transformer.py 54.6 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
2
3
4

"""Transformer."""
import math
5
from contextlib import nullcontext
6
import torch
7
import torch.nn.functional as F
8

9
from megatron import get_timers, get_args, core, get_num_microbatches
10
from .module import MegatronModule
11
from megatron.core import mpu, tensor_parallel
12
13
from megatron.core.enums import ModelType
from megatron.model.enums import AttnMaskType, LayerType, AttnType
14
from megatron.model import LayerNorm
15
16
from megatron.model.fused_softmax import FusedScaleMaskSoftmax
from megatron.model.fused_bias_gelu import bias_gelu_impl
Mostofa Patwary's avatar
Mostofa Patwary committed
17
from megatron.model.rotary_pos_embedding import apply_rotary_pos_emb
18
from megatron.model.utils import attention_mask_func, openai_gelu, erf_gelu
19

20
21
22
23
24
25
26
27
28
29
try:
    from einops import rearrange
except ImportError:
    rearrange = None

try:
    from flash_attn.flash_attn_interface import flash_attn_unpadded_func
except ImportError:
    flash_attn_unpadded_func = None

30
31
32
33
34
35
36
37
38
39
""" We use the following notation throughout this file:
     h: hidden size
     n: number of attention heads
     p: number of model parallel partitions
     np: n/p
     hp: h/p
     hn: h/n
     b: batch size
     s: sequence length
     l: number of layers
40
    Transformer takes input of size [s, b, h] and returns a
41
42
43
44
    tensor of the same size. We use the following arguments:
        hyperparameters: transformer hyperparameters
"""

45
class DropPath(MegatronModule):
46
    """Drop paths (Stochastic Depth) per sample
47
48
49
    (when applied in main path of residual blocks).
    """

Vijay Korthikanti's avatar
Vijay Korthikanti committed
50
    def __init__(self, drop_prob=0.):
51
52
53
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

Vijay Korthikanti's avatar
Vijay Korthikanti committed
54
    def forward(self, hidden_state):
55
        if self.drop_prob == 0. or not self.training:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
56
            return hidden_state
57
58
        keep_prob = 1 - self.drop_prob
        # work with diff dim tensors, not just 2D ConvNets
59
60
        # hidden_state: [s, b, h]
        shape = (1,) + (hidden_state.shape[1],) + (1,) * (hidden_state.ndim - 2)
61
        random_tensor = keep_prob + \
Vijay Korthikanti's avatar
Vijay Korthikanti committed
62
            torch.rand(shape, dtype=hidden_state.dtype, device=hidden_state.device)
63
        random_tensor.floor_()  # binarize
Vijay Korthikanti's avatar
Vijay Korthikanti committed
64
        output = hidden_state.div(keep_prob) * random_tensor
65
66
        return output

67
68
69
70
71
72
73
74
75
76
77
def _args_to_kwargs():
    args = get_args()

    common_kwargs = {
        "params_dtype": args.params_dtype,
        "use_cpu_initialization": args.use_cpu_initialization,
        "perform_initialization": args.perform_initialization,
        "gradient_accumulation_fusion": args.gradient_accumulation_fusion,
        "sequence_parallel_enabled": args.sequence_parallel,
    }
    return common_kwargs
78

79
80
81
82
83
class ParallelMLP(MegatronModule):
    """MLP.

    MLP will take the input with h hidden state, project it to 4*h
    hidden dimension, perform nonlinear transformation, and project the
hwijeen's avatar
hwijeen committed
84
    state back into h hidden dimension.
85
86
    """

87
    def __init__(self, init_method, output_layer_init_method):
88
        super(ParallelMLP, self).__init__()
Mohammad's avatar
Mohammad committed
89
        args = get_args()
90

91

92
        # Project to 4h.
93
        self.dense_h_to_4h = tensor_parallel.ColumnParallelLinear(
Mohammad's avatar
Mohammad committed
94
            args.hidden_size,
95
            args.ffn_hidden_size,
96
            gather_output=False,
97
            init_method=init_method,
98
99
100
            skip_bias_add=True,
            async_tensor_model_parallel_allreduce=args.async_tensor_model_parallel_allreduce,
            **_args_to_kwargs())
101

102
103
104
105
106
107
        self.bias_gelu_fusion = args.bias_gelu_fusion
        self.activation_func = F.gelu
        if args.openai_gelu:
            self.activation_func = openai_gelu
        elif args.onnx_safe:
            self.activation_func = erf_gelu
108
109

        # Project back to h.
110
        self.dense_4h_to_h = tensor_parallel.RowParallelLinear(
111
            args.ffn_hidden_size,
Mohammad's avatar
Mohammad committed
112
            args.hidden_size,
113
            input_is_parallel=True,
114
            init_method=output_layer_init_method,
115
116
            skip_bias_add=True,
            **_args_to_kwargs())
117

118
119
    def forward(self, hidden_states):

120
121
        # [s, b, 4hp]
        intermediate_parallel, bias_parallel = self.dense_h_to_4h(hidden_states)
122

123
124
125
126
127
128
129
130
131
132
        if self.bias_gelu_fusion:
             intermediate_parallel = \
                     bias_gelu_impl(intermediate_parallel, bias_parallel)
        else:
            intermediate_parallel = \
                self.activation_func(intermediate_parallel + bias_parallel)

        # [s, b, h]
        output, output_bias = self.dense_4h_to_h(intermediate_parallel)
        return output, output_bias
133

rprenger's avatar
rprenger committed
134
135
136
137
class SwitchMLP(MegatronModule):
    """
    Routes input to one of N MLP "experts"
    """
rprenger's avatar
rprenger committed
138
    def __init__(self, init_method, output_layer_init_method):
rprenger's avatar
rprenger committed
139
140
        super(SwitchMLP, self).__init__()
        args = get_args()
rprenger's avatar
rprenger committed
141
        self.router = torch.nn.Linear(args.hidden_size, args.num_experts)
rprenger's avatar
rprenger committed
142
        self.experts = torch.nn.ModuleList()
rprenger's avatar
rprenger committed
143
        for i in range(args.num_experts):
rprenger's avatar
rprenger committed
144
            self.experts.append(ParallelMLP(init_method, output_layer_init_method))
145

rprenger's avatar
rprenger committed
146
    def forward(self, hidden_states):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
147
148
149
        # hidden_states: [s, b, h]
        s = hidden_states.size(0)
        b = hidden_states.size(1)
rprenger's avatar
rprenger committed
150
151
        h = hidden_states.size(2)
        route = self.router(hidden_states)
rprenger's avatar
rprenger committed
152
        route = torch.nn.functional.softmax(route, dim=2)
rprenger's avatar
rprenger committed
153
        max_prob, max_ind = torch.max(route, dim=2)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
154
        max_prob = torch.unsqueeze(max_prob, 2) # [s b 1]
155

rprenger's avatar
rprenger committed
156
        # TODO (rprenger) TODO this could be made easier to read
Vijay Korthikanti's avatar
Vijay Korthikanti committed
157
        # Converting [s, b, h] to [s*b, h].
158
        # Each vector could be routed differently
Vijay Korthikanti's avatar
Vijay Korthikanti committed
159
160
161
        hidden_states = hidden_states.view(-1, hidden_states.size(2)) # [s*b h]
        max_prob = max_prob.view(-1, max_prob.size(2)) # [s*b 1]
        max_ind = max_ind.view(-1) # [s*b]
rprenger's avatar
rprenger committed
162
163
164

