transformer.py 56.8 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
2
3
4

"""Transformer."""
import math
5
from contextlib import nullcontext
6
import torch
7
import torch.nn.functional as F
Jared Casper's avatar
Jared Casper committed
8
from typing import Optional
9

10
from megatron import get_timers, get_args, core, get_num_microbatches
11
from .module import MegatronModule
12
from megatron.core import mpu, tensor_parallel
13
from megatron.core.enums import ModelType
14
from megatron.model import LayerNorm
15
from megatron.model.enums import AttnMaskType, LayerType, AttnType
16
17
from megatron.model.fused_softmax import FusedScaleMaskSoftmax
from megatron.model.fused_bias_gelu import bias_gelu_impl
Mostofa Patwary's avatar
Mostofa Patwary committed
18
from megatron.model.rotary_pos_embedding import apply_rotary_pos_emb
19
from megatron.model.utils import attention_mask_func, openai_gelu, erf_gelu
20

21
22
23
24
25
26
27
28
29
30
try:
    from einops import rearrange
except ImportError:
    rearrange = None

try:
    from flash_attn.flash_attn_interface import flash_attn_unpadded_func
except ImportError:
    flash_attn_unpadded_func = None

31
32
33
34
35
36
37
38
39
40
""" We use the following notation throughout this file:
     h: hidden size
     n: number of attention heads
     p: number of model parallel partitions
     np: n/p
     hp: h/p
     hn: h/n
     b: batch size
     s: sequence length
     l: number of layers
41
    Transformer takes input of size [s, b, h] and returns a
42
43
44
45
    tensor of the same size. We use the following arguments:
        hyperparameters: transformer hyperparameters
"""

46
class DropPath(MegatronModule):
47
    """Drop paths (Stochastic Depth) per sample
48
49
50
    (when applied in main path of residual blocks).
    """

Vijay Korthikanti's avatar
Vijay Korthikanti committed
51
    def __init__(self, drop_prob=0.):
52
53
54
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

Vijay Korthikanti's avatar
Vijay Korthikanti committed
55
    def forward(self, hidden_state):
56
        if self.drop_prob == 0. or not self.training:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
57
            return hidden_state
58
59
        keep_prob = 1 - self.drop_prob
        # work with diff dim tensors, not just 2D ConvNets
60
61
        # hidden_state: [s, b, h]
        shape = (1,) + (hidden_state.shape[1],) + (1,) * (hidden_state.ndim - 2)
62
        random_tensor = keep_prob + \
Vijay Korthikanti's avatar
Vijay Korthikanti committed
63
            torch.rand(shape, dtype=hidden_state.dtype, device=hidden_state.device)
64
        random_tensor.floor_()  # binarize
Vijay Korthikanti's avatar
Vijay Korthikanti committed
65
        output = hidden_state.div(keep_prob) * random_tensor
66
67
        return output

68
69
70
71
72
73
74
75
76
77
78
def _args_to_kwargs():
    args = get_args()

    common_kwargs = {
        "params_dtype": args.params_dtype,
        "use_cpu_initialization": args.use_cpu_initialization,
        "perform_initialization": args.perform_initialization,
        "gradient_accumulation_fusion": args.gradient_accumulation_fusion,
        "sequence_parallel_enabled": args.sequence_parallel,
    }
    return common_kwargs
79

80
81
82
83
84
class ParallelMLP(MegatronModule):
    """MLP.

    MLP will take the input with h hidden state, project it to 4*h
    hidden dimension, perform nonlinear transformation, and project the
hwijeen's avatar
hwijeen committed
85
    state back into h hidden dimension.
86
87
    """

88
    def __init__(self, init_method, output_layer_init_method):
89
        super(ParallelMLP, self).__init__()
Mohammad's avatar
Mohammad committed
90
        args = get_args()
91

92
        self.add_bias = args.add_bias_linear
93

94
        # Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
95
        self.dense_h_to_4h = tensor_parallel.ColumnParallelLinear(
Mohammad's avatar
Mohammad committed
96
            args.hidden_size,
97
98
            args.ffn_hidden_size * 2 if args.swiglu else args.ffn_hidden_size,
            bias=self.add_bias,
99
            gather_output=False,
100
            init_method=init_method,
101
102
103
            skip_bias_add=True,
            async_tensor_model_parallel_allreduce=args.async_tensor_model_parallel_allreduce,
            **_args_to_kwargs())
104

105
106
107
108
        self.bias_gelu_fusion = False
        self.activation_func = None
        self.swiglu = args.swiglu

109
110
111
112
        if args.openai_gelu:
            self.activation_func = openai_gelu
        elif args.onnx_safe:
            self.activation_func = erf_gelu
113
114
115
116
117
118
119
120
121
122
123
124
        elif args.swiglu:
            def swiglu(x):
                x = torch.chunk(x, 2, dim=-1)
                return F.silu(x[0]) * x[1]
            self.activation_func = swiglu
        elif args.squared_relu:
            def squared_relu(x):
                return torch.pow(F.relu(x), 2)
            self.activation_func = squared_relu
        else:
            self.bias_gelu_fusion = args.bias_gelu_fusion
            self.activation_func = F.gelu
125
126

        # Project back to h.
127
        self.dense_4h_to_h = tensor_parallel.RowParallelLinear(
128
            args.ffn_hidden_size,
Mohammad's avatar
Mohammad committed
129
            args.hidden_size,
130
            bias=self.add_bias,
131
            input_is_parallel=True,
132
            init_method=output_layer_init_method,
133
134
            skip_bias_add=True,
            **_args_to_kwargs())
135

136
137
    def forward(self, hidden_states):

138
139
        # [s, b, 4hp]
        intermediate_parallel, bias_parallel = self.dense_h_to_4h(hidden_states)
140

141
        if self.bias_gelu_fusion:
142
143
144
            assert self.add_bias is True
            assert self.activation_func == F.gelu
            intermediate_parallel = bias_gelu_impl(intermediate_parallel, bias_parallel)
145
        else:
Jared Casper's avatar
Jared Casper committed
146
            if bias_parallel is not None:
147
148
                intermediate_parallel = intermediate_parallel + bias_parallel
            intermediate_parallel = self.activation_func(intermediate_parallel)
149
150
151
152

        # [s, b, h]
        output, output_bias = self.dense_4h_to_h(intermediate_parallel)
        return output, output_bias
153

rprenger's avatar
rprenger committed
154
155
156
157
class SwitchMLP(MegatronModule):
    """
    Routes input to one of N MLP "experts"
    """
rprenger's avatar
rprenger committed
158
    def __init__(self, init_method, output_layer_init_method):
rprenger's avatar
rprenger committed
159
160
        super(SwitchMLP, self).__init__()
        args = get_args()
rprenger's avatar
rprenger committed
161
        self.router = torch.nn.Linear(args.hidden_size, args.num_experts)
rprenger's avatar
rprenger committed
162
        self.experts = torch.nn.ModuleList()
rprenger's avatar
rprenger committed
163
        for i in range(args.num_experts):
rprenger's avatar
rprenger committed
164
            self.experts.append(ParallelMLP(init_method, output_layer_init_method))
165

rprenger's avatar
rprenger committed
166
    def forward(self, hidden_states):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
167
168
169
        # hidden_states: [s, b, h]
        s = hidden_states.size(0)
        b = hidden_states.size(1)
rprenger's avatar
rprenger committed
170
171
        h = hidden_states.size(2)
        route = self.router(hidden_states)
rprenger's avatar
rprenger committed
172
        route = torch.nn.functional.softmax(route, dim=2)
rprenger's avatar
rprenger committed
173
        max_prob, max_ind = torch.max(route, dim=2)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
174
        max_prob = torch.unsqueeze(max_prob, 2) # [s b 1]
175

