training.py 41 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Pretrain utilities."""
17
18
19

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
20
import sys
21
22
23
24
import time
# The earliest we can measure the start time.
_TRAIN_START_TIME = time.time()

25
26
27
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

Neel Kant's avatar
Neel Kant committed
28
from megatron import get_args
Mohammad's avatar
Mohammad committed
29
30
from megatron import get_timers
from megatron import get_tensorboard_writer
31
from megatron import get_current_global_batch_size
mohammad's avatar
mohammad committed
32
from megatron import get_num_microbatches
mohammad's avatar
mohammad committed
33
from megatron import is_last_rank
mohammad's avatar
mohammad committed
34
from megatron import update_num_microbatches
35
from megatron import mpu
Neel Kant's avatar
Neel Kant committed
36
from megatron import print_rank_0
37
from megatron import print_rank_last
Mohammad's avatar
Mohammad committed
38
39
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
40
from megatron.model import FP16Module
mohammad's avatar
mohammad committed
41
from megatron.optimizer import get_megatron_optimizer
mohammad's avatar
mohammad committed
42

Mohammad's avatar
Mohammad committed
43
from megatron.initialize import initialize_megatron
44
from megatron.initialize import write_args_to_tensorboard
45
46
from megatron.learning_rates import AnnealingLR
from megatron.model import DistributedDataParallel as LocalDDP
Neel Kant's avatar
Neel Kant committed
47
from megatron.model.realm_model import ICTBertModel
48
from megatron.utils import check_adlr_autoresume_termination
Vijay Korthikanti's avatar
Vijay Korthikanti committed
49
from megatron.data.data_samplers import build_pretraining_data_loader
50
from megatron.utils import report_memory
51
52


53
54
55
56
57
58
59
def print_datetime(string):
    """Note that this call will sync across all ranks."""
    torch.distributed.barrier()
    time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print_rank_0('[' + string + '] datetime: {} '.format(time_str))


60
61
62
63
def pretrain(train_valid_test_dataset_provider, 
             model_provider,
             forward_step_func, 
             extra_args_provider=None, 
Vijay Korthikanti's avatar
Vijay Korthikanti committed
64
             args_defaults={}):
65
66
67
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
68
69
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
70
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
71
        4) train the modle using the forward_step_func.
72
73

    Arguments:
74
75
76
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
77
78
79
80
81
82
83
84
85
86
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
87
88
    """

89
    # Initalize and get arguments, timers, and Tensorboard writer.
90
91
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
92

93
94
95
96
97
98
99
100
    # Adjust the startup time so it reflects the largest value.
    # This will be closer to what scheduler will see (outside of
    # image ... launches.
    global _TRAIN_START_TIME
    start_time_tensor = torch.cuda.FloatTensor([_TRAIN_START_TIME])
    torch.distributed.all_reduce(start_time_tensor,
                                 op=torch.distributed.ReduceOp.MIN)
    _TRAIN_START_TIME = start_time_tensor.item()
mshoeybi's avatar
mshoeybi committed
101
    print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
102
103
104
        time.time() - _TRAIN_START_TIME))
    print_datetime('after megatron is initialized')

105
    args = get_args()
Mohammad's avatar
Mohammad committed
106
    timers = get_timers()
107
108

    # Model, optimizer, and learning rate.
Mohammad's avatar
Mohammad committed
109
110
111
    timers('model and optimizer').start()
    model, optimizer, lr_scheduler = setup_model_and_optimizer(model_provider)
    timers('model and optimizer').stop()
112
113
    print_datetime('after model, optimizer, and learning rate '
                   'scheduler are built')
114
115

    # Data stuff.
116
117
118
    timers('train/valid/test data iterators').start()
    train_data_iterator, valid_data_iterator, test_data_iterator \
        = build_train_valid_test_data_iterators(
Vijay Korthikanti's avatar
Vijay Korthikanti committed
119
            train_valid_test_dataset_provider)
120
    timers('train/valid/test data iterators').stop()
mshoeybi's avatar
mshoeybi committed
121
    print_datetime('after dataloaders are built')
Mohammad's avatar
Mohammad committed
122
123
124

    # Print setup timing.
    print_rank_0('done with setups ...')
125
    timers.log(['model and optimizer', 'train/valid/test data iterators'])
Mohammad's avatar
Mohammad committed
126
    print_rank_0('training ...')
127
128

    iteration = 0
129
    if args.do_train and args.train_iters > 0:
mohammad's avatar
mohammad committed
130
131
132
        iteration = train(forward_step_func,
                          model, optimizer, lr_scheduler,
                          train_data_iterator, valid_data_iterator)
133
    print_datetime('after training is done')
Mohammad's avatar
Mohammad committed
134

135
136
137
    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
138
                                   valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
139
                                   iteration, False)
140
141

    if args.save and iteration != 0:
142
        save_checkpoint(iteration, model, optimizer, lr_scheduler)
143
144
145
146
147
148