        output_total = torch.empty_like(hidden_states)
        output_bias_total = torch.empty_like(hidden_states)
rprenger's avatar
rprenger committed
165
        #TODO (rprenger) This does each expert in serial, but it could be parallelized
166

rprenger's avatar
rprenger committed
167
        for expert_num, expert in enumerate(self.experts):
168
169
            local_indices = (max_ind == expert_num).nonzero()
            hidden = hidden_states[local_indices,:]
rprenger's avatar
rprenger committed
170
171
            output, output_bias = expert(hidden)
            output_bias = output_bias.expand_as(output)
172
173
174
            output_total[local_indices,:] = output
            output_bias_total[local_indices,:] = output_bias

rprenger's avatar
rprenger committed
175
176
        output_total = output_total*max_prob
        output_bias_total = output_bias_total*max_prob
Vijay Korthikanti's avatar
Vijay Korthikanti committed
177
178
        output_total = output_total.view(s, b, h)
        output_bias_total = output_bias_total.view(s, b, h)
rprenger's avatar
rprenger committed
179
180

        return output_total, output_bias_total
181

182
183

class CoreAttention(MegatronModule):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
184

185
186
187
188
189
190
191
192
193
194
195
196
197
    def __init__(self, layer_number,
                 attn_mask_type=AttnMaskType.padding):
        super(CoreAttention, self).__init__()
        args = get_args()
        self.fp16 = args.fp16
        self.bf16 = args.bf16

        self.apply_query_key_layer_scaling = args.apply_query_key_layer_scaling
        self.attention_softmax_in_fp32 = args.attention_softmax_in_fp32
        if self.apply_query_key_layer_scaling:
            self.attention_softmax_in_fp32 = True
        self.layer_number = max(1, layer_number)
        self.attn_mask_type = attn_mask_type
Vijay Korthikanti's avatar
Vijay Korthikanti committed
198
        self.sequence_parallel = args.sequence_parallel
199
200
201
202

        projection_size = args.kv_channels * args.num_attention_heads

        # Per attention head and per partition values.
203
        world_size = mpu.get_tensor_model_parallel_world_size()
204
205
206
        self.hidden_size_per_partition = core.utils.divide(projection_size,
                                                           world_size)
        self.hidden_size_per_attention_head = core.utils.divide(
207
            projection_size, args.num_attention_heads)
208
        self.num_attention_heads_per_partition = core.utils.divide(
209
            args.num_attention_heads, world_size)
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

        coeff = None
        self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
        if self.apply_query_key_layer_scaling:
            coeff = self.layer_number
            self.norm_factor *= coeff

        self.scale_mask_softmax = FusedScaleMaskSoftmax(
            self.fp16, self.bf16,
            self.attn_mask_type,
            args.masked_softmax_fusion,
            attention_mask_func,
            self.attention_softmax_in_fp32,
            coeff)

        # Dropout. Note that for a single iteration, this layer will generate
        # different outputs on different number of parallel partitions but
        # on average it should not be partition dependent.
        self.attention_dropout = torch.nn.Dropout(args.attention_dropout)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
229

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
    def forward(self, query_layer, key_layer,
                value_layer, attention_mask):

        # ===================================
        # Raw attention scores. [b, np, s, s]
        # ===================================

        # [b, np, sq, sk]
        output_size = (query_layer.size(1),
                       query_layer.size(2),
                       query_layer.size(0),
                       key_layer.size(0))

        # [sq, b, np, hn] -> [sq, b * np, hn]
        query_layer = query_layer.view(output_size[2],
                                       output_size[0] * output_size[1], -1)
        # [sk, b, np, hn] -> [sk, b * np, hn]
        key_layer = key_layer.view(output_size[3],
                                   output_size[0] * output_size[1], -1)

Vijay Korthikanti's avatar
Vijay Korthikanti committed
250
        # preallocting input tensor: [b * np, sq, sk]
251
        matmul_input_buffer = mpu.get_global_memory_buffer().get_tensor(
252
            (output_size[0]*output_size[1], output_size[2], output_size[3]),
Vijay Korthikanti's avatar
Vijay Korthikanti committed
253
            query_layer.dtype, "mpu")
254
255
256

        # Raw attention scores. [b * np, sq, sk]
        matmul_result = torch.baddbmm(
Vijay Korthikanti's avatar
Vijay Korthikanti committed
257
            matmul_input_buffer,
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
            query_layer.transpose(0, 1),   # [b * np, sq, hn]
            key_layer.transpose(0, 1).transpose(1, 2),  # [b * np, hn, sk]
            beta=0.0, alpha=(1.0/self.norm_factor))

        # change view to [b, np, sq, sk]
        attention_scores = matmul_result.view(*output_size)

        # ===========================
        # Attention probs and dropout
        # ===========================

        # attention scores and attention mask [b, np, sq, sk]
        attention_probs = self.scale_mask_softmax(attention_scores,
                                                  attention_mask)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
275
        if not self.sequence_parallel:
276
            with tensor_parallel.get_cuda_rng_tracker().fork():
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
                attention_probs = self.attention_dropout(attention_probs)
        else:
            attention_probs = self.attention_dropout(attention_probs)

        # =========================
        # Context layer. [sq, b, hp]
        # =========================

        # value_layer -> context layer.
        # [sk, b, np, hn] --> [b, np, sq, hn]

        # context layer shape: [b, np, sq, hn]
        output_size = (value_layer.size(1),
                       value_layer.size(2),
                       query_layer.size(0),
                       value_layer.size(3))

        # change view [sk, b * np, hn]
        value_layer = value_layer.view(value_layer.size(0),
                                       output_size[0] * output_size[1], -1)

        # change view [b * np, sq, sk]
        attention_probs = attention_probs.view(output_size[0] * output_size[1],
                                               output_size[2], -1)

        # matmul: [b * np, sq, hn]
        context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))

        # change view [b, np, sq, hn]
        context_layer = context_layer.view(*output_size)

        # [b, np, sq, hn] --> [sq, b, np, hn]
        context_layer = context_layer.permute(2, 0, 1, 3).contiguous()

        # [sq, b, np, hn] --> [sq, b, hp]
        new_context_layer_shape = context_layer.size()[:-2] + \
            (self.hidden_size_per_partition,)
        context_layer = context_layer.view(*new_context_layer_shape)

        return context_layer


319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
class FlashSelfAttention(torch.nn.Module):
    """Implement the scaled dot product attention with softmax.
    Arguments
    ---------
        softmax_scale: The temperature to use for the softmax attention.
                      (default: 1/sqrt(d_keys) where d_keys is computed at
                      runtime)
        attention_dropout: The dropout rate to apply to the attention
                           (default: 0.0)
    """
    def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0,
                 device=None, dtype=None):
        super().__init__()
        assert flash_attn_unpadded_func is not None, ('Please install FlashAttention first, '
                                                      'e.g., with pip install flash-attn')
        assert rearrange is not None, 'Please install einops first, e.g., with pip install einops'
        self.causal = causal
        self.softmax_scale = softmax_scale
        self.dropout_p = attention_dropout

    def forward(self, q, k, v):
        """Implements the multihead softmax attention.
        Arguments
        ---------
            q, k, v: The tensor containing the query, key, and value. (B, S, H, D)
        """
        assert q.dtype in [torch.float16, torch.bfloat16]
        assert q.is_cuda
        batch_size, seqlen = q.shape[0], q.shape[1]
        q, k, v = [rearrange(x, 'b s ... -> (b s) ...') for x in [q, k, v]]
        max_s = seqlen
        cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
                                  device=q.device)
        output = flash_attn_unpadded_func(
            q, k, v, cu_seqlens, cu_seqlens, max_s, max_s,
            self.dropout_p if self.training else 0.0,
            softmax_scale=self.softmax_scale, causal=self.causal
        )
        output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
        return output


361
class ParallelAttention(MegatronModule):
362
363
    """Parallel self-attention layer abstract class.