rprenger's avatar
rprenger committed
176
        # TODO (rprenger) TODO this could be made easier to read
Vijay Korthikanti's avatar
Vijay Korthikanti committed
177
        # Converting [s, b, h] to [s*b, h].
178
        # Each vector could be routed differently
Vijay Korthikanti's avatar
Vijay Korthikanti committed
179
180
181
        hidden_states = hidden_states.view(-1, hidden_states.size(2)) # [s*b h]
        max_prob = max_prob.view(-1, max_prob.size(2)) # [s*b 1]
        max_ind = max_ind.view(-1) # [s*b]
rprenger's avatar
rprenger committed
182
183
184

        output_total = torch.empty_like(hidden_states)
        output_bias_total = torch.empty_like(hidden_states)
rprenger's avatar
rprenger committed
185
        #TODO (rprenger) This does each expert in serial, but it could be parallelized
186

rprenger's avatar
rprenger committed
187
        for expert_num, expert in enumerate(self.experts):
188
189
            local_indices = (max_ind == expert_num).nonzero()
            hidden = hidden_states[local_indices,:]
rprenger's avatar
rprenger committed
190
191
            output, output_bias = expert(hidden)
            output_bias = output_bias.expand_as(output)
192
193
194
            output_total[local_indices,:] = output
            output_bias_total[local_indices,:] = output_bias

rprenger's avatar
rprenger committed
195
196
        output_total = output_total*max_prob
        output_bias_total = output_bias_total*max_prob
Vijay Korthikanti's avatar
Vijay Korthikanti committed
197
198
        output_total = output_total.view(s, b, h)
        output_bias_total = output_bias_total.view(s, b, h)
rprenger's avatar
rprenger committed
199
200

        return output_total, output_bias_total
201

202
203

class CoreAttention(MegatronModule):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
204

205
206
207
208
209
210
211
212
213
214
215
216
217
    def __init__(self, layer_number,
                 attn_mask_type=AttnMaskType.padding):
        super(CoreAttention, self).__init__()
        args = get_args()
        self.fp16 = args.fp16
        self.bf16 = args.bf16

        self.apply_query_key_layer_scaling = args.apply_query_key_layer_scaling
        self.attention_softmax_in_fp32 = args.attention_softmax_in_fp32
        if self.apply_query_key_layer_scaling:
            self.attention_softmax_in_fp32 = True
        self.layer_number = max(1, layer_number)
        self.attn_mask_type = attn_mask_type
Vijay Korthikanti's avatar
Vijay Korthikanti committed
218
        self.sequence_parallel = args.sequence_parallel
219
220
221
222

        projection_size = args.kv_channels * args.num_attention_heads

        # Per attention head and per partition values.
223
        world_size = mpu.get_tensor_model_parallel_world_size()
224
225
226
        self.hidden_size_per_partition = core.utils.divide(projection_size,
                                                           world_size)
        self.hidden_size_per_attention_head = core.utils.divide(
227
            projection_size, args.num_attention_heads)
228
        self.num_attention_heads_per_partition = core.utils.divide(
229
            args.num_attention_heads, world_size)
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

        coeff = None
        self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
        if self.apply_query_key_layer_scaling:
            coeff = self.layer_number
            self.norm_factor *= coeff

        self.scale_mask_softmax = FusedScaleMaskSoftmax(
            self.fp16, self.bf16,
            self.attn_mask_type,
            args.masked_softmax_fusion,
            attention_mask_func,
            self.attention_softmax_in_fp32,
            coeff)

        # Dropout. Note that for a single iteration, this layer will generate
        # different outputs on different number of parallel partitions but
        # on average it should not be partition dependent.
        self.attention_dropout = torch.nn.Dropout(args.attention_dropout)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
249

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
    def forward(self, query_layer, key_layer,
                value_layer, attention_mask):

        # ===================================
        # Raw attention scores. [b, np, s, s]
        # ===================================

        # [b, np, sq, sk]
        output_size = (query_layer.size(1),
                       query_layer.size(2),
                       query_layer.size(0),
                       key_layer.size(0))

        # [sq, b, np, hn] -> [sq, b * np, hn]
        query_layer = query_layer.view(output_size[2],
                                       output_size[0] * output_size[1], -1)
        # [sk, b, np, hn] -> [sk, b * np, hn]
        key_layer = key_layer.view(output_size[3],
                                   output_size[0] * output_size[1], -1)

Vijay Korthikanti's avatar
Vijay Korthikanti committed
270
        # preallocting input tensor: [b * np, sq, sk]
271
        matmul_input_buffer = mpu.get_global_memory_buffer().get_tensor(
272
            (output_size[0]*output_size[1], output_size[2], output_size[3]),
Vijay Korthikanti's avatar
Vijay Korthikanti committed
273
            query_layer.dtype, "mpu")
274
275
276

        # Raw attention scores. [b * np, sq, sk]
        matmul_result = torch.baddbmm(
Vijay Korthikanti's avatar
Vijay Korthikanti committed
277
            matmul_input_buffer,
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
            query_layer.transpose(0, 1),   # [b * np, sq, hn]
            key_layer.transpose(0, 1).transpose(1, 2),  # [b * np, hn, sk]
            beta=0.0, alpha=(1.0/self.norm_factor))

        # change view to [b, np, sq, sk]
        attention_scores = matmul_result.view(*output_size)

        # ===========================
        # Attention probs and dropout
        # ===========================

        # attention scores and attention mask [b, np, sq, sk]
        attention_probs = self.scale_mask_softmax(attention_scores,
                                                  attention_mask)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
295
        if not self.sequence_parallel:
296
            with tensor_parallel.get_cuda_rng_tracker().fork():
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
                attention_probs = self.attention_dropout(attention_probs)
        else:
            attention_probs = self.attention_dropout(attention_probs)

        # =========================
        # Context layer. [sq, b, hp]
        # =========================

        # value_layer -> context layer.
        # [sk, b, np, hn] --> [b, np, sq, hn]

        # context layer shape: [b, np, sq, hn]
        output_size = (value_layer.size(1),
                       value_layer.size(2),
                       query_layer.size(0),
                       value_layer.size(3))

        # change view [sk, b * np, hn]
        value_layer = value_layer.view(value_layer.size(0),
                                       output_size[0] * output_size[1], -1)

        # change view [b * np, sq, sk]
        attention_probs = attention_probs.view(output_size[0] * output_size[1],
                                               output_size[2], -1)

        # matmul: [b * np, sq, hn]
        context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))

        # change view [b, np, sq, hn]
        context_layer = context_layer.view(*output_size)

        # [b, np, sq, hn] --> [sq, b, np, hn]
        context_layer = context_layer.permute(2, 0, 1, 3).contiguous()

        # [sq, b, np, hn] --> [sq, b, hp]
        new_context_layer_shape = context_layer.size()[:-2] + \
            (self.hidden_size_per_partition,)
        context_layer = context_layer.view(*new_context_layer_shape)

        return context_layer


339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
class FlashSelfAttention(torch.nn.Module):
    """Implement the scaled dot product attention with softmax.
    Arguments
    ---------
        softmax_scale: The temperature to use for the softmax attention.
                      (default: 1/sqrt(d_keys) where d_keys is computed at
                      runtime)
        attention_dropout: The dropout rate to apply to the attention
                           (default: 0.0)
    """
    def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0,
                 device=None, dtype=None):
        super().__init__()
        assert flash_attn_unpadded_func is not None, ('Please install FlashAttention first, '
                                                      'e.g., with pip install flash-attn')
        assert rearrange is not None, 'Please install einops first, e.g., with pip install einops'
        self.causal = causal
        self.softmax_scale = softmax_scale
        self.dropout_p = attention_dropout

    def forward(self, q, k, v):
        """Implements the multihead softmax attention.
        Arguments
        ---------
            q, k, v: The tensor containing the query, key, and value. (B, S, H, D)
        """
Jimmy Zhang's avatar
Jimmy Zhang committed
365
366
367

        assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q,k,v)))
        assert all((i.is_cuda for i in (q,k,v)))
Jimmy Zhang's avatar
Jimmy Zhang committed
368
369

        batch_size, seqlen_q = q.shape[0], q.shape[1]
Jimmy Zhang's avatar
Jimmy Zhang committed
370
        seqlen_k = k.shape[1]
Jimmy Zhang's avatar
Jimmy Zhang committed
371