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
Mohammad's avatar
Mohammad committed
149
                                   0, True)
150

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
def update_train_iters(args):

    # For iteration-based training, we don't need to do anything
    if args.train_iters:
        return

    # Constant batch size with sample-based training.
    if args.rampup_batch_size is None:
        args.train_iters = args.train_samples // args.global_batch_size

    else:
        # Sample based training with rampup batch size.
        iterations = 0
        consumed_samples = 0
        # Rampup phase.
        while consumed_samples <= int(args.rampup_batch_size[2]):
167
168
            update_num_microbatches(consumed_samples, consistency_check=False)
            consumed_samples += get_current_global_batch_size()
169
170
            iterations += 1
        # Reset
171
        update_num_microbatches(0, consistency_check=False)
172
173
174
175
176
177
178
179
        # Constant phase
        # Note that we throw away any partial last batch.
        iterations += (args.train_samples - consumed_samples) // \
                      args.global_batch_size
        args.train_iters = iterations

    print_rank_0('setting training iterations to {}'.format(args.train_iters))

180

Mohammad's avatar
Mohammad committed
181
def get_model(model_provider_func):
182
    """Build the model."""
Mohammad's avatar
Mohammad committed
183
    args = get_args()
184
185

    # Build model on cpu.
Mohammad's avatar
Mohammad committed
186
    model = model_provider_func()
187

188
    # Set tensor model parallel attributes if not set.
mohammad's avatar
mohammad committed
189
190
191
    # Only parameters that are already tensor model parallel have these
    # attributes set for them. We should make sure the default attributes
    # are set for all params so the optimizer can use them.
192
193
194
    for param in model.parameters():
        mpu.set_defaults_if_not_set_tensor_model_parallel_attributes(param)

195
196
    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
197
        print(' > number of parameters on (tensor, pipeline) '
198
              'model parallel rank ({}, {}): {}'.format(
199
200
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
201
202
203
204
205
206
207
            sum([p.nelement() for p in model.parameters()])), flush=True)

    # GPU allocation.
    model.cuda(torch.cuda.current_device())

    # Fp16 conversion.
    if args.fp16:
208
        model = FP16Module(model)
209
210
211

    if args.DDP_impl == 'torch':
        i = torch.cuda.current_device()
Mohammad's avatar
Mohammad committed
212
213
        model = torchDDP(model, device_ids=[i], output_device=i,
                         process_group=mpu.get_data_parallel_group())
214
215
        return model
    if args.DDP_impl == 'local':
Mohammad's avatar
Mohammad committed
216
        model = LocalDDP(model)
217
218
        return model

219
    raise NotImplementedError('Unknown DDP implementation specified: {}. '
220
                              'Exiting.'.format(args.DDP_impl))
221
222


Mohammad's avatar
Mohammad committed
223
def get_learning_rate_scheduler(optimizer):
224
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
225
    args = get_args()
226

227
228
229
230
231
    # Iteration-based training.
    if args.train_iters:
        if args.lr_decay_iters is None:
            args.lr_decay_iters = args.train_iters
        decay_steps = args.lr_decay_iters * args.global_batch_size
232
233
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
234
235
        else:
            warmup_steps = args.lr_warmup_iters * args.global_batch_size
236
237
238
239
240
    # Sample-based training.
    elif args.train_samples:
        # We need to set training iters for later use. Technically
        # we need to adjust the training samples too (due to last
        # batch being incomplete) but we leave it as is for now.
241
        update_train_iters(args)
242
243
244
        if args.lr_decay_samples is None:
            args.lr_decay_samples = args.train_samples
        decay_steps = args.lr_decay_samples
245
246
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
247
248
        else:
            warmup_steps = args.lr_warmup_samples
249
    else:
250
251
252
        raise Exception(
            'either train-iters or train-samples should be provided.')

253
254
    lr_scheduler = AnnealingLR(
        optimizer,
255
        max_lr=args.lr,
256
        min_lr=args.min_lr,
257
258
        warmup_steps=warmup_steps,
        decay_steps=decay_steps,
259
        decay_style=args.lr_decay_style,
260
261
262
263
264
265
        use_checkpoint_lr_scheduler=args.use_checkpoint_lr_scheduler,
        override_lr_scheduler=args.override_lr_scheduler)

    return lr_scheduler


Mohammad's avatar
Mohammad committed
266
def setup_model_and_optimizer(model_provider_func):
267
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
268
    args = get_args()
269

Mohammad's avatar
Mohammad committed
270
    model = get_model(model_provider_func)
271
272

    unwrapped_model = model
273
    while isinstance(unwrapped_model, (torchDDP, LocalDDP, FP16Module)):
274
275
276
        unwrapped_model = unwrapped_model.module
    optimizer = get_megatron_optimizer(unwrapped_model)

