optimizer.py 54.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Megatron optimizer."""
mohammad's avatar
mohammad committed
17
18
19
20
21
22
23
24
25

from abc import ABC
from abc import abstractmethod

import torch

from apex.multi_tensor_apply import multi_tensor_applier
import amp_C

mohammad's avatar
mohammad committed
26
27
from megatron import get_timers
from megatron import mpu
mohammad's avatar
mohammad committed
28
29
from megatron import print_rank_0

Rewon Child's avatar
Rewon Child committed
30
from .clip_grads import clip_grad_norm_fp32, count_zeros_fp32
mohammad's avatar
mohammad committed
31

32
33
# >>>
from lutil import pax, tp
34

35
DEBUG_ITERATION = 1 # 10
36
# <<<
mohammad's avatar
mohammad committed
37

Lawrence McAfee's avatar
Lawrence McAfee committed
38

mohammad's avatar
mohammad committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
def _zero_grad_group_helper(group, set_to_none):
    """Zero out the gradient for a group of parameters.
    Note: copied from torch.optim.optimizer."""
    for param in group:
        if param.grad is not None:
            if set_to_none:
                param.grad = None
            else:
                if param.grad.grad_fn is not None:
                    param.grad.detach_()
                else:
                    param.grad.requires_grad_(False)
                param.grad.zero_()


54
def _multi_tensor_copy_this_to_that(this, that, overflow_buf=None):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
55
56
57
58
    """Use multi-tensor-applier to copy values from one list to another.
    We don't have a blfoat16 implementation so for now if the overflow_buf
    is not provided, we default back to simple loop copy to be compatible
    with bfloat16."""
59
60
    if overflow_buf:
        overflow_buf.fill_(0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
61
62
63
64
65
        # Scaling with factor `1.0` is equivalent to copy.
        multi_tensor_applier(amp_C.multi_tensor_scale,
                             overflow_buf,
                             [this, that],
                             1.0)
66
    else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
67
68
69
        for this_, that_ in zip(this, that):
            that_.copy_(this_)

70

mohammad's avatar
mohammad committed
71
72
73

class MegatronOptimizer(ABC):

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
74
75
76

    def __init__(self, optimizer, clip_grad,
                 log_num_zeros_in_grad,
77
                 params_have_main_grad,
78
                 use_contiguous_buffers_in_local_ddp):
79

mohammad's avatar
mohammad committed
80
81
82
        """Input optimizer is the base optimizer for example Adam."""
        self.optimizer = optimizer
        assert self.optimizer, 'no optimizer is provided.'
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
83
84
85
86
        # Set gradient clipping and logging params.
        self.clip_grad = clip_grad
        self.log_num_zeros_in_grad = log_num_zeros_in_grad
        self.params_have_main_grad = params_have_main_grad
87
        self.use_contiguous_buffers_in_local_ddp = use_contiguous_buffers_in_local_ddp
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
88

89
        if self.use_contiguous_buffers_in_local_ddp:
90
91
            assert self.params_have_main_grad, \
                "use of contiguous buffer requires that params have main grad"
mohammad's avatar
mohammad committed
92

Rewon Child's avatar
Rewon Child committed
93
    def get_parameters(self):
94
95
96
97
        params = []
        for param_group in self.optimizer.param_groups:
            for param in param_group['params']:
                params.append(param)
Rewon Child's avatar
Rewon Child committed
98
99
        return params

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
100

Rewon Child's avatar
Rewon Child committed
101
102
    def clip_grad_norm(self, clip_grad):
        params = self.get_parameters()
Lawrence McAfee's avatar
Lawrence McAfee committed
103
104
105
106
107
108
109
        # >>>
        # pax(0, {
        #     "clip_grad" : clip_grad,
        #     "params": [ (p.tensor_model_parallel, tp(p)) for p in params ],
        #     "grads" : [ p.grad for p in params ],
        # })
        # <<<
110
        return clip_grad_norm_fp32(params, clip_grad)
111