Jimmy Zhang's avatar
Jimmy Zhang committed
372
373
        q, k, v = [rearrange(x, 'b s ... -> (b s) ...') for x in [q, k, v]]
        cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32,
Jimmy Zhang's avatar
Jimmy Zhang committed
374
375
                                    device=q.device)

Jimmy Zhang's avatar
Jimmy Zhang committed
376
377
378
379
380
381
382
        if self.training:
            # during training q,k,v always have same seqlen
            assert seqlen_k == seqlen_q

            is_causal = self.causal
            cu_seqlens_k = cu_seqlens_q
        else:
Jimmy Zhang's avatar
Jimmy Zhang committed
383
            # turn off FA causal mask after first inference autoregressive iteration
Jimmy Zhang's avatar
Jimmy Zhang committed
384
            # only on first autoregressive step q,k,v have same seqlen
Jimmy Zhang's avatar
Jimmy Zhang committed
385
386
            is_causal = seqlen_q == seqlen_k
            cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32,
Jimmy Zhang's avatar
Jimmy Zhang committed
387
                        device=q.device)
Jimmy Zhang's avatar
Jimmy Zhang committed
388
            self.dropout_p = 0
Jimmy Zhang's avatar
Jimmy Zhang committed
389

Jimmy Zhang's avatar
Jimmy Zhang committed
390
391
        output = flash_attn_unpadded_func(
            q, k, v, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen_k,
Jimmy Zhang's avatar
Jimmy Zhang committed
392
            self.dropout_p,
Jimmy Zhang's avatar
Jimmy Zhang committed
393
394
            softmax_scale=self.softmax_scale, causal=is_causal
        )
Jimmy Zhang's avatar
Jimmy Zhang committed
395

396
397
398
399
        output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
        return output


400
class ParallelAttention(MegatronModule):
401
402
    """Parallel self-attention layer abstract class.

Vijay Korthikanti's avatar
Vijay Korthikanti committed
403
    Self-attention layer takes input with size [s, b, h]
404
405
    and returns output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
406

407
    def __init__(self, init_method,
408
409
410
411
                 output_layer_init_method, layer_number,
                 attention_type=AttnType.self_attn,
                 attn_mask_type=AttnMaskType.padding):
        super(ParallelAttention, self).__init__()
Mohammad's avatar
Mohammad committed
412
        args = get_args()
413
        self.layer_number = max(1, layer_number)
414
415
        self.attention_type = attention_type
        self.attn_mask_type = attn_mask_type
416
        self.params_dtype = args.params_dtype
417
418
419
420
421
422
423
424
425
426
427
428
429
        self.sequence_parallel = args.sequence_parallel

        self.use_flash_attn = args.use_flash_attn
        if self.use_flash_attn:
            if flash_attn_unpadded_func is None:
                raise ImportError('FlashAttention is not installed, please install with '
                                  'pip install flash-attn')
            assert attention_type == AttnType.self_attn, ('FlashAttention code path only supports '
                                                          'self-attention for now')
            assert self.attn_mask_type == AttnMaskType.causal, ('FlashAttention code path only '
                                                                'supports causal mask for now')
            if rearrange is None:
                raise ImportError('einops is not installed, please install with pip install einops')
430
431

        projection_size = args.kv_channels * args.num_attention_heads
432
433

        # Per attention head and per partition values.
434
        world_size = mpu.get_tensor_model_parallel_world_size()
435
        self.hidden_size_per_attention_head = core.utils.divide(
436
            projection_size, args.num_attention_heads)
437
        self.num_attention_heads_per_partition = core.utils.divide(
Mohammad's avatar
Mohammad committed
438
            args.num_attention_heads, world_size)
439
440

        # Strided linear layer.
441
        if attention_type == AttnType.self_attn:
442
            self.query_key_value = tensor_parallel.ColumnParallelLinear(
443
444
                args.hidden_size,
                3 * projection_size,
445
                bias=args.add_bias_linear,
446
                gather_output=False,
447
448
449
                init_method=init_method,
                async_tensor_model_parallel_allreduce=args.async_tensor_model_parallel_allreduce,
                **_args_to_kwargs())
450
451
        else:
            assert attention_type == AttnType.cross_attn
452
            self.query = tensor_parallel.ColumnParallelLinear(
453
454
                args.hidden_size,
                projection_size,
455
                bias=args.add_bias_linear,
456
                gather_output=False,
457
458
459
                init_method=init_method,
                async_tensor_model_parallel_allreduce=args.async_tensor_model_parallel_allreduce,
                **_args_to_kwargs())
460

461

462
            self.key_value = tensor_parallel.ColumnParallelLinear(
463
464
                args.hidden_size,
                2 * projection_size,
465
                bias=args.add_bias_linear,
466
                gather_output=False,
467
468
469
                init_method=init_method,
                async_tensor_model_parallel_allreduce=args.async_tensor_model_parallel_allreduce,
                **_args_to_kwargs())
470

471
472
        self.core_attention = CoreAttention(self.layer_number,
                                            self.attn_mask_type)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
473
        self.checkpoint_core_attention = args.recompute_granularity == 'selective'
474

475
476
477
478
479
        if self.use_flash_attn:
            self.core_attention_flash = FlashSelfAttention(
                causal=True, attention_dropout=args.attention_dropout
            )

480
        # Output.
481
        self.dense = tensor_parallel.RowParallelLinear(
482
            projection_size,
Mohammad's avatar
Mohammad committed
483
            args.hidden_size,
484
            bias=args.add_bias_linear,
485
            input_is_parallel=True,
486
            init_method=output_layer_init_method,
487
488
            skip_bias_add=True,
            **_args_to_kwargs())
Vijay Korthikanti's avatar
Vijay Korthikanti committed
489

490
    def _checkpointed_attention_forward(self, query_layer, key_layer,
Mostofa Patwary's avatar
Mostofa Patwary committed
491
492
                                        value_layer, attention_mask,
                                        rotary_pos_emb=None):
493
494
495
496
497
498
499
500
501
502
        """Forward method with activation checkpointing."""
        def custom_forward(*inputs):
            query_layer = inputs[0]
            key_layer = inputs[1]
            value_layer = inputs[2]
            attention_mask = inputs[3]
            output_ = self.core_attention(query_layer, key_layer,
                                          value_layer, attention_mask)
            return output_

Mostofa Patwary's avatar
Mostofa Patwary committed
503
504
505
        q_pos_emb, k_pos_emb = (None, None) if rotary_pos_emb is None \
            else rotary_pos_emb

506
        hidden_states = tensor_parallel.checkpoint(
507
            custom_forward,
Mostofa Patwary's avatar
Mostofa Patwary committed
508
509
            False, query_layer, key_layer, value_layer, attention_mask,
            q_pos_emb, k_pos_emb)
510
511

        return hidden_states
512
513
514
515
516
517
518
519
520
521
522

    def _allocate_memory(self, inference_max_sequence_len, batch_size):
        return torch.empty(
            inference_max_sequence_len,
            batch_size,
            self.num_attention_heads_per_partition,
            self.hidden_size_per_attention_head,
            dtype=self.params_dtype,
            device=torch.cuda.current_device())

    def forward(self, hidden_states, attention_mask,
Mostofa Patwary's avatar
Mostofa Patwary committed
523
524
                encoder_output=None, inference_params=None,
                rotary_pos_emb=None):
525
        # hidden_states: [sq, b, h]
526