Mohammad's avatar
Mohammad committed
277
    lr_scheduler = get_learning_rate_scheduler(optimizer)
278
279

    if args.load is not None:
280
281
282
283
284
        timers = get_timers()
        # Extra barrier is added to make sure all ranks report the
        # max time.
        torch.distributed.barrier()
        timers('load checkpoint').start()
285
        args.iteration = load_checkpoint(model, optimizer, lr_scheduler)
286
287
288
        torch.distributed.barrier()
        timers('load checkpoint').stop()
        timers.log(['load checkpoint'])
289
290
291
    else:
        args.iteration = 0

mohammad's avatar
mohammad committed
292
    # We only support local DDP with multiple micro-batches.
mohammad's avatar
mohammad committed
293
294
295
    if get_num_microbatches() > 1:
        assert args.DDP_impl == 'local'

Neel Kant's avatar
Neel Kant committed
296
297
298
299
300
    # get model without FP16 and/or TorchDDP wrappers
    unwrapped_model = model
    while hasattr(unwrapped_model, 'module'):
        unwrapped_model = unwrapped_model.module

301
302
    if args.iteration == 0 and hasattr(unwrapped_model,
                                       'init_state_dict_from_bert'):
303
        print("Initializing ICT from pretrained BERT model", flush=True)
304
        unwrapped_model.init_state_dict_from_bert()
Neel Kant's avatar
Neel Kant committed
305

306
307
308
    return model, optimizer, lr_scheduler


309
def communicate(tensor_send_next, tensor_send_prev, recv_forward, recv_backward):
310
    """Communicate tensors between stages."""
311
312
313
314
315
316
    args = get_args()

    # Create placeholder tensors for receive in forward and backward directions
    # if needed.
    tensor_recv_prev = None
    tensor_recv_next = None
317
    tensor_shape = (args.seq_length, args.micro_batch_size, args.hidden_size)
318
319
320
    dtype = args.params_dtype
    if args.fp32_residual_connection:
        dtype = torch.float
321
322
323
    if recv_forward:
        tensor_recv_prev = torch.empty(tensor_shape,
                                       requires_grad=True,
324
                                       device=torch.cuda.current_device(),
325
                                       dtype=dtype)
326
327
328
    if recv_backward:
        tensor_recv_next = torch.empty(tensor_shape,
                                       requires_grad=True,
329
                                       device=torch.cuda.current_device(),
330
                                       dtype=dtype)
331
332

    # Send tensors in both the forward and backward directions as appropriate.
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
    ops = []
    if tensor_send_prev is not None:
        send_prev_op = torch.distributed.P2POp(torch.distributed.isend, tensor_send_prev,
                                               mpu.get_pipeline_model_parallel_prev_rank())
        ops.append(send_prev_op)
    if tensor_recv_prev is not None:
        recv_prev_op = torch.distributed.P2POp(torch.distributed.irecv, tensor_recv_prev,
                                               mpu.get_pipeline_model_parallel_prev_rank())
        ops.append(recv_prev_op)
    if tensor_send_next is not None:
        send_next_op = torch.distributed.P2POp(torch.distributed.isend, tensor_send_next,
                                               mpu.get_pipeline_model_parallel_next_rank())
        ops.append(send_next_op)
    if tensor_recv_next is not None:
        recv_next_op = torch.distributed.P2POp(torch.distributed.irecv, tensor_recv_next,
                                               mpu.get_pipeline_model_parallel_next_rank())
        ops.append(recv_next_op)
    reqs = torch.distributed.batch_isend_irecv(ops)
    for req in reqs:
        req.wait()
353
354
355
356
357

    return tensor_recv_prev, tensor_recv_next


def backward_step(optimizer, model, input_tensor, output_tensor, output_tensor_grad):
358
    """Backward step."""
Mohammad's avatar
Mohammad committed
359
360
    args = get_args()
    timers = get_timers()
361

362
363
364
365
    # Retain the grad on the input_tensor.
    if input_tensor is not None:
        input_tensor.retain_grad()

366
    # Backward pass.
mohammad's avatar
mohammad committed
367
368
369
    if output_tensor_grad is None:
        output_tensor = optimizer.scale_loss(output_tensor)
    torch.autograd.backward(output_tensor, grad_tensors=output_tensor_grad)
370
371
372
373
374
375
376
377
378

    # Collect the grad of the input_tensor.
    input_tensor_grad = None
    if input_tensor is not None:
        input_tensor_grad = input_tensor.grad

    return input_tensor_grad


379
380
381
def forward_step_with_communication(forward_step_func, data_iterator, model,
                                    input_tensors, output_tensors,
                                    losses_reduced, timers):
382
383
    args = get_args()

384
    if not mpu.is_pipeline_first_stage():
385
        timers('forward-recv').start()
386
387
388
389
390
        input_tensor, _ = communicate(
            tensor_send_next=None,
            tensor_send_prev=None,
            recv_forward=True,
            recv_backward=False)
391
        timers('forward-recv').stop()
392
393
394
395
    else:
        input_tensor = None