Vijay Korthikanti's avatar
Vijay Korthikanti committed
364
    Self-attention layer takes input with size [s, b, h]
365
366
    and returns output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
367

368
    def __init__(self, init_method,
369
370
371
372
                 output_layer_init_method, layer_number,
                 attention_type=AttnType.self_attn,
                 attn_mask_type=AttnMaskType.padding):
        super(ParallelAttention, self).__init__()
Mohammad's avatar
Mohammad committed
373
        args = get_args()
374
        self.layer_number = max(1, layer_number)
375
376
        self.attention_type = attention_type
        self.attn_mask_type = attn_mask_type
377
        self.params_dtype = args.params_dtype
378
379
380
381
382
383
384
385
386
387
388
389
390
        self.sequence_parallel = args.sequence_parallel

        self.use_flash_attn = args.use_flash_attn
        if self.use_flash_attn:
            if flash_attn_unpadded_func is None:
                raise ImportError('FlashAttention is not installed, please install with '
                                  'pip install flash-attn')
            assert attention_type == AttnType.self_attn, ('FlashAttention code path only supports '
                                                          'self-attention for now')
            assert self.attn_mask_type == AttnMaskType.causal, ('FlashAttention code path only '
                                                                'supports causal mask for now')
            if rearrange is None:
                raise ImportError('einops is not installed, please install with pip install einops')
391
392

        projection_size = args.kv_channels * args.num_attention_heads
393
394

        # Per attention head and per partition values.
395
        world_size = mpu.get_tensor_model_parallel_world_size()
396
        self.hidden_size_per_attention_head = core.utils.divide(
397
            projection_size, args.num_attention_heads)
398
        self.num_attention_heads_per_partition = core.utils.divide(
Mohammad's avatar
Mohammad committed
399
            args.num_attention_heads, world_size)
400
401

        # Strided linear layer.
402
        if attention_type == AttnType.self_attn:
403
            self.query_key_value = tensor_parallel.ColumnParallelLinear(
404
405
406
                args.hidden_size,
                3 * projection_size,
                gather_output=False,
407
408
409
                init_method=init_method,
                async_tensor_model_parallel_allreduce=args.async_tensor_model_parallel_allreduce,
                **_args_to_kwargs())
410
411
        else:
            assert attention_type == AttnType.cross_attn
412
            self.query = tensor_parallel.ColumnParallelLinear(
413
414
415
                args.hidden_size,
                projection_size,
                gather_output=False,
416
417
418
                init_method=init_method,
                async_tensor_model_parallel_allreduce=args.async_tensor_model_parallel_allreduce,
                **_args_to_kwargs())
419

420

421
            self.key_value = tensor_parallel.ColumnParallelLinear(
422
423
424
                args.hidden_size,
                2 * projection_size,
                gather_output=False,
425
426
427
                init_method=init_method,
                async_tensor_model_parallel_allreduce=args.async_tensor_model_parallel_allreduce,
                **_args_to_kwargs())
428

429
430
        self.core_attention = CoreAttention(self.layer_number,
                                            self.attn_mask_type)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
431
        self.checkpoint_core_attention = args.recompute_granularity == 'selective'
432

433
434
435
436
437
        if self.use_flash_attn:
            self.core_attention_flash = FlashSelfAttention(
                causal=True, attention_dropout=args.attention_dropout
            )

438
        # Output.
439
        self.dense = tensor_parallel.RowParallelLinear(
440
            projection_size,
Mohammad's avatar
Mohammad committed
441
            args.hidden_size,
442
            input_is_parallel=True,
443
            init_method=output_layer_init_method,
444
445
            skip_bias_add=True,
            **_args_to_kwargs())
Vijay Korthikanti's avatar
Vijay Korthikanti committed
446

447
    def _checkpointed_attention_forward(self, query_layer, key_layer,
Mostofa Patwary's avatar
Mostofa Patwary committed
448
449
                                        value_layer, attention_mask,
                                        rotary_pos_emb=None):
450
451
452
453
454
455
        """Forward method with activation checkpointing."""
        def custom_forward(*inputs):
            query_layer = inputs[0]
            key_layer = inputs[1]
            value_layer = inputs[2]
            attention_mask = inputs[3]
Mostofa Patwary's avatar
Mostofa Patwary committed
456
457
            rotary_pos_emb = inputs[4] if inputs[4] is None \
                else (inputs[4], inputs[5])
458
459
460
461
            output_ = self.core_attention(query_layer, key_layer,
                                          value_layer, attention_mask)
            return output_

Mostofa Patwary's avatar
Mostofa Patwary committed
462
463
464
        q_pos_emb, k_pos_emb = (None, None) if rotary_pos_emb is None \
            else rotary_pos_emb

465
        hidden_states = tensor_parallel.checkpoint(
466
            custom_forward,
Mostofa Patwary's avatar
Mostofa Patwary committed
467
468
            False, query_layer, key_layer, value_layer, attention_mask,
            q_pos_emb, k_pos_emb)
469
470

        return hidden_states
471
472
473
474
475
476
477
478
479
480
481

    def _allocate_memory(self, inference_max_sequence_len, batch_size):
        return torch.empty(
            inference_max_sequence_len,
            batch_size,
            self.num_attention_heads_per_partition,
            self.hidden_size_per_attention_head,
            dtype=self.params_dtype,
            device=torch.cuda.current_device())

    def forward(self, hidden_states, attention_mask,
Mostofa Patwary's avatar
Mostofa Patwary committed
482
483
                encoder_output=None, inference_params=None,
                rotary_pos_emb=None):
484
        # hidden_states: [sq, b, h]
485

486
487
488
        # =================================================
        # Pre-allocate memory for key-values for inference.
        # =================================================
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
489

mshoeybi's avatar
mshoeybi committed
490
        if inference_params:
491
            if self.layer_number not in inference_params.key_value_memory_dict:
mshoeybi's avatar
mshoeybi committed
492
                inf_max_seq_len = inference_params.max_sequence_len
mshoeybi's avatar
mshoeybi committed
493
                inf_max_batch_size = inference_params.max_batch_size
494
                inference_key_memory = self._allocate_memory(
mshoeybi's avatar
mshoeybi committed
495
                    inf_max_seq_len, inf_max_batch_size)
496
                inference_value_memory = self._allocate_memory(
mshoeybi's avatar
mshoeybi committed
497
                    inf_max_seq_len, inf_max_batch_size)
498
499
500
501
502
                inference_params.key_value_memory_dict[self.layer_number] = (
                    inference_key_memory, inference_value_memory)
            else:
                inference_key_memory, inference_value_memory = \
                    inference_params.key_value_memory_dict[self.layer_number]
mshoeybi's avatar
mshoeybi committed
503