527
528
529
        # =================================================
        # Pre-allocate memory for key-values for inference.
        # =================================================
Mostofa Patwary's avatar
Mostofa Patwary committed
530
        is_first_step = False
mshoeybi's avatar
mshoeybi committed
531
        if inference_params:
532
            if self.layer_number not in inference_params.key_value_memory_dict:
mshoeybi's avatar
mshoeybi committed
533
                inf_max_seq_len = inference_params.max_sequence_len
mshoeybi's avatar
mshoeybi committed
534
                inf_max_batch_size = inference_params.max_batch_size
535
                inference_key_memory = self._allocate_memory(
mshoeybi's avatar
mshoeybi committed
536
                    inf_max_seq_len, inf_max_batch_size)
537
                inference_value_memory = self._allocate_memory(
mshoeybi's avatar
mshoeybi committed
538
                    inf_max_seq_len, inf_max_batch_size)
539
540
                inference_params.key_value_memory_dict[self.layer_number] = (
                    inference_key_memory, inference_value_memory)
Mostofa Patwary's avatar
Mostofa Patwary committed
541
                is_first_step = True
542
543
544
            else:
                inference_key_memory, inference_value_memory = \
                    inference_params.key_value_memory_dict[self.layer_number]
mshoeybi's avatar
mshoeybi committed
545

546
547
548
        # =====================
        # Query, Key, and Value
        # =====================
549

550
551
552
553
554
555
556
557
558
559
560
561
562
        if self.attention_type == AttnType.self_attn:
            # Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
            mixed_x_layer, _ = self.query_key_value(hidden_states)

            # [sq, b, (np * 3 * hn)] --> [sq, b, np, 3 * hn]
            new_tensor_shape = mixed_x_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 3 * self.hidden_size_per_attention_head)
            mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)

            # [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
            (query_layer,
             key_layer,
563
             value_layer) = tensor_parallel.split_tensor_along_last_dim(mixed_x_layer, 3)
564
565
566
567
568
569
570
571
572
573
574
575
        else:
            # Attention heads [sk, b, h] --> [sk, b, (np * 2 * hn)]
            mixed_kv_layer, _ = self.key_value(encoder_output)

            # [sk, b, (np * 2 * hn)] --> [sk, b, np, 2 * hn]
            new_tensor_shape = mixed_kv_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 2 * self.hidden_size_per_attention_head)
            mixed_kv_layer = mixed_kv_layer.view(*new_tensor_shape)

            # [sk, b, np, 2 * hn] --> 2 [sk, b, np, hn]
            (key_layer,
576
             value_layer) = tensor_parallel.split_tensor_along_last_dim(mixed_kv_layer, 2)
577
578
579
580
581
582
583
584

            # Attention head [sq, b, h] --> [sq, b, hp]
            query_layer, _ = self.query(hidden_states)
            # [sq, b, hp] --> [sq, b, np, hn]
            new_tensor_shape = query_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 self.hidden_size_per_attention_head)
            query_layer = query_layer.view(*new_tensor_shape)
585

mshoeybi's avatar
mshoeybi committed
586
587
588
        # ==================================
        # Adjust key and value for inference
        # ==================================
589

Mostofa Patwary's avatar
Mostofa Patwary committed
590
591
        # duplicate the pos_emb for self attention
        if rotary_pos_emb is not None:
Mostofa Patwary's avatar
Mostofa Patwary committed
592
593
594
595
            if isinstance(rotary_pos_emb, tuple):
                rotary_pos_emb = rotary_pos_emb
            else:
                rotary_pos_emb = ((rotary_pos_emb,) * 2)
Mostofa Patwary's avatar
Mostofa Patwary committed
596

mshoeybi's avatar
mshoeybi committed
597
        if inference_params:
mshoeybi's avatar
mshoeybi committed
598
599
            batch_start = inference_params.batch_size_offset
            batch_end = batch_start + key_layer.size(1)
600
            assert batch_end <= inference_key_memory.size(1)
mshoeybi's avatar
mshoeybi committed
601
602
            sequence_start = inference_params.sequence_len_offset
            sequence_end = sequence_start + key_layer.size(0)
603
            assert sequence_end <= inference_key_memory.size(0)
604
            # Copy key and values.
605
606
607
608
609
            inference_key_memory[sequence_start:sequence_end,
                                 batch_start:batch_end, ...] = key_layer
            inference_value_memory[sequence_start:sequence_end,
                                   batch_start:batch_end, ...] = value_layer
            key_layer = inference_key_memory[
mshoeybi's avatar
mshoeybi committed
610
                :sequence_end, batch_start:batch_end, ...]
611
            value_layer = inference_value_memory[
mshoeybi's avatar
mshoeybi committed
612
                :sequence_end, batch_start:batch_end, ...]
613

Mostofa Patwary's avatar
Mostofa Patwary committed
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635

            # adjust the key rotary positional embedding
            if rotary_pos_emb is not None:
                q_pos_emb, k_pos_emb = rotary_pos_emb
                # need to cross check this condition during inference
                # if not set_inference_key_value_memory:
                if not is_first_step:
                    # In inference, we compute one token at a time.
                    # Select the correct positional embedding
                    # (only the last token in the sequence)
                    q_pos_emb = q_pos_emb[sequence_end - 1 : sequence_end]
                else:
                    # In the first forward pass of inference,
                    # we use the entire provided prefix.
                    # q_pos_emb here has the rope embeddings of the entire
                    # prefix + to-be-generated output so
                    # we slice to just the prefix.
                    q_pos_emb = q_pos_emb[:sequence_end, :, :, :]
                k_pos_emb = k_pos_emb[:sequence_end, :, :, :]
                rotary_pos_emb = (q_pos_emb, k_pos_emb)


636
637
638
        # ==================================
        # core attention computation
        # ==================================
639

Mostofa Patwary's avatar
Mostofa Patwary committed
640
641
642
643
644
645
646
647
648
649
        # apply relative positional encoding (rotary embedding)
        if rotary_pos_emb is not None:
            q_pos_emb, k_pos_emb = rotary_pos_emb
            query_layer = apply_rotary_pos_emb(query_layer, q_pos_emb)
            key_layer = apply_rotary_pos_emb(key_layer, k_pos_emb)
            # TODO, can apply positional embedding to value_layer so it has
            # absolute positional embedding.
            # otherwise, only relative positional embedding takes effect
            # value_layer = apply_rotary_pos_emb(value_layer, k_pos_emb)

650
651
652
653
654
655
656
        if not self.use_flash_attn:
            if self.checkpoint_core_attention:
                context_layer = self._checkpointed_attention_forward(
                    query_layer, key_layer, value_layer, attention_mask)
            else:
                context_layer = self.core_attention(
                    query_layer, key_layer, value_layer, attention_mask)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
657
        else:
658
659
660
661
662
663
664
665
            q, k, v = [rearrange(x, 's b ... -> b s ...').contiguous()
                       for x in (query_layer, key_layer, value_layer)]
            if not self.sequence_parallel:
                with tensor_parallel.get_cuda_rng_tracker().fork():
                    context_layer = self.core_attention_flash(q, k, v)
            else:
                context_layer = self.core_attention_flash(q, k, v)
            context_layer = rearrange(context_layer, 'b s h d -> s b (h d)').contiguous()
666
667