    # Forward model for one step.
396
    timers('forward-compute').start()
397
    output_tensor = forward_step_func(data_iterator, model, input_tensor)
398
    timers('forward-compute').stop()
399
400
401

    if mpu.is_pipeline_last_stage():
        loss, loss_reduced = output_tensor
mohammad's avatar
mohammad committed
402
        output_tensor = loss / get_num_microbatches()
403
404
        losses_reduced.append(loss_reduced)
    else:
405
        timers('forward-send').start()
406
407
408
409
410
        communicate(
            tensor_send_next=output_tensor,
            tensor_send_prev=None,
            recv_forward=False,
            recv_backward=False)
411
        timers('forward-send').stop()
412
413
414
415
416
417
418
419
420
421
422
423

    input_tensors.append(input_tensor)
    output_tensors.append(output_tensor)


def backward_step_with_communication(optimizer, model, input_tensors, output_tensors, timers):
    input_tensor = input_tensors.pop(0)
    output_tensor = output_tensors.pop(0)

    if mpu.is_pipeline_last_stage():
        output_tensor_grad = None
    else:
424
        timers('backward-recv').start()
425
426
427
428
429
        _, output_tensor_grad = communicate(
            tensor_send_next=None,
            tensor_send_prev=None,
            recv_forward=False,
            recv_backward=True)
430
        timers('backward-recv').stop()
431
432

    # Backward pass for one step.
433
    timers('backward-compute').start()
434
435
    input_grad_tensor = \
        backward_step(optimizer, model, input_tensor, output_tensor, output_tensor_grad)
436
    timers('backward-compute').stop()
437
438

    if not mpu.is_pipeline_first_stage():
439
        timers('backward-send').start()
440
441
442
443
444
        communicate(
            tensor_send_next=None,
            tensor_send_prev=input_grad_tensor,
            recv_forward=False,
            recv_backward=False)
445
        timers('backward-send').stop()
446
447


448
449
450
451
452
def forward_and_backward_steps_with_communication(forward_step_func, data_iterator, model,
                                                  optimizer,
                                                  input_tensor, last_microbatch,
                                                  input_tensors, output_tensors,
                                                  losses_reduced, timers):
453
454
    args = get_args()

455
456
457
458
459
460
461
    # Forward model for one step.
    timers('forward-compute').start()
    output_tensor = forward_step_func(data_iterator, model, input_tensor)
    timers('forward-compute').stop()

    if mpu.is_pipeline_last_stage():
        loss, loss_reduced = output_tensor
mohammad's avatar
mohammad committed
462
        output_tensor = loss / get_num_microbatches()
463
464
465
        output_tensor_grad = None
        losses_reduced.append(loss_reduced)
    else:
Deepak Narayanan's avatar
Deepak Narayanan committed
466
        timers('forward-send-backward-recv').start()
467
468
469
470
471
        _, output_tensor_grad = communicate(
            tensor_send_next=output_tensor,
            tensor_send_prev=None,
            recv_forward=False,
            recv_backward=True)
Deepak Narayanan's avatar
Deepak Narayanan committed
472
        timers('forward-send-backward-recv').stop()
473
474
475
476
477
478
479
480
481
482
483
484
485
486

    input_tensors.append(input_tensor)
    output_tensors.append(output_tensor)

    input_tensor = input_tensors.pop(0)
    output_tensor = output_tensors.pop(0)

    # Backward pass for one step.
    timers('backward-compute').start()
    input_grad_tensor = \
        backward_step(optimizer, model, input_tensor, output_tensor, output_tensor_grad)
    timers('backward-compute').stop()

    if not mpu.is_pipeline_first_stage():
Deepak Narayanan's avatar
Deepak Narayanan committed
487
        timers('backward-send-forward-recv').start()
488
489
490
491
492
        input_tensor, _ = communicate(
            tensor_send_next=None,
            tensor_send_prev=input_grad_tensor,
            recv_forward=(not last_microbatch),
            recv_backward=False)
Deepak Narayanan's avatar
Deepak Narayanan committed
493
        timers('backward-send-forward-recv').stop()
494
495
496
497
498
499
    else:
        input_tensor = None

    return input_tensor


500
501
502
def forward_backward_no_pipelining(forward_step_func, data_iterator, model,
                                   optimizer, timers):
    """Run forward and backward passes without inter-stage communication."""
503
504
    args = get_args()

505
    losses_reduced = []
mohammad's avatar
mohammad committed
506
    for i in range(get_num_microbatches()):
507
508
        timers('forward-compute').start()
        loss, loss_reduced = forward_step_func(data_iterator, model, input_tensor=None)
mohammad's avatar
mohammad committed
509
        output_tensor = loss / get_num_microbatches()
510
511
512
513
514
515
516
517
518
519
        losses_reduced.append(loss_reduced)
        timers('forward-compute').stop()

        timers('backward-compute').start()
        output_tensor_grad = None
        backward_step(optimizer, model, input_tensor=None,
                      output_tensor=output_tensor, output_tensor_grad=None)
        timers('backward-compute').stop()

    return losses_reduced
520

521
522
523
524
525
526
527

def forward_backward_pipelining(forward_step_func, data_iterator, model,
                                optimizer, timers):
    """Run 1F1B schedule, with communication and warmup + cooldown microbatches as needed."""
    args = get_args()