504
505
506
        # =====================
        # Query, Key, and Value
        # =====================
507

508
509
510
511
512
513
514
515
516
517
518
519
520
        if self.attention_type == AttnType.self_attn:
            # Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
            mixed_x_layer, _ = self.query_key_value(hidden_states)

            # [sq, b, (np * 3 * hn)] --> [sq, b, np, 3 * hn]
            new_tensor_shape = mixed_x_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 3 * self.hidden_size_per_attention_head)
            mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)

            # [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
            (query_layer,
             key_layer,
521
             value_layer) = tensor_parallel.split_tensor_along_last_dim(mixed_x_layer, 3)
522
523
524
525
526
527
528
529
530
531
532
533
        else:
            # Attention heads [sk, b, h] --> [sk, b, (np * 2 * hn)]
            mixed_kv_layer, _ = self.key_value(encoder_output)

            # [sk, b, (np * 2 * hn)] --> [sk, b, np, 2 * hn]
            new_tensor_shape = mixed_kv_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 2 * self.hidden_size_per_attention_head)
            mixed_kv_layer = mixed_kv_layer.view(*new_tensor_shape)

            # [sk, b, np, 2 * hn] --> 2 [sk, b, np, hn]
            (key_layer,
534
             value_layer) = tensor_parallel.split_tensor_along_last_dim(mixed_kv_layer, 2)
535
536
537
538
539
540
541
542

            # Attention head [sq, b, h] --> [sq, b, hp]
            query_layer, _ = self.query(hidden_states)
            # [sq, b, hp] --> [sq, b, np, hn]
            new_tensor_shape = query_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 self.hidden_size_per_attention_head)
            query_layer = query_layer.view(*new_tensor_shape)
543

mshoeybi's avatar
mshoeybi committed
544
545
546
        # ==================================
        # Adjust key and value for inference
        # ==================================
547

Mostofa Patwary's avatar
Mostofa Patwary committed
548
549
550
551
552
        # duplicate the pos_emb for self attention
        if rotary_pos_emb is not None:
            rotary_pos_emb = rotary_pos_emb if isinstance(rotary_pos_emb, \
                tuple) else ((rotary_pos_emb,) * 2)

mshoeybi's avatar
mshoeybi committed
553
        if inference_params:
mshoeybi's avatar
mshoeybi committed
554
555
            batch_start = inference_params.batch_size_offset
            batch_end = batch_start + key_layer.size(1)
556
            assert batch_end <= inference_key_memory.size(1)
mshoeybi's avatar
mshoeybi committed
557
558
            sequence_start = inference_params.sequence_len_offset
            sequence_end = sequence_start + key_layer.size(0)
559
            assert sequence_end <= inference_key_memory.size(0)
560
            # Copy key and values.
561
562
563
564
565
            inference_key_memory[sequence_start:sequence_end,
                                 batch_start:batch_end, ...] = key_layer
            inference_value_memory[sequence_start:sequence_end,
                                   batch_start:batch_end, ...] = value_layer
            key_layer = inference_key_memory[
mshoeybi's avatar
mshoeybi committed
566
                :sequence_end, batch_start:batch_end, ...]
567
            value_layer = inference_value_memory[
mshoeybi's avatar
mshoeybi committed
568
                :sequence_end, batch_start:batch_end, ...]
569

Mostofa Patwary's avatar
Mostofa Patwary committed
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591

            # adjust the key rotary positional embedding
            if rotary_pos_emb is not None:
                q_pos_emb, k_pos_emb = rotary_pos_emb
                # need to cross check this condition during inference
                # if not set_inference_key_value_memory:
                if not is_first_step:
                    # In inference, we compute one token at a time.
                    # Select the correct positional embedding
                    # (only the last token in the sequence)
                    q_pos_emb = q_pos_emb[sequence_end - 1 : sequence_end]
                else:
                    # In the first forward pass of inference,
                    # we use the entire provided prefix.
                    # q_pos_emb here has the rope embeddings of the entire
                    # prefix + to-be-generated output so
                    # we slice to just the prefix.
                    q_pos_emb = q_pos_emb[:sequence_end, :, :, :]
                k_pos_emb = k_pos_emb[:sequence_end, :, :, :]
                rotary_pos_emb = (q_pos_emb, k_pos_emb)


592
593
594
        # ==================================
        # core attention computation
        # ==================================
595

Mostofa Patwary's avatar
Mostofa Patwary committed
596
597
598
599
600
601
602
603
604
605
        # apply relative positional encoding (rotary embedding)
        if rotary_pos_emb is not None:
            q_pos_emb, k_pos_emb = rotary_pos_emb
            query_layer = apply_rotary_pos_emb(query_layer, q_pos_emb)
            key_layer = apply_rotary_pos_emb(key_layer, k_pos_emb)
            # TODO, can apply positional embedding to value_layer so it has
            # absolute positional embedding.
            # otherwise, only relative positional embedding takes effect
            # value_layer = apply_rotary_pos_emb(value_layer, k_pos_emb)

606
607
608
609
610
611
612
        if not self.use_flash_attn:
            if self.checkpoint_core_attention:
                context_layer = self._checkpointed_attention_forward(
                    query_layer, key_layer, value_layer, attention_mask)
            else:
                context_layer = self.core_attention(
                    query_layer, key_layer, value_layer, attention_mask)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
613
        else:
614
615
616
617
618
619
620
621
            q, k, v = [rearrange(x, 's b ... -> b s ...').contiguous()
                       for x in (query_layer, key_layer, value_layer)]
            if not self.sequence_parallel:
                with tensor_parallel.get_cuda_rng_tracker().fork():
                    context_layer = self.core_attention_flash(q, k, v)
            else:
                context_layer = self.core_attention_flash(q, k, v)
            context_layer = rearrange(context_layer, 'b s h d -> s b (h d)').contiguous()
622
623

        # =================
624
        # Output. [sq, b, h]
625
626
627
        # =================

        output, bias = self.dense(context_layer)
628

629
630
631
        return output, bias


632
def bias_dropout_add(x, bias, residual, prob, training):
633
634
635
636
637
638
639
640
641
642
643
644
645
    # type: (Tensor, Tensor, Tensor, float, bool) -> Tensor
    out = torch.nn.functional.dropout(x + bias, p=prob, training=training)
    out = residual + out
    return out


def get_bias_dropout_add(training):
    def _bias_dropout_add(x, bias, residual, prob):
        return bias_dropout_add(x, bias, residual, prob, training)
    return _bias_dropout_add


@torch.jit.script
646
647
648
649
def bias_dropout_add_fused_train(x: torch.Tensor,
                                 bias: torch.Tensor,
                                 residual: torch.Tensor,
                                 prob: float) -> torch.Tensor:
650
651
652
653
    return bias_dropout_add(x, bias, residual, prob, True)


@torch.jit.script
654
655
656
657
def bias_dropout_add_fused_inference(x: torch.Tensor,
                                     bias: torch.Tensor,
                                     residual: torch.Tensor,
                                     prob: float) -> torch.Tensor:
658
    return bias_dropout_add(x, bias, residual, prob, False)
659
660
661
662
663


class ParallelTransformerLayer(MegatronModule):
    """A single transformer layer.