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
112

Rewon Child's avatar
Rewon Child committed
113
114
115
116
    def count_zeros(self):
        params = self.get_parameters()
        return count_zeros_fp32(params)

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
117

mohammad's avatar
mohammad committed
118
119
120
121
    @abstractmethod
    def zero_grad(self, set_to_none=True):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
122

mohammad's avatar
mohammad committed
123
124
    @abstractmethod
    def get_loss_scale(self):
125
        """The output should be a cuda tensor of size 1."""
mohammad's avatar
mohammad committed
126
127
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
128

mohammad's avatar
mohammad committed
129
130
131
132
    def scale_loss(self, loss):
        """Simple scaling."""
        return self.get_loss_scale() * loss

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
133

Lawrence McAfee's avatar
Lawrence McAfee committed
134
    @abstractmethod
135
    def reduce_grads(self):
Lawrence McAfee's avatar
Lawrence McAfee committed
136
137
138
        pass


mohammad's avatar
mohammad committed
139
140
141
142
    @abstractmethod
    def step(self):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
143

Lawrence McAfee's avatar
Lawrence McAfee committed
144
145
146
147
148
    @abstractmethod
    def gather_params(self):
        pass


149
150
    @abstractmethod
    def reload_model_params(self):
151
152
153
154
155
        """Refreshes any internal state from the current model parameters.
        Call whenever the parameters are changed outside of the optimizer.
        For example, when we load a model from a checkpoint  without loading
        the optimizer, the model parameters are updated but for fp16 optimizer
        with main parameters, the main parameters need to also be updated."""
156
157
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
158

mohammad's avatar
mohammad committed
159
160
161
162
    @abstractmethod
    def state_dict(self):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
163

mohammad's avatar
mohammad committed
164
165
166
167
    @abstractmethod
    def load_state_dict(self, state_dict):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
168

mohammad's avatar
mohammad committed
169
170
171
172
173
174
175
176
177
178
    # Promote state so it can be retrieved or set via
    # "optimizer_instance.state"
    def _get_state(self):
        return self.optimizer.state

    def _set_state(self, value):
        self.optimizer.state = value

    state = property(_get_state, _set_state)

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
179

mohammad's avatar
mohammad committed
180
181
182
183
184
185
186
187
188
189
190
191
    # Promote param_groups so it can be retrieved or set via
    # "optimizer_instance.param_groups"
    # (for example, to adjust the learning rate)
    def _get_param_groups(self):
        return self.optimizer.param_groups

    def _set_param_groups(self, value):
        self.optimizer.param_groups = value

    param_groups = property(_get_param_groups, _set_param_groups)


Lawrence McAfee's avatar
Lawrence McAfee committed
192
class BaseFloat16Optimizer(MegatronOptimizer):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
193
194

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
195
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
196
197
                 bf16, grad_scaler,
                 models):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
198

Lawrence McAfee's avatar
Lawrence McAfee committed
199
        super().__init__(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
200
            optimizer, clip_grad, log_num_zeros_in_grad,
201
            params_have_main_grad, use_contiguous_buffers_in_local_ddp)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
202

203
204
205
        # >>>
        self.models = models
        # <<<
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
206
        self.bf16 = bf16
mohammad's avatar
mohammad committed
207
        self.grad_scaler = grad_scaler
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
208
209
210
        # None grad scaler is only supported for bf16.
        if self.grad_scaler is None:
            assert self.bf16, 'fp16 expects a grad scaler.'
mohammad's avatar
mohammad committed
211
212
213

        # Tensor used to determine if a nan/if has happend.
        # Any non-zero value indicates inf/nan.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
214
215
216
217
        # Note that we keep this for the cases that grad scaler is none.
        # We still record nan/inf if we have a bfloat16 with a grad scaler.
        if self.grad_scaler:
            self.found_inf = torch.cuda.FloatTensor([0.0])
mohammad's avatar
mohammad committed
218
219