    # Compute number of warmup microbatches.
mohammad's avatar
mohammad committed
528
    num_microbatches = get_num_microbatches()
529
530
531
532
533
    num_warmup_microbatches = \
        (mpu.get_pipeline_model_parallel_world_size() -
         mpu.get_pipeline_model_parallel_rank() - 1)
    num_warmup_microbatches = min(
        num_warmup_microbatches,
534
535
536
        num_microbatches)
    num_microbatches_remaining = \
        num_microbatches - num_warmup_microbatches
537
538
539
540
541

    input_tensors = []
    output_tensors = []
    losses_reduced = []

542
543
    # Run warmup forward passes.
    for i in range(num_warmup_microbatches):
544
545
546
547
        forward_step_with_communication(
            forward_step_func, data_iterator, model,
            input_tensors, output_tensors,
            losses_reduced, timers)
548

549
    # Before running 1F1B, need to receive first forward tensor.
550
551
    # If all microbatches are run in warmup / cooldown phase, then no need to
    # receive this tensor here.
552
    if num_microbatches_remaining > 0:
553
554
555
        if mpu.is_pipeline_first_stage():
            input_tensor = None
        else:
556
            timers('forward-recv').start()
557
558
559
560
            input_tensor, _ = communicate(tensor_send_next=None,
                                          tensor_send_prev=None,
                                          recv_forward=True,
                                          recv_backward=False)
561
            timers('forward-recv').stop()
562
563

    # Run 1F1B.
564
565
    for i in range(num_microbatches_remaining):
        last_iteration = (i == (num_microbatches_remaining - 1))
566
567
568
569
570
571
572
        input_tensor = \
            forward_and_backward_steps_with_communication(forward_step_func, data_iterator, model,
                                                          optimizer,
                                                          input_tensor, last_iteration,
                                                          input_tensors, output_tensors,
                                                          losses_reduced, timers)

573
574
    # Run cooldown backward passes.
    for i in range(num_warmup_microbatches):
575
576
577
578
579
580
581
582
583
584
585
586
587
        backward_step_with_communication(
            optimizer, model, input_tensors, output_tensors, timers)

    return losses_reduced


def train_step(forward_step_func, data_iterator,
               model, optimizer, lr_scheduler):
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
mohammad's avatar
mohammad committed
588
    optimizer.zero_grad()
589
590
591
592
593
594
595

    if mpu.get_pipeline_model_parallel_world_size() > 1:
        losses_reduced = forward_backward_pipelining(
            forward_step_func, data_iterator, model, optimizer, timers)
    else:
        losses_reduced = forward_backward_no_pipelining(
            forward_step_func, data_iterator, model, optimizer, timers)
596
597
598

    # All-reduce if needed.
    if args.DDP_impl == 'local':
599
        timers('backward-params-all-reduce').start()
600
601
        model.allreduce_params(reduce_after=False,
                               fp32_allreduce=args.fp32_allreduce)
602
        timers('backward-params-all-reduce').stop()
603

604
605
606
607
    # All-reduce word_embeddings' grad across first and last stages to ensure
    # that word_embeddings parameters stay in sync.
    # This should only run for models that support pipelined model parallelism
    # (BERT and GPT-2).
608
    timers('backward-embedding-all-reduce').start()
609
    if (mpu.is_pipeline_first_stage() or mpu.is_pipeline_last_stage()) and \
610
            mpu.get_pipeline_model_parallel_world_size() > 1:
611
        unwrapped_model = model
612
        while isinstance(unwrapped_model, (torchDDP, LocalDDP, FP16Module)):
613
614
            unwrapped_model = unwrapped_model.module

615
616
617
618
        if unwrapped_model.share_word_embeddings:
            word_embeddings_weight = unwrapped_model.word_embeddings_weight()
            torch.distributed.all_reduce(word_embeddings_weight.grad,
                                         group=mpu.get_embedding_group())
619
    timers('backward-embedding-all-reduce').stop()
620

621
622
    # Update parameters.
    timers('optimizer').start()
mohammad's avatar
mohammad committed
623
    update_successfull = optimizer.step()
624
625
626
    timers('optimizer').stop()

    # Update learning rate.
mohammad's avatar
mohammad committed
627
    if update_successfull:
628
629
630
631
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
        lr_scheduler.step(increment=increment)
mohammad's avatar
mohammad committed
632
        skipped_iter = 0
633
634
635
    else:
        skipped_iter = 1

636
    if mpu.is_pipeline_last_stage():
637
638
639
640
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
641
            loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
642
643
        return loss_reduced, skipped_iter
    return {}, skipped_iter
644
645