Vijay Korthikanti's avatar
Vijay Korthikanti committed
664
    Transformer layer takes input with size [s, b, h] and returns an
665
666
    output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
667

668
669
    def __init__(self, init_method, output_layer_init_method,
                 layer_number, layer_type=LayerType.encoder,
670
671
                 self_attn_mask_type=AttnMaskType.padding,
                 drop_path_rate=0.):
Mohammad's avatar
Mohammad committed
672
        args = get_args()
673
674

        super(ParallelTransformerLayer, self).__init__()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
675
        self.layer_number = layer_number
676
        self.layer_type = layer_type
677
678

        self.apply_residual_connection_post_layernorm \
Mohammad's avatar
Mohammad committed
679
            = args.apply_residual_connection_post_layernorm
680

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
681
682
683
        self.bf16 = args.bf16
        self.fp32_residual_connection = args.fp32_residual_connection

684
685
        # Layernorm on the input data.
        self.input_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
686
            args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
687
            eps=args.layernorm_epsilon,
688
            no_persist_layer_norm=args.no_persist_layer_norm,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
689
            sequence_parallel=args.sequence_parallel)
690
691

        # Self attention.
692
693
694
695
696
697
        self.self_attention = ParallelAttention(
            init_method,
            output_layer_init_method,
            layer_number,
            attention_type=AttnType.self_attn,
            attn_mask_type=self_attn_mask_type)
698
699
        self.hidden_dropout = args.hidden_dropout
        self.bias_dropout_fusion = args.bias_dropout_fusion
Vijay Korthikanti's avatar
Vijay Korthikanti committed
700
        self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else None
701

702
        # Layernorm on the attention output
703
        self.post_attention_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
704
            args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
705
            eps=args.layernorm_epsilon,
706
            no_persist_layer_norm=args.no_persist_layer_norm,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
707
            sequence_parallel=args.sequence_parallel)
708

709
710
711
712
713
714
715
716
717
        if self.layer_type == LayerType.decoder:
            self.inter_attention = ParallelAttention(
                init_method,
                output_layer_init_method,
                layer_number,
                attention_type=AttnType.cross_attn)
            # Layernorm on the attention output.
            self.post_inter_attention_layernorm = LayerNorm(
                args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
718
                eps=args.layernorm_epsilon,
719
                no_persist_layer_norm=args.no_persist_layer_norm,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
720
                sequence_parallel=args.sequence_parallel)
721

722
        # MLP
rprenger's avatar
rprenger committed
723
724
725
726
        if args.num_experts is not None:
            self.mlp = SwitchMLP(init_method, output_layer_init_method)
        else:
            self.mlp = ParallelMLP(init_method, output_layer_init_method)
727

728
729
730
731
732
733
734
        # Set bias+dropout+add fusion grad_enable execution handler.
        TORCH_MAJOR = int(torch.__version__.split('.')[0])
        TORCH_MINOR = int(torch.__version__.split('.')[1])
        use_nvfuser = TORCH_MAJOR > 1 or (TORCH_MAJOR == 1 and TORCH_MINOR >= 10)
        self.bias_dropout_add_exec_handler = \
                nullcontext if use_nvfuser else torch.enable_grad

735
    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
736
                encoder_output=None, enc_dec_attn_mask=None,
Mostofa Patwary's avatar
Mostofa Patwary committed
737
                inference_params=None, rotary_pos_emb=None):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
738
        # hidden_states: [s, b, h]
739

740
        # Layer norm at the beginning of the transformer layer.
741
742
        layernorm_output = self.input_layernorm(hidden_states)
        # Self attention.
Mostofa Patwary's avatar
Mostofa Patwary committed
743
744
745
        self_attention_pos_emb = None
        if rotary_pos_emb is not None:
            self_attention_pos_emb = rotary_pos_emb
746
        attention_output, attention_bias = \
747
748
749
            self.self_attention(
                layernorm_output,
                attention_mask,
Mostofa Patwary's avatar
Mostofa Patwary committed
750
751
                inference_params=inference_params,
                rotary_pos_emb=self_attention_pos_emb)
752

753
754
        # Residual connection.
        if self.apply_residual_connection_post_layernorm:
755
756
757
758
            residual = layernorm_output
        else:
            residual = hidden_states

Vijay Korthikanti's avatar
Vijay Korthikanti committed
759
        if self.drop_path is None:
760
761
762
763
764
765
766
767
768
            # jit scripting for a nn.module (with dropout) is not
            # trigerring the fusion kernel. For now, we use two
            # different nn.functional routines to account for varying
            # dropout semantics during training and inference phases.
            if self.bias_dropout_fusion:
                if self.training:
                    bias_dropout_add_func = bias_dropout_add_fused_train
                else:
                    bias_dropout_add_func = bias_dropout_add_fused_inference
769
            else:
770
                bias_dropout_add_func = get_bias_dropout_add(self.training)
771

772
            with self.bias_dropout_add_exec_handler():
773
774
775
776
777
778
779
780
781
782
                layernorm_input = bias_dropout_add_func(
                    attention_output,
                    attention_bias.expand_as(residual),
                    residual,
                    self.hidden_dropout)
        else:
            out = torch.nn.functional.dropout(attention_output + attention_bias,
                                              p=self.hidden_dropout,
                                              training=self.training)
            layernorm_input = residual + self.drop_path(out)
783

784
785
786
        # Layer norm post the self attention.
        layernorm_output = self.post_attention_layernorm(layernorm_input)

787
788
789
790
791
792
793
794
795
796
797
        if self.layer_type == LayerType.decoder:
            attention_output, attention_bias = \
                self.inter_attention(layernorm_output,
                                     enc_dec_attn_mask,
                                     encoder_output=encoder_output)
            # residual connection
            if self.apply_residual_connection_post_layernorm:
                residual = layernorm_output
            else:
                residual = layernorm_input

798
            with self.bias_dropout_add_exec_handler():
799
800
801
802
803
804
805
806
807
                layernorm_input = bias_dropout_add_func(
                    attention_output,
                    attention_bias.expand_as(residual),
                    residual,
                    self.hidden_dropout)

            # Layer norm post the decoder attention
            layernorm_output = self.post_inter_attention_layernorm(layernorm_input)

808
        # MLP.
809
        mlp_output, mlp_bias = self.mlp(layernorm_output)
810

811
812
        # Second residual connection.
        if self.apply_residual_connection_post_layernorm:
813
            residual = layernorm_output
814
        else:
815
816
            residual = layernorm_input

Vijay Korthikanti's avatar
Vijay Korthikanti committed
817
        if self.drop_path is None:
818
            with self.bias_dropout_add_exec_handler():
819
820
821
822
823
                output = bias_dropout_add_func(
                    mlp_output,
                    mlp_bias.expand_as(residual),
                    residual,
                    self.hidden_dropout)
824
825
826
827
828
829
830

            # Jit compiled function creates 'view' tensor. This tensor
            # potentially gets saved in the MPU checkpoint function context,
            # which rejects view tensors. While making a viewless tensor here
            # won't result in memory savings (like the data loader, or
            # p2p_communication), it serves to document the origin of this
            # 'view' tensor.
831
832
833
            output = core.utils.make_viewless_tensor(inp = output,
                                                     requires_grad = output.requires_grad,
                                                     keep_graph = True)
834

835
836
837
838
839
        else:
            out = torch.nn.functional.dropout(mlp_output + mlp_bias,
                                              p=self.hidden_dropout,
                                              training=self.training)
            output = residual + self.drop_path(out)
840
841
842
843

        return output


844
845
846
class NoopTransformerLayer(MegatronModule):
    """A single 'no-op' transformer layer.