        # Dummy tensor needed for apex multi-apply tensor.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
220
221
222
223
224
225
226
227
228
229
        # For bfloat, we don't have multi-tensor apply and for now
        # we set it to none so the multi-tensor apply gets ignored.
        if bf16:
            self._dummy_overflow_buf = None
        else:
            self._dummy_overflow_buf = torch.cuda.IntTensor([0])

        # In case grad scaler is not passed, define the unity scale.
        if self.grad_scaler is None:
            self._scale_one = torch.cuda.FloatTensor([1.0])
mohammad's avatar
mohammad committed
230

Lawrence McAfee's avatar
Lawrence McAfee committed
231
232
233
234
235
236
237

    def get_loss_scale(self):
        if self.grad_scaler is None:
            return self._scale_one
        return self.grad_scaler.scale


Lawrence McAfee's avatar
Lawrence McAfee committed
238
239
240
241
    def reload_model_params(self):
        self._copy_model_params_to_main_params()


Lawrence McAfee's avatar
Lawrence McAfee committed
242
243
244
245
246
247
248
249
250
251
252
253
254
255
    def _unscale_main_grads_and_check_for_nan(self):

        # Collect main grads.
        main_grads = self._collect_main_grad_data_for_unscaling()
        # pax(1, {"main_grads": main_grads})

        # Reset found inf.
        self.found_inf.fill_(0.0)

        # Unscale and set found inf/nan
        torch._amp_foreach_non_finite_check_and_unscale_(
            main_grads, self.found_inf, self.grad_scaler.inv_scale)

        # Update across all model parallel instances.
256
257
258
259
260
        # >>>
        # torch.distributed.all_reduce(self.found_inf,
        #                              op=torch.distributed.ReduceOp.MAX,
        #                              group=mpu.get_model_parallel_group())
        # +++
Lawrence McAfee's avatar
Lawrence McAfee committed
261
        torch.distributed.all_reduce(self.found_inf,
262
263
                                     op=torch.distributed.ReduceOp.MAX)
        # <<<
Lawrence McAfee's avatar
Lawrence McAfee committed
264
265
266
267
268
269
270
271

        # Check for nan.
        found_inf_flag = (self.found_inf.item() > 0)

        return found_inf_flag


    @torch.no_grad()
272
    def step(self, ITERATION):
Lawrence McAfee's avatar
Lawrence McAfee committed
273
274
275
276
277

        timers = get_timers()

        # Copy gradients from model params to main params.
        timers('optimizer-copy-to-main-grad').start()
278
        self._copy_model_grads_to_main_grads(ITERATION)
Lawrence McAfee's avatar
Lawrence McAfee committed
279
280
        timers('optimizer-copy-to-main-grad').stop()

281
282
283
284
285
286
287
288
        # >>>
        # pax(0, {
        #     "[LOC]" : "[** BEFORE UNSCALE **]",
        #     "param_group / params" : [ p for g in self.optimizer.param_groups for p in g["params"] ],
        #     "param_group / grads" : [ p.grad for g in self.optimizer.param_groups for p in g["params"] ],
        # })
        # <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
289
290
291
292
293
        # pax(0, {
        #     "params" : self.get_parameters(), # self.main_param_shards,
        #     "grads" : [ p.grad for p in self.get_parameters() ], # self.main_param_shards ],
        # })

Lawrence McAfee's avatar
Lawrence McAfee committed
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
        # Do unscale, check for inf, and update grad scaler only for
        # the case that grad scaler is provided.
        if self.grad_scaler:

            # Unscale and check for inf/nan.
            timers('optimizer-unscale-and-check-inf').start()
            found_inf_flag = self._unscale_main_grads_and_check_for_nan()
            timers('optimizer-unscale-and-check-inf').stop()

            # We are done with scaling gradients
            # so we can update the loss scale.
            self.grad_scaler.update(found_inf_flag)

            # If we found inf/nan, skip the update.
            if found_inf_flag:
309
310
311
312
313
                pax(0, {
                    "main params" : self.get_main_params(),
                    "main grads" : self.get_main_grads(),
                    "found_inf_flag" : found_inf_flag,
                })
Lawrence McAfee's avatar
Lawrence McAfee committed
314
315
                return False, None, None

