transformer.py 18.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Transformer."""

import math

import torch
from apex.normalization.fused_layer_norm import FusedLayerNorm as LayerNorm

from megatron import mpu
from megatron.module import MegatronModule


""" We use the following notation throughout this file:
     h: hidden size
     n: number of attention heads
     p: number of model parallel partitions
     np: n/p
     hp: h/p
     hn: h/n
     b: batch size
     s: sequence length
     l: number of layers
    Transformer takes input of size [b, s, h] and returns a
    tensor of the same size. We use the following arguments:
        hyperparameters: transformer hyperparameters
        attention_mask_func: a function that takes `unmaksed-attention-scores`
            with size [b, np, s, s] and an `attention-mask` and will apply
            the masking. The function should return a masked score of the
            same size [b, np, s, s].
               masked-attention-scores = attention_mask_func(
                                     unmaksed-attention-scores, attention-mask)
"""


class TransformerHyperparameters:
    """Hyperparameters used to build and run the transformer.

    Arguments:
        hidden_size: hidden size (h)
        num_layers: number of layers (l)
        num_attention_heads: number of attention heads (n)
        attention_dropout_prob: dropout probability for the attention
                                probabiliies
        output_dropout_prob: dropout probability for the output
                             layers (attention output and mlp output)
        mlp_activation_func: activation function for the mlp layer
        layernorm_epsilon: tolerance parameters used for layer norm
                           dividions
        init_method: init method used for all weights except layer
                     norm and output weights
        output_layer_init_method: init method for output weights (
                                  attention output and mlp output)
        checkpoint_activations: flag to use activation checkpointing
        checkpoint_num_layers: number of layers use in each chunk of
                               activation checkpointing
        apply_residual_connection_post_layernorm: Take the post layer-norm
            values for resudual connecton. BERT: True, GPT-2: False
    """
    def __init__(self,
                 hidden_size=None,
                 num_layers=None,
                 num_attention_heads=None,
                 attention_dropout_prob=None,
                 output_dropout_prob=None,
                 mlp_activation_func=None,
                 layernorm_epsilon=None,
                 init_method=None,
                 output_layer_init_method=None,
                 checkpoint_activations=None,
                 checkpoint_num_layers=None,
                 apply_residual_connection_post_layernorm=None):
        self.params_dict = {}
        self.params_dict['hidden_size'] = hidden_size
        self.params_dict['num_layers'] = num_layers
        self.params_dict['num_attention_heads'] = num_attention_heads
        self.params_dict['attention_dropout_prob'] = attention_dropout_prob
        self.params_dict['output_dropout_prob'] = output_dropout_prob
        self.params_dict['mlp_activation_func'] = mlp_activation_func
        self.params_dict['layernorm_epsilon'] = layernorm_epsilon
        self.params_dict['init_method'] = init_method
        self.params_dict['output_layer_init_method'] = output_layer_init_method
        self.params_dict['checkpoint_activations'] = checkpoint_activations
        self.params_dict['checkpoint_num_layers'] = checkpoint_num_layers
        self.params_dict['apply_residual_connection_post_layernorm'] \
            = apply_residual_connection_post_layernorm


    def __getitem__(self, key):
        """Custom retrieval with error checks."""
        try:
            value = self.params_dict[key]
        except KeyError:
            raise Exception(
                'could not find {} in transformer hyperparameters'.format(key))
        except Exception as e:
            print('unexpected error in transformer hyperparameters:', e)
            raise Exception()
        else:
            assert value is not None, \
                'parameter value for {} is not set in transformer '\
                'hyperparameters'.format(key)
            return value
        raise Exception('should not be here')



class ParallelMLP(MegatronModule):
    """MLP.

    MLP will take the input with h hidden state, project it to 4*h
    hidden dimension, perform nonlinear transformation, and project the
    state back into h hidden dimension. At the end, dropout is also
    applied.
    """

    def __init__(self, hyperparameters):
        super(ParallelMLP, self).__init__()

        # Project to 4h.
        self.dense_h_to_4h = mpu.ColumnParallelLinear(
            hyperparameters['hidden_size'],
            4*hyperparameters['hidden_size'],
            gather_output=False,
            init_method=hyperparameters['init_method'])

        self.activation_func = hyperparameters['mlp_activation_func']

        # Project back to h.
        self.dense_4h_to_h = mpu.RowParallelLinear(
            4*hyperparameters['hidden_size'],
            hyperparameters['hidden_size'],
            input_is_parallel=True,
            init_method=hyperparameters['output_layer_init_method'])

        self.dropout = torch.nn.Dropout(hyperparameters['output_dropout_prob'])


    def forward(self, hidden_states):

        # [b, s, 4hp]
        intermediate_parallel = self.dense_h_to_4h(hidden_states)
        intermediate_parallel = self.activation_func(intermediate_parallel)

        # [b, s, h]
        output = self.dense_4h_to_h(intermediate_parallel)
        output = self.dropout(output)
        return output



class ParallelSelfAttention(MegatronModule):
    """Parallel self-attention layer abstract class.