Lawrence McAfee's avatar
Lawrence McAfee committed
847
    The sole purpose of this layer is for when a standalone embedding layer
848
    is used (i.e., args.standalone_embedding_stage == True). In this case,
Lawrence McAfee's avatar
Lawrence McAfee committed
849
850
851
852
853
854
855
856
857
    zero transformer layers are assigned when pipeline rank == 0. Additionally,
    when virtual pipeline rank >= 1, zero total model parameters are created
    (virtual rank 0 contains the input embedding). This results in the model's
    input and output tensors being the same, which causes an error when
    performing certain memory optimiations on the output tensor (e.g.,
    deallocating it). Thus, this layer disconnects the input from the output
    via a clone. Since ranks containing a no-op layer are generally under-
    utilized (both compute and memory), there's no worry of any performance
    degredation.
858
859
860
861
862
863
864
865
866
867
868
869
    """

    def __init__(self, layer_number):
        super().__init__()
        self.layer_number = layer_number

    def forward(self, hidden_states, attention_mask,
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
        return hidden_states.clone()


Jared Casper's avatar
Jared Casper committed
870
def _get_num_layers(args, is_encoder_and_decoder_model, is_decoder=False):
871
    """Compute the number of transformer layers resident on the current rank."""
Jared Casper's avatar
Jared Casper committed
872
    if mpu.get_pipeline_model_parallel_world_size() > 1:
873
874
875
876
877
878
879
880
881
882
883
884
885
        if is_encoder_and_decoder_model:
            assert args.pipeline_model_parallel_split_rank is not None

            # When a standalone embedding stage is used, a rank is taken from
            # the encoder's ranks, to be used for the encoder's embedding
            # layer. This way, the rank referenced by the 'split rank' remains
            # the same whether or not a standalone embedding stage is used.
            num_ranks_in_encoder = (
                args.pipeline_model_parallel_split_rank - 1
                if args.standalone_embedding_stage else
                args.pipeline_model_parallel_split_rank
            )
            num_ranks_in_decoder = args.transformer_pipeline_model_parallel_size - num_ranks_in_encoder
Jared Casper's avatar
Jared Casper committed
886
887
888
889
            assert args.encoder_num_layers % num_ranks_in_encoder == 0, \
                    'encoder_num_layers (%d) must be divisible by number of ranks given to encoder (%d)' % (args.encoder_num_layers, num_ranks_in_encoder)
            assert args.decoder_num_layers % num_ranks_in_decoder == 0, \
                    'decoder_num_layers (%d) must be divisible by number of ranks given to decoder (%d)' % (args.decoder_num_layers, num_ranks_in_decoder)
Jared Casper's avatar
Jared Casper committed
890
            if mpu.is_pipeline_stage_before_split():
891
892
893
                num_layers = (
                    0
                    if args.standalone_embedding_stage
Jared Casper's avatar
Jared Casper committed
894
                    and mpu.get_pipeline_model_parallel_rank() == 0 else
Jared Casper's avatar
Jared Casper committed
895
                    args.encoder_num_layers // num_ranks_in_encoder
896
897
                )
            else:
Jared Casper's avatar
Jared Casper committed
898
                num_layers = args.decoder_num_layers // num_ranks_in_decoder
899
        else:
Jared Casper's avatar
Jared Casper committed
900
            assert args.num_layers == args.encoder_num_layers
901
902
903
904
905
906
907
908
909
910
            assert args.num_layers % args.transformer_pipeline_model_parallel_size == 0, \
                'num_layers must be divisible by transformer_pipeline_model_parallel_size'

            # When a standalone embedding stage is used, all transformer layers
            # are divided among pipeline rank >= 1, while on pipeline rank 0,
            # ranks either contain the input embedding layer (virtual pp rank 0),
            # or no layers at all (virtual pp rank >= 1).
            num_layers = (
                0
                if args.standalone_embedding_stage
Jared Casper's avatar
Jared Casper committed
911
                and mpu.get_pipeline_model_parallel_rank() == 0 else
912
913
914
                args.num_layers // args.transformer_pipeline_model_parallel_size
            )
    else:
Jared Casper's avatar
Jared Casper committed
915
916
917
918
        if not is_decoder:
            num_layers = args.encoder_num_layers
        else:
            num_layers = args.decoder_num_layers
919
920
921
    return num_layers


922
923
924
class ParallelTransformer(MegatronModule):
    """Transformer class."""

925
    def __init__(self, init_method, output_layer_init_method,
926
                 layer_type=LayerType.encoder,
927
                 self_attn_mask_type=AttnMaskType.padding,
928
                 post_layer_norm=True,
929
930
                 pre_process=True, post_process=True,
                 drop_path_rate=0.0):
931
        super(ParallelTransformer, self).__init__()
Mohammad's avatar
Mohammad committed
932
        args = get_args()
933

934
935
        self.layer_type = layer_type
        self.model_type = args.model_type
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
936
        self.bf16 = args.bf16
937
        self.fp32_residual_connection = args.fp32_residual_connection
938
        self.post_layer_norm = post_layer_norm
939
940
941
        self.pre_process = pre_process
        self.post_process = post_process
        self.input_tensor = None
942
        self.drop_path_rate = drop_path_rate
943
        self.transformer_impl = args.transformer_impl
944

945
        # Store activation checkpoiting flag.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
946
947
948
        self.recompute_granularity = args.recompute_granularity
        self.recompute_method = args.recompute_method
        self.recompute_num_layers = args.recompute_num_layers
Vijay Korthikanti's avatar
Vijay Korthikanti committed
949
950
        self.distribute_saved_activations = \
            args.distribute_saved_activations and not args.sequence_parallel
951

Vijay Korthikanti's avatar
Vijay Korthikanti committed
952
        self.sequence_parallel = args.sequence_parallel
953

954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
        # Transformer Engine Init.
        if self.transformer_impl == 'transformer_engine':
            global transformer_engine
            import transformer_engine
        self.use_fp8 = args.fp8_e4m3 or args.fp8_hybrid
        self.fp8_recipe = None
        self.fp8_group = mpu.get_data_parallel_group()
        if self.use_fp8:
            if args.fp8_e4m3:
                fp8_format = transformer_engine.common.recipe.Format.E4M3
            elif args.fp8_hybrid:
                fp8_format = transformer_engine.common.recipe.Format.HYBRID
            self.fp8_recipe = transformer_engine.common.recipe.DelayedScaling(
                margin=args.fp8_margin,
                interval=args.fp8_interval,
                fp8_format=fp8_format,
                amax_history_len=args.fp8_amax_history_len,
                amax_compute_algo=args.fp8_amax_compute_algo,
                override_linear_precision=(False, False, not args.fp8_wgrad),
            )

        self.num_microbatches_in_previous_step = -1
        self.microbatch_count = 0
        self.checkpoint_core_attention = args.recompute_granularity == 'selective'