316
317
318
319
320
321
322
323
        # >>>
        pax(0, {
            "[LOC]" : "[** BEFORE CLIP **]",
            "param_group / params" : [ p for g in self.optimizer.param_groups for p in g["params"] ],
            "param_group / grads" : [ p.grad for g in self.optimizer.param_groups for p in g["params"] ],
        })
        # <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
324
325
326
327
328
329
330
331
332
333
334
335
        # Clip the main gradients.
        timers('optimizer-clip-main-grad').start()
        grad_norm = None
        if self.clip_grad > 0.0:
            grad_norm = self.clip_grad_norm(self.clip_grad)
        timers('optimizer-clip-main-grad').stop()

        # count the zeros in the grads
        num_zeros_in_grad = self.count_zeros() if \
                            self.log_num_zeros_in_grad else None

        # >>>
336
337
338
339
340
341
        pax(0, {
            # "main params" : self.get_main_params(),
            # "main grads" : self.get_main_grads(),
            **{"param_groups / %d" % i : g for i, g in enumerate(self.optimizer.param_groups)},
            "param_group / grads" : [ p.grad for g in self.optimizer.param_groups for p in g["params"] ],
        })
Lawrence McAfee's avatar
Lawrence McAfee committed
342
343
        # <<<

344
345
346
        # Step the optimizer.
        self.optimizer.step()

Lawrence McAfee's avatar
Lawrence McAfee committed
347
348
        # Update params from main params.
        timers('optimizer-copy-main-to-model-params').start()
349
        self._copy_main_params_to_model_params(ITERATION)
Lawrence McAfee's avatar
Lawrence McAfee committed
350
351
        timers('optimizer-copy-main-to-model-params').stop()

352
353
354
355
356
357
358
        # >>>
        # pax(1, {
        #     "ITERATION" : ITERATION,
        #     "model_params" : [ p for m in self.models for p in m.parameters() ],
        # })
        # <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
359
360
361
362
        # Successful update.
        return True, grad_norm, num_zeros_in_grad


Lawrence McAfee's avatar
Lawrence McAfee committed
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
# class Float16OptimizerWithFloat16Params(MegatronOptimizer):
class Float16OptimizerWithFloat16Params(BaseFloat16Optimizer):
    """Float16 optimizer for fp16 and bf16 data types.

    Arguments:
        optimizer: base optimizer such as Adam or SGD
        clip_grad: clip gradeints with this global L2 norm. Note
            that clipping is ignored if clip_grad == 0
        log_num_zeros_in_grad: return number of zeros in the gradients.
        params_have_main_grad: flag indicating if parameters have
            a `main_grad` field. If this is set, we are assuming
            that the model parameters are store in the `main_grad`
            field instead of the typical `grad` field. This happens
            for the DDP cases where there is a continuous buffer
            holding the gradients. For example for bfloat16, we want
            to do gradient accumulation and all-reduces in float32
            and as a result we store those gradients in the main_grad.
            Note that main grad is not necessarily in float32.
        bf16: if true, the model is running in bfloat16.
        grad_scaler: used for scaling gradients. Note that this can be
            None. This case happens when `bf16 = True` and we don't
            use any loss scale. Note that for `bf16 = True`, we can have
            a constnat gradient scaler. Also for `bf16 = False`, we
            always require a grad scaler.
    """

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
Lawrence McAfee's avatar
Lawrence McAfee committed
391
                 bf16, grad_scaler, models):
Lawrence McAfee's avatar
Lawrence McAfee committed
392
393
394
395

        super().__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
Lawrence McAfee's avatar
Lawrence McAfee committed
396
            bf16, grad_scaler, models)
Lawrence McAfee's avatar
Lawrence McAfee committed
397

mohammad's avatar
mohammad committed
398
        # ======================
399
        # main parameter stuff
mohammad's avatar
mohammad committed
400
401
402
        # ======================