    Self-attention layer takes input with size [b, s, h]
    and returns output of the same size.
    """

    def __init__(self, hyperparameters, attention_mask_func):
        super(ParallelSelfAttention, self).__init__()

        self.attention_mask_func = attention_mask_func

        # Per attention head and per partition values.
        world_size = mpu.get_model_parallel_world_size()
        self.hidden_size_per_partition = mpu.divide(
            hyperparameters['hidden_size'], world_size)
        self.hidden_size_per_attention_head = mpu.divide(
            hyperparameters['hidden_size'],
            hyperparameters['num_attention_heads'])
        self.num_attention_heads_per_partition = mpu.divide(
            hyperparameters['num_attention_heads'], world_size)

        # Strided linear layer.
        self.query_key_value = mpu.ColumnParallelLinear(
            hyperparameters['hidden_size'],
            3*hyperparameters['hidden_size'],
            stride=3,
            gather_output=False,
            init_method=hyperparameters['init_method'])

        # Dropout. Note that for a single iteration, this layer will generate
        # different outputs on different number of parallel partitions but
        # on average it should not be partition dependent.
        self.attention_dropout = torch.nn.Dropout(
            hyperparameters['attention_dropout_prob'])

        # Output.
        self.dense = mpu.RowParallelLinear(
            hyperparameters['hidden_size'],
            hyperparameters['hidden_size'],
            input_is_parallel=True,
            init_method=hyperparameters['output_layer_init_method'])
        self.output_dropout = torch.nn.Dropout(
            hyperparameters['output_dropout_prob'])


    def _transpose_for_scores(self, tensor):
        """Transpose a 3D tensor [b, s, np*hn] into a 4D tensor with
        size [b, np, s, hn].
        """
        new_tensor_shape = tensor.size()[:-1] + \
                           (self.num_attention_heads_per_partition,
                            self.hidden_size_per_attention_head)
        tensor = tensor.view(*new_tensor_shape)
        return tensor.permute(0, 2, 1, 3)


    def _get_query_key_value(self, hidden_states):
        """Get query, key, and value and transpose to
        get size [b, np, s, hn].
        """
        # Attention heads. [b, s, hp]
        mixed_x_layer = self.query_key_value(hidden_states)
        (mixed_query_layer,
         mixed_key_layer,
         mixed_value_layer) = mpu.split_tensor_along_last_dim(mixed_x_layer, 3)

        # Reshape and transpose [b, np, s, hn]
        query_layer = self._transpose_for_scores(mixed_query_layer)
        key_layer = self._transpose_for_scores(mixed_key_layer)
        value_layer = self._transpose_for_scores(mixed_value_layer)

        return query_layer, key_layer, value_layer


    def _get_unmasked_attention_scores(self, query_layer, key_layer):
        """Unmasked attention scores with size [b, np, s, s]."""
        norm_factor = math.sqrt(math.sqrt(self.hidden_size_per_attention_head))
        # Raw attention scores. [b, np, s, s]
        return torch.matmul(query_layer/norm_factor,
                            key_layer.transpose(-1, -2)/norm_factor)


    def _get_attention_probs(self, attention_scores):
        """Attention probabilies with dropout. The output has
        the size [b, np, s, s].
        """
        # Attention probabilities. [b, np, s, s]
        attention_probs = torch.nn.Softmax(dim=-1)(attention_scores)
        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        with mpu.get_cuda_rng_tracker().fork():
            attention_probs = self.attention_dropout(attention_probs)

        return attention_probs


    def _get_attended_context(self, attention_probs, value_layer):
        """Final attended tesnor and transposed back to [b, s, hp]."""
        # Context layer.
        # [b, np, s, hn]
        context_layer = torch.matmul(attention_probs, value_layer)
        # [b, s, np, hn]
        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + \
                                  (self.hidden_size_per_partition,)
        # [b, s, hp]
        context_layer = context_layer.view(*new_context_layer_shape)

        return context_layer


    def _get_output(self, context_layer):
        """Output layer with dropout."""
        # Output. [b, s, h]
        output = self.dense(context_layer)
        output = self.output_dropout(output)

        return output


    def forward(self, hidden_states, attention_mask, layer_past=None,
                get_key_value=False):
        # hidden_states: [b, s, h]

        # Attention heads. [b, np, s, hn]
        query_layer, key_layer, value_layer = self._get_query_key_value(
            hidden_states)

        if layer_past is not None:
            past_key, past_value = layer_past
            key_layer = torch.cat((past_key.type_as(key_layer),
                                   key_layer), dim=-2)
            value_layer = torch.cat((past_value.type_as(value_layer),
                                     value_layer), dim=-2)
        if get_key_value:
            present = (key_layer, value_layer)

        # Raw attention scores. [b, np, s, s]
        attention_scores = self._get_unmasked_attention_scores(
            query_layer, key_layer)

        # Apply attention mask. [b, np, s, s]
        if get_key_value:
            with torch.no_grad():
                if layer_past is not None:
                    attention_mask = attention_mask[
                        ...,
                        attention_scores.size(3)-1,
                        :attention_scores.size(3)].unsqueeze(2)
                else:
                    attention_mask = attention_mask[
                        ...,
                        :attention_scores.size(3),
                        :attention_scores.size(3)]
        attention_scores = self.attention_mask_func(attention_scores,
                                                    attention_mask)

        # Attention probabilities. [b, np, s, s]
        attention_probs = self._get_attention_probs(attention_scores)

        # Context layer. [b, s, hp]
        context_layer = self._get_attended_context(attention_probs, value_layer)

        # Output. [b, s, h]
        output = self._get_output(context_layer)

        if get_key_value:
            output = [output, present]

        return output



class ParallelTransformerLayer(MegatronModule):
    """A single transformer layer.