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
646
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
mohammad's avatar
mohammad committed
647
                 loss_scale, report_memory_flag, skipped_iter):
Mohammad's avatar
Mohammad committed
648
649
650
651
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
652

mohammad's avatar
mohammad committed
653
654
    # Advanced, skipped, and Nan iterations.
    advanced_iters_key = 'advanced iterations'
mohammad's avatar
mohammad committed
655
    skipped_iters_key = 'skipped iterations'
mohammad's avatar
mohammad committed
656
657
658
659
660
661
662
663
664
    nan_iters_key = 'nan iterations'
    # Advanced iterations.
    if not skipped_iter:
        total_loss_dict[advanced_iters_key] = total_loss_dict.get(
            advanced_iters_key, 0) + 1
    else:
        if advanced_iters_key not in total_loss_dict:
            total_loss_dict[advanced_iters_key] = 0
    # Skipped iterations.
mohammad's avatar
mohammad committed
665
666
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
mohammad's avatar
mohammad committed
667
    # Update losses and set nan iterations
mohammad's avatar
mohammad committed
668
    got_nan = False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
669
    for key in loss_dict:
mohammad's avatar
mohammad committed
670
        if not skipped_iter:
671
672
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
mohammad's avatar
mohammad committed
673
674
675
676
677
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
mohammad's avatar
mohammad committed
678
            got_nan = got_nan or is_nan
mohammad's avatar
mohammad committed
679
680
    total_loss_dict[nan_iters_key] = total_loss_dict.get(
        nan_iters_key, 0) + int(got_nan)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
681
682
683

    # Logging.
    timers_to_log = []
Neel Kant's avatar
Neel Kant committed
684

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
685
686
687
    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
688
689
690
    add_to_logging('forward-compute')
    add_to_logging('forward-recv')
    add_to_logging('forward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
691
    add_to_logging('forward-send-backward-recv')
692
693
694
    add_to_logging('backward-compute')
    add_to_logging('backward-recv')
    add_to_logging('backward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
695
    add_to_logging('backward-send-forward-recv')
696
    add_to_logging('backward-params-all-reduce')
697
    add_to_logging('backward-embedding-all-reduce')
698
    add_to_logging('optimizer-copy-to-main-grad')
mohammad's avatar
mohammad committed
699
    add_to_logging('optimizer-unscale-and-check-inf')
700
701
    add_to_logging('optimizer-clip-main-grad')
    add_to_logging('optimizer-copy-main-to-model-params')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
702
    add_to_logging('optimizer')
mohammad's avatar
mohammad committed
703
    add_to_logging('batch-generator')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
704

mohammad's avatar
mohammad committed
705
    # Calculate batch size.
mshoeybi's avatar
mshoeybi committed
706
707
708
    batch_size = args.micro_batch_size * args.data_parallel_size * \
        get_num_microbatches()

mohammad's avatar
mohammad committed
709
710
711
    total_iterations = total_loss_dict[advanced_iters_key] + \
                       total_loss_dict[skipped_iters_key]

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
712
    # Tensorboard values.
mohammad's avatar
mohammad committed
713
714
715
    if writer and is_last_rank():
        writer.add_scalar('learning-rate', learning_rate, iteration)
        writer.add_scalar('learning-rate vs samples', learning_rate,
716
                          args.consumed_train_samples)
mohammad's avatar
mohammad committed
717
718
        writer.add_scalar('batch-size', batch_size, iteration)
        writer.add_scalar('batch-size vs samples', batch_size,
719
                          args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
720
        for key in loss_dict:
mohammad's avatar
mohammad committed
721
722
            writer.add_scalar(key , loss_dict[key], iteration)
            writer.add_scalar(key + ' vs samples', loss_dict[key],
723
                              args.consumed_train_samples)
724
725
726
        writer.add_scalar('loss-scale', loss_scale, iteration)
        writer.add_scalar('loss-scale vs samples', loss_scale,
                          args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
727
        timers.write(timers_to_log, writer, iteration,
mohammad's avatar
mohammad committed
728
                     normalizer=total_iterations)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
729
730
731

    if iteration % args.log_interval == 0:
        elapsed_time = timers('interval time').elapsed()
mohammad's avatar
mohammad committed
732
        elapsed_time_per_iteration = elapsed_time / total_iterations
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
733
        if writer and torch.distributed.get_rank() == 0:
mohammad's avatar
mohammad committed
734
735
            writer.add_scalar('iteration-time',
                              elapsed_time_per_iteration, iteration)
736
737
        log_string = ' iteration {:8d}/{:8d} |'.format(
            iteration, args.train_iters)
mshoeybi's avatar
mshoeybi committed
738
        log_string += ' consumed samples: {:12d} |'.format(
739
            args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
740
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
mohammad's avatar
mohammad committed
741
            elapsed_time_per_iteration * 1000.0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
742
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
mohammad's avatar
mohammad committed
743
        log_string += ' global batch size: {:5d} |'.format(batch_size)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
744
        for key in total_loss_dict:
mohammad's avatar
mohammad committed
745
746
747
748
            if key not in [advanced_iters_key, skipped_iters_key,
                           nan_iters_key]:
                avg = total_loss_dict[key].item() / \
                      float(max(1, total_loss_dict[advanced_iters_key]))
749
750
751
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
752
        log_string += ' loss scale: {:.1f} |'.format(loss_scale)
mohammad's avatar
mohammad committed
753
754
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
mohammad's avatar
mohammad committed
755
        log_string += ' number of nan iterations: {:3d} |'.format(
mohammad's avatar
mohammad committed
756
757
            total_loss_dict[nan_iters_key])
        total_loss_dict[advanced_iters_key] = 0
mohammad's avatar
mohammad committed
758
        total_loss_dict[skipped_iters_key] = 0
mohammad's avatar
mohammad committed
759
        total_loss_dict[nan_iters_key] = 0
760
        print_rank_last(log_string)
761
762
763
        if report_memory_flag and learning_rate > 0.:
            # Report memory after optimizer state has been initialized.
            report_memory('(after {} iterations)'.format(iteration))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
764
765
766
767
768
769
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