        # Three groups of parameters:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
403
404
        #   float16_groups: original float16 parameters
        #   fp32_from_float16_groups: fp32 copy of float16 parameters
mohammad's avatar
mohammad committed
405
        #   fp32_from_fp32_groups: original fp32 parameters
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
406
407
        self.float16_groups = []
        self.fp32_from_float16_groups = []
mohammad's avatar
mohammad committed
408
409
410
411
        self.fp32_from_fp32_groups = []

        # For all the groups in the original optimizer:
        for param_group in self.optimizer.param_groups:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
412
            float16_params_this_group = []
mohammad's avatar
mohammad committed
413
            fp32_params_this_group = []
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
414
            fp32_from_float16_params_this_group = []
mohammad's avatar
mohammad committed
415
416
417
418
            # For all the parameters in this group:
            for i, param in enumerate(param_group['params']):
                if param.requires_grad:

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
419
420
421
422
                    # float16 params:
                    if param.type() in ['torch.cuda.HalfTensor',
                                        'torch.cuda.BFloat16Tensor']:
                        float16_params_this_group.append(param)
mohammad's avatar
mohammad committed
423
                        # Create a copy
424
                        main_param = param.detach().clone().float()
mohammad's avatar
mohammad committed
425
                        # Copy tensor model parallel attributes.
426
                        mpu.copy_tensor_model_parallel_attributes(main_param,
mohammad's avatar
mohammad committed
427
                                                                  param)
428
                        if hasattr(param, 'shared'):
429
                            main_param.shared = param.shared
mohammad's avatar
mohammad committed
430
                        # Replace the optimizer params with the new fp32 copy.
431
                        param_group['params'][i] = main_param
432

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
433
                        fp32_from_float16_params_this_group.append(main_param)
434
                        # Reset existing state dict key to the new main param.
mohammad's avatar
mohammad committed
435
                        if param in self.optimizer.state:
436
437
438
                            # >>>
                            raise Exception("hi.")
                            # <<<
439
                            self.optimizer.state[main_param] \
mohammad's avatar
mohammad committed
440
441
442
443
                                = self.optimizer.state.pop(param)

                    # fp32 params.
                    elif param.type() == 'torch.cuda.FloatTensor':
Lawrence McAfee's avatar
Lawrence McAfee committed
444
445
446
                        # >>>
                        pax(0, {"param": param})
                        # <<<
mohammad's avatar
mohammad committed
447
448
449
450
                        fp32_params_this_group.append(param)
                        param_group['params'][i] = param

                    else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
451
452
453
454
455
456
457
458
459
                        raise TypeError('Wrapped parameters must be one of '
                                        'torch.cuda.FloatTensor,  '
                                        'torch.cuda.HalfTensor, or '
                                        'torch.cuda.BFloat16Tensor. '
                                        'Received {}'.format(param.type()))

            self.float16_groups.append(float16_params_this_group)
            self.fp32_from_float16_groups.append(
                fp32_from_float16_params_this_group)
mohammad's avatar
mohammad committed
460
461
462
463
464
465
            self.fp32_from_fp32_groups.append(fp32_params_this_group)

        # Leverage state_dict() and load_state_dict() to
        # recast preexisting per-param state tensors
        self.optimizer.load_state_dict(self.optimizer.state_dict())

Lawrence McAfee's avatar
Lawrence McAfee committed
466
467
468
469
470
471
472
473
474
475
        # >>>
        # from megatron.mpu.layers import param_is_not_tensor_parallel_duplicate
        # params = self.get_parameters()
        # pax(0, {
        #     # "params / 0" : params[0],
        #     "params" : [ (p.tensor_model_parallel, tp(p)) for p in params ],
        #     "grads" : [ (param_is_not_tensor_parallel_duplicate(p.grad), tp(p.grad)) for p in params ],
        # })
        # <<<