979
        # Number of layers.
980
        self.num_layers = _get_num_layers(
981
982
983
            args,
            args.model_type == ModelType.encoder_and_decoder,
            layer_type == LayerType.decoder)
Mohammad's avatar
Mohammad committed
984

Vijay Korthikanti's avatar
Vijay Korthikanti committed
985
        self.drop_path_rates = [rate.item() for rate in torch.linspace(0, self.drop_path_rate, args.num_layers)]
986

Mohammad's avatar
Mohammad committed
987
988
        # Transformer layers.
        def build_layer(layer_number):
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
            if args.transformer_impl == 'local':
                return ParallelTransformerLayer(
                    init_method,
                    output_layer_init_method,
                    layer_number,
                    layer_type=layer_type,
                    self_attn_mask_type=self_attn_mask_type,
                    drop_path_rate=self.drop_path_rates[layer_number - 1])
            else:
                return transformer_engine.pytorch.TransformerLayer(
                    args.hidden_size,
                    args.ffn_hidden_size,
                    args.num_attention_heads,
                    layernorm_epsilon=args.layernorm_epsilon,
                    hidden_dropout=args.hidden_dropout,
                    attention_dropout=args.attention_dropout,
                    init_method=init_method,
                    output_layer_init_method=output_layer_init_method,
                    layer_number=layer_number,
                    kv_channels=args.kv_channels,
                    self_attn_mask_type=self_attn_mask_type.name,
                    tp_group=mpu.get_tensor_model_parallel_group(),
                    get_rng_state_tracker=tensor_parallel.get_cuda_rng_tracker,
                    fuse_wgrad_accumulation=args.gradient_accumulation_fusion,
                    apply_query_key_layer_scaling=args.apply_query_key_layer_scaling,
                    attention_softmax_in_fp32=args.attention_softmax_in_fp32,
                    seq_length=args.seq_length,
                    micro_batch_size=args.micro_batch_size,
                    sequence_parallel=args.sequence_parallel,
                    params_dtype=args.params_dtype,
                    apply_residual_connection_post_layernorm=args.apply_residual_connection_post_layernorm,
                    output_layernorm=False,
                    layer_type="encoder",
                    drop_path_rate=self.drop_path_rates[layer_number - 1],
                    set_parallel_mode=True,
                    fuse_qkv_params=True)

1026
1027
        if args.virtual_pipeline_model_parallel_size is not None:
            assert args.num_layers % args.virtual_pipeline_model_parallel_size == 0, \
1028
1029
                'num_layers_per_stage must be divisible by ' \
                'virtual_pipeline_model_parallel_size'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1030
            assert args.model_type != ModelType.encoder_and_decoder
1031
1032
            # Number of layers in each model chunk is the number of layers in the stage,
            # divided by the number of model chunks in a stage.
1033
            self.num_layers = self.num_layers // args.virtual_pipeline_model_parallel_size
1034
1035
1036
1037
1038
1039
1040
1041
            # With 8 layers, 2 stages, and 4 model chunks, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0]  [2]  [4]  [6]
            # Stage 1: [1]  [3]  [5]  [7]
            # With 8 layers, 2 stages, and 2 virtual stages, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0, 1]  [4, 5]
            # Stage 1: [2, 3]  [6, 7]
1042
            offset = mpu.get_virtual_pipeline_model_parallel_rank() * (
1043
                args.num_layers // args.virtual_pipeline_model_parallel_size) + \
1044
                (mpu.get_pipeline_model_parallel_rank() * self.num_layers)
1045
        else:
1046
            # Each stage gets a contiguous set of layers.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1047
            if args.model_type == ModelType.encoder_and_decoder and \
1048
1049
                    mpu.get_pipeline_model_parallel_world_size() > 1:
                pipeline_rank = mpu.get_pipeline_model_parallel_rank()
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1050
1051
1052
1053
1054
1055
                if layer_type == LayerType.encoder:
                    offset = pipeline_rank * self.num_layers
                else:
                    num_ranks_in_enc = args.pipeline_model_parallel_split_rank
                    offset = (pipeline_rank - num_ranks_in_enc) * self.num_layers
            else:
1056
                offset = mpu.get_pipeline_model_parallel_rank() * self.num_layers
1057

1058
        if self.num_layers == 0:
Lawrence McAfee's avatar
Lawrence McAfee committed
1059
            # When a standalone embedding stage is used (e.g.,
1060
            # args.standalone_embedding_stage == True), virtual pipeline ranks
1061
            # on pipeline rank 0 will have zero transformer layers assigned to
Lawrence McAfee's avatar
Lawrence McAfee committed
1062
1063
1064
1065
1066
            # them. This results in the model's input and output tensors to be
            # the same, which will cause failure for certain output tensor
            # optimizations (e.g., pipeline output deallocation). To remedy
            # this, we assign a 'no-op' layer on these ranks, which will
            # disconnect the input tensor from the output tensor.
1067
1068
1069
1070
1071
            self.num_layers = 1
            self.layers = torch.nn.ModuleList([ NoopTransformerLayer(1) ])
        else:
            self.layers = torch.nn.ModuleList(
                [build_layer(i + 1 + offset) for i in range(self.num_layers)])
1072

1073
        if self.post_process and self.post_layer_norm:
1074
1075
1076
            # Final layer norm before output.
            self.final_layernorm = LayerNorm(
                args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
1077
                eps=args.layernorm_epsilon,
1078
                no_persist_layer_norm=args.no_persist_layer_norm,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1079
                sequence_parallel=args.sequence_parallel)
1080

Mohammad's avatar
Mohammad committed
1081
    def _get_layer(self, layer_number):
1082
        return self.layers[layer_number]
Mohammad's avatar
Mohammad committed
1083

1084
    def _checkpointed_forward(self, hidden_states, attention_mask,
Mostofa Patwary's avatar
Mostofa Patwary committed
1085
1086
                              encoder_output, enc_dec_attn_mask,
                              rotary_pos_emb, is_first_microbatch):
1087
        """Forward method with activation checkpointing."""
1088
1089
        def custom(start, end, is_transformer_engine=False):
            def custom_forward(*args, **kwargs):
Mohammad's avatar
Mohammad committed
1090
1091
                for index in range(start, end):
                    layer = self._get_layer(index)
1092
                    x_ = layer(*args, **kwargs)
1093
                return x_
1094
1095
1096
1097
1098
1099
            def custom_forward_transformer_engine(*args, **kwargs):
                return custom_forward(*args, is_first_microbatch=is_first_microbatch, **kwargs)
            if not is_transformer_engine:
                return custom_forward
            else:
                return custom_forward_transformer_engine
1100