    Transformore layer takes input with size [b, s, h] and returns an
    output of the same size.
    """
    def __init__(self, hyperparameters, attention_mask_func):

        super(ParallelTransformerLayer, self).__init__()

        self.apply_residual_connection_post_layernorm \
            = hyperparameters['apply_residual_connection_post_layernorm']

        # Layernorm on the input data.
        self.input_layernorm = LayerNorm(
            hyperparameters['hidden_size'],
            eps=hyperparameters['layernorm_epsilon'])

        # Self attention.
        self.attention = ParallelSelfAttention(
            hyperparameters,
            attention_mask_func)

        # Layernorm on the input data.
        self.post_attention_layernorm = LayerNorm(
            hyperparameters['hidden_size'],
            eps=hyperparameters['layernorm_epsilon'])

        # MLP
        self.mlp = ParallelMLP(hyperparameters)


    def forward(self, hidden_states, attention_mask, layer_past=None,
                get_key_value=False):
        # hidden_states: [b, s, h]

        # Layer norm at the begining of the transformer layer.
        layernorm_output = self.input_layernorm(hidden_states)
        # Self attention.
        attention_output = self.attention(layernorm_output,
                                          attention_mask,
                                          layer_past=layer_past,
                                          get_key_value=get_key_value)
        if get_key_value:
            attention_output, presents = attention_output

        # Residual connection.
        if self.apply_residual_connection_post_layernorm:
            layernorm_input = layernorm_output + attention_output
        else:
            layernorm_input = hidden_states + attention_output
        # Layer norm post the self attention.
        layernorm_output = self.post_attention_layernorm(layernorm_input)

        # MLP.
        mlp_output = self.mlp(layernorm_output)
        # Second residual connection.
        if self.apply_residual_connection_post_layernorm:
            output = layernorm_output + mlp_output
        else:
            output = layernorm_input + mlp_output

        if get_key_value:
            output = [output, presents]

        return output


class ParallelTransformer(MegatronModule):
    """Transformer class."""

    def __init__(self, hyperparameters, attention_mask_func):
        super(ParallelTransformer, self).__init__()

        # Store activation checkpoiting flag.
        self.checkpoint_activations = hyperparameters['checkpoint_activations']
        self.checkpoint_num_layers = hyperparameters['checkpoint_num_layers']

        def get_layer():
            return ParallelTransformerLayer(
                hyperparameters,
                attention_mask_func)

        # Transformer layers.
        self.layers = torch.nn.ModuleList(
            [get_layer() for _ in range(hyperparameters['num_layers'])])

        # Final layer norm before output.
        self.final_layernorm = LayerNorm(
            hyperparameters['hidden_size'],
            eps=hyperparameters['layernorm_epsilon'])


    def _checkpointed_forward(self, hidden_states, attention_mask):
        """Forward method with activation checkpointing."""
        def custom(start, end):
            def custom_forward(*inputs):
                layers_ = self.layers[start:end]
                x_ = inputs[0]
                for layer in layers_:
                    x_ = layer(x_, inputs[1])
                return x_
            return custom_forward

        l = 0
        num_layers = len(self.layers)
        while l < num_layers:
            hidden_states = mpu.checkpoint(
                custom(l, l+self.checkpoint_num_layers),
                hidden_states, attention_mask)
            l += self.checkpoint_num_layers

        return hidden_states


    def forward(self, hidden_states, attention_mask, layer_past=None,
                get_key_value=False):

        # Checks
        if layer_past is not None:
            assert get_key_value, \
                'for not None values in layer_past, ' \
                'expected get_key_value to be set'
        if get_key_value:
            assert not self.checkpoint_activations, \
                'get_key_value does not work with ' \
                'activation checkpointing'

        if self.checkpoint_activations:
            hidden_states = self._checkpointed_forward(hidden_states,
                                                       attention_mask)
        else:
            if get_key_value:
                presents = []
            for i, layer in enumerate(self.layers):
                past = None
                if layer_past is not None:
                    past = layer_past[i]
                hidden_states = layer(hidden_states,
                                      attention_mask,
                                      layer_past=past,
                                      get_key_value=get_key_value)
                if get_key_value:
                    hidden_states, present = hidden_states
                    presents.append(present)

        # Final layer norm.
        output = self.final_layernorm(hidden_states)
        if get_key_value:
            output = [output, presents]

        return output