mohammad's avatar
mohammad committed
476
477
478

    def zero_grad(self, set_to_none=True):
        """We only need to zero the model related parameters, i.e.,
479
480
481
482
        float16_groups & fp32_from_fp32_groups. We additionally zero
        fp32_from_float16_groups as a memory optimization to reduce
        fragmentation; in the case of set_to_none==True, the space
        used by this field can be safely deallocated at this point."""
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
483
        for group in self.float16_groups:
mohammad's avatar
mohammad committed
484
            _zero_grad_group_helper(group, set_to_none)
485
486
        for group in self.fp32_from_float16_groups:
            _zero_grad_group_helper(group, set_to_none)
mohammad's avatar
mohammad committed
487
488
489
490
        for group in self.fp32_from_fp32_groups:
            _zero_grad_group_helper(group, set_to_none)


491
    # >>>
492
    def reduce_grads(self, model):
493
494
495
496
497
498
499
500
501
502
503
504
505

        # >>>
        from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

        from megatron import get_args
        from megatron import get_timers
        from megatron.model import DistributedDataParallel as LocalDDP
        from megatron.model import Float16Module
        from megatron.utils import unwrap_model

        args = get_args()
        timers = get_timers()
        # <<<
506

507
508
509
510
511
512
        # >>>
        # pax(0, {
        #     "grads" : [ p.main_grad for m in model for p in m.parameters() ],
        # })
        # <<<

513
514
515
516
517
518
519
        # All-reduce if needed.
        if args.DDP_impl == 'local':
            timers('backward-params-all-reduce').start()
            for model_module in model:
                model_module.allreduce_gradients()
            timers('backward-params-all-reduce').stop()

520
521
522
523
524
525
        # >>>
        # pax(0, {
        #     "grads" : [ p.main_grad for m in model for p in m.parameters() ],
        # })
        # <<<

526
527
528
529
530
531
532
        # All-reduce word_embeddings' grad across first and last stages to ensure
        # that word_embeddings parameters stay in sync.
        # This should only run for models that support pipelined model parallelism
        # (BERT and GPT-2).
        timers('backward-embedding-all-reduce').start()
        if mpu.is_rank_in_embedding_group(ignore_virtual=True) and \
                mpu.get_pipeline_model_parallel_world_size() > 1:
533
534
535
            # >>>
            raise Exception("hi.")
            # <<<
536
537
538
539
540
541
542
543
544
545
546
547
            if mpu.is_pipeline_first_stage(ignore_virtual=True):
                unwrapped_model = model[0]
            elif mpu.is_pipeline_last_stage(ignore_virtual=True):
                unwrapped_model = model[-1]
            else:  # We do not support the interleaved schedule for T5 yet.
                unwrapped_model = model[0]
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))

            if unwrapped_model.share_word_embeddings:
                word_embeddings_weight = unwrapped_model.word_embeddings_weight()
                # >>>
548
549
550
551
552
                if args.DDP_impl == 'local':
                    grad = word_embeddings_weight.main_grad
                else:
                    grad = word_embeddings_weight.grad
                torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())
553
                # +++
554
555
556
                # grad_shard = optimizer.get_grad_shard(word_embeddings)
                # torch.distributed.all_reduce(grad_shard,
                #                              group=mpu.get_embedding_group())
557
558
559
560
561
562
563
564
565
566
567
568
569
570
                # <<<

        # All-reduce position_embeddings grad across first (encoder) and split (decoder) 
        # stages to ensure that position embeddings parameters stay in sync.
        # This should only run for T5 models with pipeline parallelism
        if mpu.is_rank_in_position_embedding_group() and \
                mpu.get_pipeline_model_parallel_world_size() > 1 and \
                args.pipeline_model_parallel_split_rank is not None:
            unwrapped_model = model[0]
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))
            assert args.DDP_impl == 'local', \
                'T5 model is only supported with local DDP mode'
            # >>>
571
572
            grad = unwrapped_model.language_model.embedding.position_embeddings.weight.main_grad
            torch.distributed.all_reduce(grad, group=mpu.get_position_embedding_group())
573
            # +++
574
575
576
577
            # grad_shard = optimizer.get_grad_shard(
            #     unwrapped_model.language_model.embedding.position_embeddings.weight)
            # torch.distributed.all_reduce(grad_shard,
            #                              group=mpu.get_position_embedding_group())
578
579
580
            # <<<
        timers('backward-embedding-all-reduce').stop()