        # =================
668
        # Output. [sq, b, h]
669
670
671
        # =================

        output, bias = self.dense(context_layer)
672

673
674
675
        return output, bias


676
def bias_dropout_add(x, bias, residual, prob, training):
Jared Casper's avatar
Jared Casper committed
677
    # type: (Tensor, Optional[Tensor], Tensor, float, bool) -> Tensor
678
679
680
    if bias is not None:
        x = x + bias
    out = torch.nn.functional.dropout(x, p=prob, training=training)
681
682
683
684
685
686
687
688
689
690
691
    out = residual + out
    return out


def get_bias_dropout_add(training):
    def _bias_dropout_add(x, bias, residual, prob):
        return bias_dropout_add(x, bias, residual, prob, training)
    return _bias_dropout_add


@torch.jit.script
692
def bias_dropout_add_fused_train(x: torch.Tensor,
Jared Casper's avatar
Jared Casper committed
693
                                 bias: Optional[torch.Tensor],
694
695
                                 residual: torch.Tensor,
                                 prob: float) -> torch.Tensor:
696
697
698
699
    return bias_dropout_add(x, bias, residual, prob, True)


@torch.jit.script
700
def bias_dropout_add_fused_inference(x: torch.Tensor,
Jared Casper's avatar
Jared Casper committed
701
                                     bias: Optional[torch.Tensor],
702
703
                                     residual: torch.Tensor,
                                     prob: float) -> torch.Tensor:
704
    return bias_dropout_add(x, bias, residual, prob, False)
705
706
707
708
709


class ParallelTransformerLayer(MegatronModule):
    """A single transformer layer.

Vijay Korthikanti's avatar
Vijay Korthikanti committed
710
    Transformer layer takes input with size [s, b, h] and returns an
711
712
    output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
713

714
715
    def __init__(self, init_method, output_layer_init_method,
                 layer_number, layer_type=LayerType.encoder,
716
717
                 self_attn_mask_type=AttnMaskType.padding,
                 drop_path_rate=0.):
Mohammad's avatar
Mohammad committed
718
        args = get_args()
719
720

        super(ParallelTransformerLayer, self).__init__()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
721
        self.layer_number = layer_number
722
        self.layer_type = layer_type
723
724

        self.apply_residual_connection_post_layernorm \
Mohammad's avatar
Mohammad committed
725
            = args.apply_residual_connection_post_layernorm
726

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
727
728
729
        self.bf16 = args.bf16
        self.fp32_residual_connection = args.fp32_residual_connection

730
731
        # Layernorm on the input data.
        self.input_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
732
            args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
733
            eps=args.layernorm_epsilon,
734
            no_persist_layer_norm=args.no_persist_layer_norm,
Mostofa Patwary's avatar
Mostofa Patwary committed
735
            sequence_parallel=args.sequence_parallel,
Jared Casper's avatar
Jared Casper committed
736
            apply_layernorm_1p=args.apply_layernorm_1p)
737
738

        # Self attention.
739
740
741
742
743
744
        self.self_attention = ParallelAttention(
            init_method,
            output_layer_init_method,
            layer_number,
            attention_type=AttnType.self_attn,
            attn_mask_type=self_attn_mask_type)
745
746
        self.hidden_dropout = args.hidden_dropout
        self.bias_dropout_fusion = args.bias_dropout_fusion
Vijay Korthikanti's avatar
Vijay Korthikanti committed
747
        self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else None
748

749
        # Layernorm on the attention output
750
        self.post_attention_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
751
            args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
752
            eps=args.layernorm_epsilon,
753
            no_persist_layer_norm=args.no_persist_layer_norm,
Mostofa Patwary's avatar
Mostofa Patwary committed
754
            sequence_parallel=args.sequence_parallel,
Jared Casper's avatar
Jared Casper committed
755
            apply_layernorm_1p=args.apply_layernorm_1p)
756

757
758
759
760
761
762
763
764
765
        if self.layer_type == LayerType.decoder:
            self.inter_attention = ParallelAttention(
                init_method,
                output_layer_init_method,
                layer_number,
                attention_type=AttnType.cross_attn)
            # Layernorm on the attention output.
            self.post_inter_attention_layernorm = LayerNorm(
                args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
766
                eps=args.layernorm_epsilon,
767
                no_persist_layer_norm=args.no_persist_layer_norm,
Mostofa Patwary's avatar
Mostofa Patwary committed
768
                sequence_parallel=args.sequence_parallel,
Jared Casper's avatar
Jared Casper committed
769
                apply_layernorm_1p=args.apply_layernorm_1p)
770

771
        # MLP
rprenger's avatar
rprenger committed
772
773
774
775
        if args.num_experts is not None:
            self.mlp = SwitchMLP(init_method, output_layer_init_method)
        else:
            self.mlp = ParallelMLP(init_method, output_layer_init_method)
776

777
778
779
780
781
782
783
        # Set bias+dropout+add fusion grad_enable execution handler.
        TORCH_MAJOR = int(torch.__version__.split('.')[0])
        TORCH_MINOR = int(torch.__version__.split('.')[1])
        use_nvfuser = TORCH_MAJOR > 1 or (TORCH_MAJOR == 1 and TORCH_MINOR >= 10)
        self.bias_dropout_add_exec_handler = \
                nullcontext if use_nvfuser else torch.enable_grad

784
    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
785
                encoder_output=None, enc_dec_attn_mask=None,
Mostofa Patwary's avatar
Mostofa Patwary committed
786
                inference_params=None, rotary_pos_emb=None):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
787
        # hidden_states: [s, b, h]
788

789
        # Layer norm at the beginning of the transformer layer.
790
791
        layernorm_output = self.input_layernorm(hidden_states)
        # Self attention.
792
        attention_output, attention_bias = \
793
794
795
            self.self_attention(
                layernorm_output,
                attention_mask,
Mostofa Patwary's avatar
Mostofa Patwary committed
796
                inference_params=inference_params,
Mostofa Patwary's avatar
Mostofa Patwary committed
797
                rotary_pos_emb=rotary_pos_emb)
798

799
800
        # Residual connection.
        if self.apply_residual_connection_post_layernorm:
801
802
803
804
            residual = layernorm_output
        else:
            residual = hidden_states

Vijay Korthikanti's avatar
Vijay Korthikanti committed
805
        if self.drop_path is None:
806
807
808
809
810
811
812
813
814
            # jit scripting for a nn.module (with dropout) is not
            # trigerring the fusion kernel. For now, we use two
            # different nn.functional routines to account for varying
            # dropout semantics during training and inference phases.
            if self.bias_dropout_fusion:
                if self.training:
                    bias_dropout_add_func = bias_dropout_add_fused_train
                else:
                    bias_dropout_add_func = bias_dropout_add_fused_inference
815
            else:
816
                bias_dropout_add_func = get_bias_dropout_add(self.training)
817

818
819
            if attention_bias is not None:
                attention_bias = attention_bias.expand_as(residual)
820
            with self.bias_dropout_add_exec_handler():
821
822
                layernorm_input = bias_dropout_add_func(
                    attention_output,
823
                    attention_bias,
824
825
826
827
828
829
830
                    residual,
                    self.hidden_dropout)
        else:
            out = torch.nn.functional.dropout(attention_output + attention_bias,
                                              p=self.hidden_dropout,
                                              training=self.training)
            layernorm_input = residual + self.drop_path(out)
831

832
833
834
        # Layer norm post the self attention.
        layernorm_output = self.post_attention_layernorm(layernorm_input)

835
836
837
838
839
840
841
842
843
844
845
        if self.layer_type == LayerType.decoder:
            attention_output, attention_bias = \
                self.inter_attention(layernorm_output,
                                     enc_dec_attn_mask,
                                     encoder_output=encoder_output)
            # residual connection
            if self.apply_residual_connection_post_layernorm:
                residual = layernorm_output
            else:
                residual = layernorm_input

846
847
848
            if attention_bias is not None:
                attention_bias = attention_bias.expand_as(residual)

