch_count += 1
mshoeybi's avatar
mshoeybi committed
1193

1194
        # Final layer norm.
1195
        if self.post_process and self.post_layer_norm:
1196
1197
            hidden_states = self.final_layernorm(hidden_states)

1198
        return hidden_states