770
771
772
773
774
775
776
777
778
779
780
781
def save_checkpoint_and_time(iteration, model, optimizer, lr_scheduler):
    timers = get_timers()
    # Extra barrier is added to make sure
    # all ranks report the max time.
    torch.distributed.barrier()
    timers('save checkpoint').start()
    save_checkpoint(iteration, model, optimizer, lr_scheduler)
    torch.distributed.barrier()
    timers('save checkpoint').stop()
    timers.log(['save checkpoint'])


782
def train(forward_step_func, model, optimizer, lr_scheduler,
783
          train_data_iterator, valid_data_iterator):
784
    """Train the model function."""
Mohammad's avatar
Mohammad committed
785
786
    args = get_args()
    timers = get_timers()
787

788
789
790
    # Write args to tensorboard
    write_args_to_tensorboard()

791
792
793
794
795
796
797
798
799
800
    # Turn on training mode which enables dropout.
    model.train()

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

    timers('interval time').start()
801
    print_datetime('before the start of training step')
802
803
    report_memory_flag = True
    while iteration < args.train_iters:
mohammad's avatar
mohammad committed
804
        update_num_microbatches(args.consumed_train_samples)
805
806
807
808
        loss_dict, skipped_iter = train_step(forward_step_func,
                                             train_data_iterator,
                                             model,
                                             optimizer,
Mohammad's avatar
Mohammad committed
809
                                             lr_scheduler)
810
        iteration += 1
811
        args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
812
                                       args.micro_batch_size * \
mohammad's avatar
mohammad committed
813
                                       get_num_microbatches()
814
815

        # Logging.
816
        loss_scale = optimizer.get_loss_scale().item()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
817
818
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
819
                                          iteration, loss_scale,
mohammad's avatar
mohammad committed
820
                                          report_memory_flag, skipped_iter)
821
822

        # Autoresume
823
824
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
825
            check_adlr_autoresume_termination(iteration, model, optimizer,
826
                                              lr_scheduler)
827
828
829
830
831
832

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
833
                                       valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
834
                                       iteration, False)
835

836
837
838
839
840
841
842
843
        # Checkpointing
        saved_checkpoint = False
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
            save_checkpoint_and_time(iteration, model, optimizer,
                                     lr_scheduler)
            saved_checkpoint = True

844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
        # Exiting based on duration
        if args.exit_duration_in_mins:
            train_time = (time.time() - _TRAIN_START_TIME) / 60.0
            done_cuda = torch.cuda.IntTensor(
                [train_time > args.exit_duration_in_mins])
            torch.distributed.all_reduce(
                done_cuda, op=torch.distributed.ReduceOp.MAX)
            done = done_cuda.item()
            if done:
                if not saved_checkpoint:
                    save_checkpoint_and_time(iteration, model, optimizer,
                                             lr_scheduler)
                print_datetime('exiting program after {} minutes'.format(train_time))                
                sys.exit()

        # Exiting based on iterations        
860
        if args.exit_interval and iteration % args.exit_interval == 0:
861
862
863
            if not saved_checkpoint:
                save_checkpoint_and_time(iteration, model, optimizer,
                                         lr_scheduler)
864
            torch.distributed.barrier()
865
            print_datetime('exiting program at iteration {}'.format(iteration))                
Mohammad's avatar
Mohammad committed
866
            sys.exit()
867

868

mohammad's avatar
mohammad committed
869
    return iteration
870
871


Mohammad's avatar
Mohammad committed
872
def evaluate(forward_step_func, data_iterator, model, verbose=False):
873
    """Evaluation."""
Mohammad's avatar
Mohammad committed
874
    args = get_args()
875
876
877
878
879
880
881
882
883
884
885
886
887

    # Turn on evaluation mode which disables dropout.
    model.eval()

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
888

mohammad's avatar
mohammad committed
889
            for _ in range(get_num_microbatches()):
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
                if not mpu.is_pipeline_first_stage():
                    input_tensor, _ = communicate(
                        tensor_send_next=None,
                        tensor_send_prev=None,
                        recv_forward=True,
                        recv_backward=False)
                else:
                    input_tensor = None