849
            with self.bias_dropout_add_exec_handler():
850
851
                layernorm_input = bias_dropout_add_func(
                    attention_output,
852
                    attention_bias,
853
854
855
856
857
858
                    residual,
                    self.hidden_dropout)

            # Layer norm post the decoder attention
            layernorm_output = self.post_inter_attention_layernorm(layernorm_input)

859
        # MLP.
860
        mlp_output, mlp_bias = self.mlp(layernorm_output)
861

862
863
        # Second residual connection.
        if self.apply_residual_connection_post_layernorm:
864
            residual = layernorm_output
865
        else:
866
867
            residual = layernorm_input

Vijay Korthikanti's avatar
Vijay Korthikanti committed
868
        if self.drop_path is None:
869
870
            if mlp_bias is not None:
                mlp_bias = mlp_bias.expand_as(residual)
871
            with self.bias_dropout_add_exec_handler():
872
873
                output = bias_dropout_add_func(
                    mlp_output,
874
                    mlp_bias,
875
876
                    residual,
                    self.hidden_dropout)
877
878
879
880
881
882
883

            # Jit compiled function creates 'view' tensor. This tensor
            # potentially gets saved in the MPU checkpoint function context,
            # which rejects view tensors. While making a viewless tensor here
            # won't result in memory savings (like the data loader, or
            # p2p_communication), it serves to document the origin of this
            # 'view' tensor.
884
885
886
            output = core.utils.make_viewless_tensor(inp = output,
                                                     requires_grad = output.requires_grad,
                                                     keep_graph = True)
887

888
        else:
889
890
891
            if mlp_bias is not None:
                mlp_output = mlp_output + mlp_bias
            out = torch.nn.functional.dropout(mlp_output,
892
893
894
                                              p=self.hidden_dropout,
                                              training=self.training)
            output = residual + self.drop_path(out)
895
896
897
898

        return output


899
900
901
class NoopTransformerLayer(MegatronModule):
    """A single 'no-op' transformer layer.

Lawrence McAfee's avatar
Lawrence McAfee committed
902
    The sole purpose of this layer is for when a standalone embedding layer
903
    is used (i.e., args.standalone_embedding_stage == True). In this case,
Lawrence McAfee's avatar
Lawrence McAfee committed
904
905
906
907
908
909
910
911
912
    zero transformer layers are assigned when pipeline rank == 0. Additionally,
    when virtual pipeline rank >= 1, zero total model parameters are created
    (virtual rank 0 contains the input embedding). This results in the model's
    input and output tensors being the same, which causes an error when
    performing certain memory optimiations on the output tensor (e.g.,
    deallocating it). Thus, this layer disconnects the input from the output
    via a clone. Since ranks containing a no-op layer are generally under-
    utilized (both compute and memory), there's no worry of any performance
    degredation.
913
914
915
916
917
918
919
920
921
922
923
924
    """

    def __init__(self, layer_number):
        super().__init__()
        self.layer_number = layer_number

    def forward(self, hidden_states, attention_mask,
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
        return hidden_states.clone()


Jared Casper's avatar
Jared Casper committed
925
def _get_num_layers(args, is_encoder_and_decoder_model, is_decoder=False):
926
    """Compute the number of transformer layers resident on the current rank."""
Jared Casper's avatar
Jared Casper committed
927
    if mpu.get_pipeline_model_parallel_world_size() > 1:
928
929
930
931
932
933
934
935
936
937
938
939
940
        if is_encoder_and_decoder_model:
            assert args.pipeline_model_parallel_split_rank is not None

            # When a standalone embedding stage is used, a rank is taken from
            # the encoder's ranks, to be used for the encoder's embedding
            # layer. This way, the rank referenced by the 'split rank' remains
            # the same whether or not a standalone embedding stage is used.
            num_ranks_in_encoder = (
                args.pipeline_model_parallel_split_rank - 1
                if args.standalone_embedding_stage else
                args.pipeline_model_parallel_split_rank
            )
            num_ranks_in_decoder = args.transformer_pipeline_model_parallel_size - num_ranks_in_encoder
Jared Casper's avatar
Jared Casper committed
941
942
943
944
            assert args.encoder_num_layers % num_ranks_in_encoder == 0, \
                    'encoder_num_layers (%d) must be divisible by number of ranks given to encoder (%d)' % (args.encoder_num_layers, num_ranks_in_encoder)
            assert args.decoder_num_layers % num_ranks_in_decoder == 0, \
                    'decoder_num_layers (%d) must be divisible by number of ranks given to decoder (%d)' % (args.decoder_num_layers, num_ranks_in_decoder)
Jared Casper's avatar
Jared Casper committed
945
            if mpu.is_pipeline_stage_before_split():
946
947
948
                num_layers = (
                    0
                    if args.standalone_embedding_stage
Jared Casper's avatar
Jared Casper committed
949
                    and mpu.get_pipeline_model_parallel_rank() == 0 else
Jared Casper's avatar
Jared Casper committed
950
                    args.encoder_num_layers // num_ranks_in_encoder
951
952
                )
            else:
Jared Casper's avatar
Jared Casper committed
953
                num_layers = args.decoder_num_layers // num_ranks_in_decoder
954
        else:
Jared Casper's avatar
Jared Casper committed
955
            assert args.num_layers == args.encoder_num_layers
956
957
958
959
960
961
962
963
964
965
            assert args.num_layers % args.transformer_pipeline_model_parallel_size == 0, \
                'num_layers must be divisible by transformer_pipeline_model_parallel_size'

            # When a standalone embedding stage is used, all transformer layers
            # are divided among pipeline rank >= 1, while on pipeline rank 0,
            # ranks either contain the input embedding layer (virtual pp rank 0),
            # or no layers at all (virtual pp rank >= 1).
            num_layers = (
                0
                if args.standalone_embedding_stage
Jared Casper's avatar
Jared Casper committed
966
                and mpu.get_pipeline_model_parallel_rank() == 0 else
967
968
969
                args.num_layers // args.transformer_pipeline_model_parallel_size
            )
    else:
Jared Casper's avatar
Jared Casper committed
970
971
972
973
        if not is_decoder:
            num_layers = args.encoder_num_layers
        else:
            num_layers = args.decoder_num_layers
974
975
976
    return num_layers


977
978
979
class ParallelTransformer(MegatronModule):
    """Transformer class."""

980
    def __init__(self, init_method, output_layer_init_method,
981
                 layer_type=LayerType.encoder,
982
                 self_attn_mask_type=AttnMaskType.padding,
983
                 post_layer_norm=True,
984
985
                 pre_process=True, post_process=True,
                 drop_path_rate=0.0):
986
        super(ParallelTransformer, self).__init__()
Mohammad's avatar
Mohammad committed
987
        args = get_args()
988

989
990
        self.layer_type = layer_type
        self.model_type = args.model_type
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
991
        self.bf16 = args.bf16
992
        self.fp32_residual_connection = args.fp32_residual_connection
993
        self.post_layer_norm = post_layer_norm
994
995
996
        self.pre_process = pre_process
        self.post_process = post_process
        self.input_tensor = None
997
        self.drop_path_rate = drop_path_rate
998
        self.transformer_impl = args.transformer_impl
999

1000
        # Store activation checkpoiting flag.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1001
1002
1003
        self.recompute_granularity = args.recompute_granularity
        self.recompute_method = args.recompute_method
        self.recompute_num_layers = args.recompute_num_layers
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1004
1005
        self.distribute_saved_activations = \
            args.distribute_saved_activations and not args.sequence_parallel
1006

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1007
        self.sequence_parallel = args.sequence_parallel
1008