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1101
        if self.recompute_method == 'uniform':
1102
1103
1104
1105
1106
            # Uniformly divide the total number of Transformer layers and checkpoint
            # the input activation of each divided chunk.
            # A method to further reduce memory usage reducing checkpoints.
            l = 0
            while l < self.num_layers:
1107
1108
1109
1110
1111
1112
                if self.transformer_impl == 'transformer_engine':
                    hidden_states = transformer_engine.pytorch.distributed.checkpoint(
                        custom(l, l + self.recompute_num_layers, is_transformer_engine=True),
                        self.distribute_saved_activations,
                        tensor_parallel.get_cuda_rng_tracker,
                        mpu.get_tensor_model_parallel_group(),
Mostofa Patwary's avatar
Mostofa Patwary committed
1113
1114
                        hidden_states, attention_mask, encoder_output,
                        enc_dec_attn_mask, rotary_pos_emb)
1115
1116
1117
1118
                else:
                    hidden_states = tensor_parallel.checkpoint(
                        custom(l, l + self.recompute_num_layers),
                        self.distribute_saved_activations,
Mostofa Patwary's avatar
Mostofa Patwary committed
1119
1120
                        hidden_states, attention_mask, encoder_output,
                        enc_dec_attn_mask, rotary_pos_emb)
1121

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1122
                l += self.recompute_num_layers
1123

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1124
        elif self.recompute_method == 'block':
1125
1126
1127
1128
            # Checkpoint the input activation of only a set number of individual
            # Transformer layers and skip the rest.
            # A method fully use the device memory removing redundant re-computation.
            for l in range(self.num_layers):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1129
                if l < self.recompute_num_layers:
1130
1131
1132
1133
1134
1135
                    if self.transformer_impl == 'transformer_engine':
                        hidden_states = transformer_engine.pytorch.distributed.checkpoint(
                            custom(l, l + 1, is_transformer_engine=True),
                            self.distribute_saved_activations,
                            tensor_parallel.get_cuda_rng_tracker,
                            mpu.get_tensor_model_parallel_group(),
Mostofa Patwary's avatar
Mostofa Patwary committed
1136
1137
                            hidden_states, attention_mask, encoder_output,
                            enc_dec_attn_mask, rotary_pos_emb)
1138
1139
1140
1141
                    else:
                        hidden_states = tensor_parallel.checkpoint(
                            custom(l, l + 1),
                            self.distribute_saved_activations,
Mostofa Patwary's avatar
Mostofa Patwary committed
1142
1143
                            hidden_states, attention_mask, encoder_output,
                            enc_dec_attn_mask, rotary_pos_emb)
1144
                else:
1145
1146
                    if self.transformer_impl == 'transformer_engine':
                        hidden_states = custom(l, l + 1, is_transformer_engine=True)(
Mostofa Patwary's avatar
Mostofa Patwary committed
1147
1148
                            hidden_states, attention_mask, encoder_output,
                            enc_dec_attn_mask, rotary_pos_emb)
1149
1150
                    else:
                        hidden_states = custom(l, l + 1)(
Mostofa Patwary's avatar
Mostofa Patwary committed
1151
1152
                            hidden_states, attention_mask, encoder_output,
                            enc_dec_attn_mask, rotary_pos_emb)
1153
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1154
            raise ValueError("Invalid activation recompute method.")
1155
1156
1157

        return hidden_states

1158
    def set_input_tensor(self, input_tensor):
1159
1160
1161
1162
1163
1164
1165
        """Set input tensor to be used instead of forward()'s input.

        When doing pipeline parallelism the input from the previous
        stage comes from communication, not from the input, so the
        model's forward_step_func won't have it. This function is thus
        used by internal code to bypass the input provided by the
        forward_step_func"""
1166
1167
        self.input_tensor = input_tensor

1168
    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
1169
                encoder_output=None, enc_dec_attn_mask=None,
Mostofa Patwary's avatar
Mostofa Patwary committed
1170
                inference_params=None, rotary_pos_emb=None):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1171
1172
        # hidden_states: [s, b, h]

1173
        # Checks.
mshoeybi's avatar
mshoeybi committed
1174
        if inference_params:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1175
            assert self.recompute_granularity is None, \
1176
                'inference does not work with activation checkpointing'
1177

1178
        if not self.pre_process:
1179
            # See set_input_tensor()
1180
            hidden_states = self.input_tensor
1181

1182
1183
        # Viewless tensor.
        # - We only need to create a viewless tensor in the case of micro batch
1184
1185
1186
1187
        #   size (mbs) == 1, since in this case, 'hidden_states.transpose()'
        #   above creates a view tensor, and '.contiguous()' is a pass-through.
        #   For mbs >= 2, '.contiguous()' creates a new tensor, eliminating
        #   the need to make it viewless.
1188
1189
1190
1191
        #
        #   However, we don't explicitly check mbs == 1 here because
        #   make_viewless_tensor() has negligible overhead when its input
        #   is already viewless.
1192
        #
1193
1194
1195
1196
        # - For the 'else' case above, calling make_viewless_tensor() here is
        #   likely redundant, since p2p_communication.py (likely originator)
        #   already creates viewless tensors. That said, make_viewless_tensor()
        #   is called here to be future-proof and corner-case-proof.
1197
        hidden_states = core.utils.make_viewless_tensor(
1198
            hidden_states,
1199
1200
            requires_grad=True,
            keep_graph=True,
1201
1202
        )

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1203
        if self.sequence_parallel:
1204
            rng_context = tensor_parallel.get_cuda_rng_tracker().fork()
1205
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1206
            rng_context = nullcontext()
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1207
1208

        with rng_context:
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
            # The fp8_autocast context manager is a no-op when enabled=True
            # The if...else serves to short circuit name resolution for fp8_autocast
            with transformer_engine.pytorch.fp8_autocast(
                enabled=self.use_fp8,
                fp8_recipe=self.fp8_recipe,
                fp8_group=self.fp8_group
            ) if self.use_fp8 else nullcontext():
                # Determine if the current iteration is first microbatch
                if self.num_microbatches_in_previous_step != get_num_microbatches():
                    self.microbatch_count = 0 # Reset count on new batch size rampup interval
                self.num_microbatches_in_previous_step = get_num_microbatches()
                is_first_microbatch = self.microbatch_count % get_num_microbatches() == 0

                # Forward pass.
                if self.recompute_granularity == 'full':
                    hidden_states = self._checkpointed_forward(hidden_states,
                                                               attention_mask,
                                                               encoder_output,
                                                               enc_dec_attn_mask,
Mostofa Patwary's avatar
Mostofa Patwary committed
1228
                                                               rotary_pos_emb,
1229
1230
1231
1232
1233
1234
                                                               is_first_microbatch)
                else:
                    forward_kwargs = {
                        'encoder_output': encoder_output,
                        'enc_dec_attn_mask': enc_dec_attn_mask,
                        'inference_params': inference_params,
Mostofa Patwary's avatar
Mostofa Patwary committed
1235
                        'rotary_pos_emb': rotary_pos_emb,
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
                    }

                    if self.transformer_impl == 'transformer_engine':
                        forward_kwargs['is_first_microbatch'] = is_first_microbatch
                        forward_kwargs['checkpoint_core_attention'] = self.checkpoint_core_attention

                    for index in range(self.num_layers):
                        layer = self._get_layer(index)

                        hidden_states = layer(
                            hidden_states,
                            attention_mask,
                            **forward_kwargs)

                # Skip counter update for eval and activation checkpointing
                if torch.is_grad_enabled() and self.training:
                    self.microbatch_count += 1
mshoeybi's avatar
mshoeybi committed
1253

1254
        # Final layer norm.
1255
        if self.post_process and self.post_layer_norm:
1256
1257
            hidden_states = self.final_layernorm(hidden_states)

1258
        return hidden_states