                # Forward evaluation.
                output_tensor = forward_step_func(data_iterator, model, input_tensor)

                if mpu.is_pipeline_last_stage():
                    _, loss_dict = output_tensor
                    # Reduce across processes.
                    for key in loss_dict:
                        total_loss_dict[key] = total_loss_dict.get(key, torch.cuda.FloatTensor([0.0])) + \
                            loss_dict[key]
                else:
                    communicate(
                        tensor_send_next=output_tensor,
                        tensor_send_prev=None,
                        recv_forward=False,
                        recv_backward=False)
914

915
            args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
916
                                           * args.micro_batch_size \
mohammad's avatar
mohammad committed
917
                                           * get_num_microbatches()
918
919
920
921
    # Move model back to the train mode.
    model.train()

    for key in total_loss_dict:
mohammad's avatar
mohammad committed
922
        total_loss_dict[key] /= args.eval_iters * get_num_microbatches()
923
924
925
926
927

    return total_loss_dict

def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
Mohammad's avatar
Mohammad committed
928
                               iteration, verbose=False):
929
    """Helper function to evaluate and dump results on screen."""
930
    args = get_args()
Mohammad's avatar
Mohammad committed
931
932
933
    writer = get_tensorboard_writer()

    total_loss_dict = evaluate(forward_step_func, data_iterator, model, verbose)
934
935
936
937
938
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
939
940
        if writer and is_last_rank():
            writer.add_scalar('{} value-validation'.format(key),
941
942
                              total_loss_dict[key].item(),
                              iteration)
943
944
945
946
947
948
            writer.add_scalar('{} ppl-validation'.format(key), ppl, iteration)
            writer.add_scalar('{} value-validation vs samples'.format(key),
                              total_loss_dict[key].item(),
                              args.consumed_train_samples)
            writer.add_scalar('{} ppl-validation vs samples'.format(key), ppl,
                              args.consumed_train_samples)
949
950

    length = len(string) + 1
951
952
953
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)
954
955


Vijay Korthikanti's avatar
Vijay Korthikanti committed
956
def cyclic_iter(iter):
957
    while True:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
958
        for x in iter:
959
960
            yield x

961
def build_train_valid_test_data_iterators(
Vijay Korthikanti's avatar
Vijay Korthikanti committed
962
        build_train_valid_test_datasets_provider):
963
    """XXX"""
Mohammad's avatar
Mohammad committed
964
    args = get_args()
965

966
967
968
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
969
970
971

    # Backward compatibility, assume fixed batch size.
    if args.iteration > 0 and args.consumed_train_samples == 0:
972
973
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
mohammad's avatar
mohammad committed
974
        args.consumed_train_samples = args.iteration * args.global_batch_size
975
    if args.iteration > 0 and args.consumed_valid_samples == 0:
976
977
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
978
        args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
mohammad's avatar
mohammad committed
979
            args.eval_iters * args.global_batch_size
980

981
    # Data loader only on rank 0 of each model parallel group.
982
    if mpu.get_tensor_model_parallel_rank() == 0:
983
984

        # Number of train/valid/test samples.
985
986
987
988
989
990
        if args.train_samples:
            train_samples = args.train_samples
        else:
            train_samples = args.train_iters * args.global_batch_size
        eval_iters = (args.train_iters // args.eval_interval + 1) * \
                     args.eval_iters
991
        test_iters = args.eval_iters
992
        train_val_test_num_samples = [train_samples,
mohammad's avatar
mohammad committed
993
994
                                      eval_iters * args.global_batch_size,
                                      test_iters * args.global_batch_size]
995
996
997
998
999
1000
1001
1002
1003
1004
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)

        # Build dataloders.
1005
        train_dataloader = build_pretraining_data_loader(
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1006
            train_ds, args.consumed_train_samples)
1007
        valid_dataloader = build_pretraining_data_loader(
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1008
1009
            valid_ds, args.consumed_valid_samples)
        test_dataloader = build_pretraining_data_loader(test_ds, 0)
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
1023
1024
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
1025
1026
1027
1028
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1029

1030
    # Build iterators.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1031
1032
1033
    dl_type = args.dataloader_type
    assert dl_type in ['single', 'cyclic']

1034
    if train_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1035
1036
        train_data_iterator = iter(train_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(train_dataloader))
1037
1038
1039
    else:
        train_data_iterator = None

1040
    if valid_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1041
1042
        valid_data_iterator = iter(valid_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(valid_dataloader))
1043
    else:
1044
        valid_data_iterator = None
1045

1046
    if test_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1047
1048
        test_data_iterator = iter(test_dataloader) if dl_type == 'single' \
                             else iter(cyclic_iter(test_dataloader))
1049
1050
1051
    else:
        test_data_iterator = None

1052
    return train_data_iterator, valid_data_iterator, test_data_iterator