1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
        # Transformer Engine Init.
        if self.transformer_impl == 'transformer_engine':
            global transformer_engine
            import transformer_engine
        self.use_fp8 = args.fp8_e4m3 or args.fp8_hybrid
        self.fp8_recipe = None
        self.fp8_group = mpu.get_data_parallel_group()
        if self.use_fp8:
            if args.fp8_e4m3:
                fp8_format = transformer_engine.common.recipe.Format.E4M3
            elif args.fp8_hybrid:
                fp8_format = transformer_engine.common.recipe.Format.HYBRID
            self.fp8_recipe = transformer_engine.common.recipe.DelayedScaling(
                margin=args.fp8_margin,
                interval=args.fp8_interval,
                fp8_format=fp8_format,
                amax_history_len=args.fp8_amax_history_len,
                amax_compute_algo=args.fp8_amax_compute_algo,
                override_linear_precision=(False, False, not args.fp8_wgrad),
            )

        self.num_microbatches_in_previous_step = -1
        self.microbatch_count = 0
        self.checkpoint_core_attention = args.recompute_granularity == 'selective'

1034
        # Number of layers.
1035
        self.num_layers = _get_num_layers(
1036
1037
1038
            args,
            args.model_type == ModelType.encoder_and_decoder,
            layer_type == LayerType.decoder)
Mohammad's avatar
Mohammad committed
1039

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1040
        self.drop_path_rates = [rate.item() for rate in torch.linspace(0, self.drop_path_rate, args.num_layers)]
1041

Mohammad's avatar
Mohammad committed
1042
1043
        # Transformer layers.
        def build_layer(layer_number):
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
            if args.transformer_impl == 'local':
                return ParallelTransformerLayer(
                    init_method,
                    output_layer_init_method,
                    layer_number,
                    layer_type=layer_type,
                    self_attn_mask_type=self_attn_mask_type,
                    drop_path_rate=self.drop_path_rates[layer_number - 1])
            else:
                return transformer_engine.pytorch.TransformerLayer(
                    args.hidden_size,
                    args.ffn_hidden_size,
                    args.num_attention_heads,
                    layernorm_epsilon=args.layernorm_epsilon,
                    hidden_dropout=args.hidden_dropout,
                    attention_dropout=args.attention_dropout,
                    init_method=init_method,
                    output_layer_init_method=output_layer_init_method,
                    layer_number=layer_number,
                    kv_channels=args.kv_channels,
                    self_attn_mask_type=self_attn_mask_type.name,
                    tp_group=mpu.get_tensor_model_parallel_group(),
                    get_rng_state_tracker=tensor_parallel.get_cuda_rng_tracker,
                    fuse_wgrad_accumulation=args.gradient_accumulation_fusion,
                    apply_query_key_layer_scaling=args.apply_query_key_layer_scaling,
                    attention_softmax_in_fp32=args.attention_softmax_in_fp32,
                    seq_length=args.seq_length,
                    micro_batch_size=args.micro_batch_size,
                    sequence_parallel=args.sequence_parallel,
                    params_dtype=args.params_dtype,
                    apply_residual_connection_post_layernorm=args.apply_residual_connection_post_layernorm,
                    output_layernorm=False,
                    layer_type="encoder",
                    drop_path_rate=self.drop_path_rates[layer_number - 1],
                    set_parallel_mode=True,
                    fuse_qkv_params=True)

1081
1082
        if args.virtual_pipeline_model_parallel_size is not None:
            assert args.num_layers % args.virtual_pipeline_model_parallel_size == 0, \
1083
1084
                'num_layers_per_stage must be divisible by ' \
                'virtual_pipeline_model_parallel_size'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1085
            assert args.model_type != ModelType.encoder_and_decoder
1086
1087
            # Number of layers in each model chunk is the number of layers in the stage,
            # divided by the number of model chunks in a stage.
1088
            self.num_layers = self.num_layers // args.virtual_pipeline_model_parallel_size
1089
1090
1091
1092
1093
1094
1095
1096
            # With 8 layers, 2 stages, and 4 model chunks, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0]  [2]  [4]  [6]
            # Stage 1: [1]  [3]  [5]  [7]
            # With 8 layers, 2 stages, and 2 virtual stages, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0, 1]  [4, 5]
            # Stage 1: [2, 3]  [6, 7]
1097
            offset = mpu.get_virtual_pipeline_model_parallel_rank() * (
1098
                args.num_layers // args.virtual_pipeline_model_parallel_size) + \
1099
                (mpu.get_pipeline_model_parallel_rank() * self.num_layers)
1100
        else:
1101
            # Each stage gets a contiguous set of layers.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1102
            if args.model_type == ModelType.encoder_and_decoder and \
1103
1104
                    mpu.get_pipeline_model_parallel_world_size() > 1:
                pipeline_rank = mpu.get_pipeline_model_parallel_rank()
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1105
1106
1107
1108
1109
1110
                if layer_type == LayerType.encoder:
                    offset = pipeline_rank * self.num_layers
                else:
                    num_ranks_in_enc = args.pipeline_model_parallel_split_rank
                    offset = (pipeline_rank - num_ranks_in_enc) * self.num_layers
            else:
1111
                offset = mpu.get_pipeline_model_parallel_rank() * self.num_layers
1112

1113
        if self.num_layers == 0:
Lawrence McAfee's avatar
Lawrence McAfee committed
1114
            # When a standalone embedding stage is used (e.g.,
1115
            # args.standalone_embedding_stage == True), virtual pipeline ranks
1116
            # on pipeline rank 0 will have zero transformer layers assigned to
Lawrence McAfee's avatar
Lawrence McAfee committed
1117
1118
1119
1120
1121
            # them. This results in the model's input and output tensors to be
            # the same, which will cause failure for certain output tensor
            # optimizations (e.g., pipeline output deallocation). To remedy
            # this, we assign a 'no-op' layer on these ranks, which will
            # disconnect the input tensor from the output tensor.
1122
1123
1124
1125
1126
            self.num_layers = 1
            self.layers = torch.nn.ModuleList([ NoopTransformerLayer(1) ])
        else:
            self.layers = torch.nn.ModuleList(
                [build_layer(i + 1 + offset) for i in range(self.num_layers)])
1127

1128
        if self.post_process and self.post_layer_norm:
1129
1130
1131
            # Final layer norm before output.
            self.final_layernorm = LayerNorm(
                args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
1132
                eps=args.layernorm_epsilon,
1133
                no_persist_layer_norm=args.no_persist_layer_norm,
Mostofa Patwary's avatar
Mostofa Patwary committed
1134
                sequence_parallel=args.sequence_parallel,
Jared Casper's avatar
Jared Casper committed
1135
                apply_layernorm_1p=args.apply_layernorm_1p)
1136

Mohammad's avatar
Mohammad committed
1137
    def _get_layer(self, layer_number):
1138
        return self.layers[layer_number]
Mohammad's avatar
Mohammad committed
1139

1140
    def _checkpointed_forward(self, hidden_states, attention_mask,
Mostofa Patwary's avatar
Mostofa Patwary committed
1141
1142
                              encoder_output, enc_dec_attn_mask,
                              rotary_pos_emb, is_first_microbatch):
1143
        """Forward method with activation checkpointing."""
1144
1145
        def custom(start, end, is_transformer_engine=False):
            def custom_forward(*args, **kwargs):
1146
                x_, *args = args
Mohammad's avatar
Mohammad committed
1147
1148
                for index in range(start, end):
                    layer = self._get_layer(index)
1149
                    x_ = layer(x_, *args, **kwargs)
1150
                return x_
1151
1152
1153
1154
1155
1156
            def custom_forward_transformer_engine(*args, **kwargs):
                return custom_forward(*args, is_first_microbatch=is_first_microbatch, **kwargs)
            if not is_transformer_engine:
                return custom_forward
            else:
                return custom_forward_transformer_engine
1157

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1158
        if self.recompute_method == 'uniform':
1159
1160
1161
1162
1163
            # Uniformly divide the total number of Transformer layers and checkpoint
            # the input activation of each divided chunk.
            # A method to further reduce memory usage reducing checkpoints.
            l = 0
            while l < self.num_layers:
1164
1165
1166
1167
1168
1169
                if self.transformer_impl == 'transformer_engine':
                    hidden_states = transformer_engine.pytorch.distributed.checkpoint(
                        custom(l, l + self.recompute_num_layers, is_transformer_engine=True),
                        self.distribute_saved_activations,
                        tensor_parallel.get_cuda_rng_tracker,
                        mpu.get_tensor_model_parallel_group(),
Mostofa Patwary's avatar
Mostofa Patwary committed
1170
1171
                        hidden_states, attention_mask, encoder_output,
                        enc_dec_attn_mask, rotary_pos_emb)
1172
1173
1174
1175
                else:
                    hidden_states = tensor_parallel.checkpoint(
                        custom(l, l + self.recompute_num_layers),
                        self.distribute_saved_activations,
Mostofa Patwary's avatar
Mostofa Patwary committed
1176
1177
                        hidden_states, attention_mask, encoder_output,
                        enc_dec_attn_mask, rotary_pos_emb)
1178

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1179
                l += self.recompute_num_layers
1180

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1181
        elif self.recompute_method == 'block':
1182
1183
1184
1185
            # Checkpoint the input activation of only a set number of individual
            # Transformer layers and skip the rest.
            # A method fully use the device memory removing redundant re-computation.
            for l in range(self.num_layers):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1186
                if l < self.recompute_num_layers:
1187
1188
1189
1190
1191
1192
                    if self.transformer_impl == 'transformer_engine':
                        hidden_states = transformer_engine.pytorch.distributed.checkpoint(
                            custom(l, l + 1, is_transformer_engine=True),
                            self.distribute_saved_activations,
                            tensor_parallel.get_cuda_rng_tracker,
                            mpu.get_tensor_model_parallel_group(),
Mostofa Patwary's avatar
Mostofa Patwary committed
1193
1194
                            hidden_states, attention_mask, encoder_output,
                            enc_dec_attn_mask, rotary_pos_emb)
1195
1196
1197
1198
                    else:
                        hidden_states = tensor_parallel.checkpoint(
                            custom(l, l + 1),
                            self.distribute_saved_activations,
Mostofa Patwary's avatar
Mostofa Patwary committed
1199
1200
                            hidden_states, attention_mask, encoder_output,
                            enc_dec_attn_mask, rotary_pos_emb)
1201
                else:
1202
1203
                    if self.transformer_impl == 'transformer_engine':
                        hidden_states = custom(l, l + 1, is_transformer_engine=True)(
Mostofa Patwary's avatar
Mostofa Patwary committed
1204
1205
                            hidden_states, attention_mask, encoder_output,
                            enc_dec_attn_mask, rotary_pos_emb)
1206
1207
                    else:
                        hidden_states = custom(l, l + 1)(
Mostofa Patwary's avatar
Mostofa Patwary committed
1208
1209
                            hidden_states, attention_mask, encoder_output,
                            enc_dec_attn_mask, rotary_pos_emb)
1210
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1211
            raise ValueError("Invalid activation recompute method.")
1212
1213
1214

        return hidden_states

1215
    def set_input_tensor(self, input_tensor):
1216
1217
1218
1219
1220
1221
1222
        """Set input tensor to be used instead of forward()'s input.

        When doing pipeline parallelism the input from the previous
        stage comes from communication, not from the input, so the
        model's forward_step_func won't have it. This function is thus
        used by internal code to bypass the input provided by the
        forward_step_func"""
1223
1224
        self.input_tensor = input_tensor

1225
    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
1226
                encoder_output=None, enc_dec_attn_mask=None,
Mostofa Patwary's avatar
Mostofa Patwary committed
1227
                inference_params=None, rotary_pos_emb=None):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1228
1229
        # hidden_states: [s, b, h]

1230
        # Checks.
mshoeybi's avatar
mshoeybi committed
1231
        if inference_params:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1232
            assert self.recompute_granularity is None, \
1233
                'inference does not work with activation checkpointing'
1234

1235
        if not self.pre_process:
1236
            # See set_input_tensor()
1237
            hidden_states = self.input_tensor
1238

1239
1240
        # Viewless tensor.
        # - We only need to create a viewless tensor in the case of micro batch
1241
1242
1243
1244
        #   size (mbs) == 1, since in this case, 'hidden_states.transpose()'
        #   above creates a view tensor, and '.contiguous()' is a pass-through.
        #   For mbs >= 2, '.contiguous()' creates a new tensor, eliminating
        #   the need to make it viewless.
1245
1246
1247
1248
        #
        #   However, we don't explicitly check mbs == 1 here because
        #   make_viewless_tensor() has negligible overhead when its input
        #   is already viewless.
1249
        #
1250
1251
1252
1253
        # - For the 'else' case above, calling make_viewless_tensor() here is
        #   likely redundant, since p2p_communication.py (likely originator)
        #   already creates viewless tensors. That said, make_viewless_tensor()
        #   is called here to be future-proof and corner-case-proof.
1254
        hidden_states = core.utils.make_viewless_tensor(
1255
            hidden_states,
1256
1257
            requires_grad=True,
            keep_graph=True,
1258
1259
        )

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1260
        if self.sequence_parallel:
1261
            rng_context = tensor_parallel.get_cuda_rng_tracker().fork()
1262
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1263
            rng_context = nullcontext()
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1264
1265

        with rng_context:
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
            # The fp8_autocast context manager is a no-op when enabled=True
            # The if...else serves to short circuit name resolution for fp8_autocast
            with transformer_engine.pytorch.fp8_autocast(
                enabled=self.use_fp8,
                fp8_recipe=self.fp8_recipe,
                fp8_group=self.fp8_group
            ) if self.use_fp8 else nullcontext():
                # Determine if the current iteration is first microbatch
                if self.num_microbatches_in_previous_step != get_num_microbatches():
                    self.microbatch_count = 0 # Reset count on new batch size rampup interval
                self.num_microbatches_in_previous_step = get_num_microbatches()
                is_first_microbatch = self.microbatch_count % get_num_microbatches() == 0

                # Forward pass.
                if self.recompute_granularity == 'full':
                    hidden_states = self._checkpointed_forward(hidden_states,
                                                               attention_mask,
                                                               encoder_output,
                                                               enc_dec_attn_mask,
Mostofa Patwary's avatar
Mostofa Patwary committed
1285
                                                               rotary_pos_emb,
1286
1287
1288
1289
1290
1291
                                                               is_first_microbatch)
                else:
                    forward_kwargs = {
                        'encoder_output': encoder_output,
                        'enc_dec_attn_mask': enc_dec_attn_mask,
                        'inference_params': inference_params,
Mostofa Patwary's avatar
Mostofa Patwary committed
1292
                        'rotary_pos_emb': rotary_pos_emb,
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
                    }

                    if self.transformer_impl == 'transformer_engine':
                        forward_kwargs['is_first_microbatch'] = is_first_microbatch
                        forward_kwargs['checkpoint_core_attention'] = self.checkpoint_core_attention

                    for index in range(self.num_layers):
                        layer = self._get_layer(index)

                        hidden_states = layer(
                            hidden_states,
                            attention_mask,
                            **forward_kwargs)

                # Skip counter update for eval and activation checkpointing
                if torch.is_grad_enabled() and self.training:
                    self.microbatch_count += 1
mshoeybi's avatar
mshoeybi committed
1310

1311
        # Final layer norm.
1312
        if self.post_process and self.post_layer_norm:
1313
1314
            hidden_states = self.final_layernorm(hidden_states)

1315
        return hidden_states