Lawrence McAfee's avatar
Lawrence McAfee committed
581
    def gather_params(self):
Lawrence McAfee's avatar
Lawrence McAfee committed
582
        pass
Lawrence McAfee's avatar
Lawrence McAfee committed
583

584
    def _copy_model_grads_to_main_grads(self, ITERATION):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
585
586
587
        # This only needs to be done for the float16 group.
        for model_group, main_group in zip(self.float16_groups,
                                           self.fp32_from_float16_groups):
588
            for model_param, main_param in zip(model_group, main_group):
589
                if self.params_have_main_grad and hasattr(model_param, 'main_grad'):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
590
591
592
593
                    main_param.grad = model_param.main_grad.float()
                else:
                    if model_param.grad is not None:
                        main_param.grad = model_param.grad.float()
594
595
596
597
598

                # Safe to deallocate model's grad/main_grad after copying.
                # (If using contiguous buffers, main_grad's memory should
                # persist and therefore should not be deallocated.)
                model_param.grad = None
599
                if self.params_have_main_grad and \
600
                   not self.use_contiguous_buffers_in_local_ddp:
601
602
                    model_param.main_grad = None

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
603
604
605
606
607
        # For fp32 grads, we need to reset the grads to main grad.
        if self.params_have_main_grad:
            for model_group in self.fp32_from_fp32_groups:
                for model_param in model_group:
                    model_param.grad = model_param.main_grad
mohammad's avatar
mohammad committed
608

609
610
611
                    # Safe to de-reference model's main_grad after copying.
                    # (If using contiguous buffers, main_grad's memory should
                    # persist and therefore should not be deallocated.)
612
                    if not self.use_contiguous_buffers_in_local_ddp:
613
                        model_param.main_grad = None
mohammad's avatar
mohammad committed
614

615
616
617
618
619
620
621
622
623
624
        # >>>
        # if ITERATION == DEBUG_ITERATION:
        #     pax(0, {
        #         "** branch **" : "** main. **",
        #         "ITERATION" : ITERATION,
        #         "model grads" :
        #         [ p.main_grad for m in self.models for p in m.parameters() ],
        #     })
        # <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
625
626
    def _collect_main_grad_data_for_unscaling(self):

627
        main_grads = []
Lawrence McAfee's avatar
Lawrence McAfee committed
628
629

        # fp32 params from float16 ones.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
630
        for main_group in self.fp32_from_float16_groups:
631
632
633
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
Lawrence McAfee's avatar
Lawrence McAfee committed
634
635
636

        # pax(1, {"main_grads": main_grads})

mohammad's avatar
mohammad committed
637
        # Append fp32 parameters.
638
639
640
641
        for main_group in self.fp32_from_fp32_groups:
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
Lawrence McAfee's avatar
Lawrence McAfee committed
642
643
644
645
646
        
        # >>>
        # from megatron.mpu.layers import param_is_not_tensor_parallel_duplicate
        # pax(1, {"main_grads": [ (param_is_not_tensor_parallel_duplicate(t), tp(t)) for t in main_grads ]})
        # <<<
mohammad's avatar
mohammad committed
647

Lawrence McAfee's avatar
Lawrence McAfee committed
648
        return main_grads
mohammad's avatar
mohammad committed
649
650


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
651
    def _get_model_and_main_params_data_float16(self):
mohammad's avatar
mohammad committed
652
        model_data = []
653
        main_data = []
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
654
655
        for model_group, main_group in zip(self.float16_groups,
                                           self.fp32_from_float16_groups):
656
            for model_param, main_param in zip(model_group, main_group):
mohammad's avatar
mohammad committed
657
                model_data.append(model_param.data)
658
659
                main_data.append(main_param.data)
        return model_data, main_data
660
661


662
    def _copy_main_params_to_model_params(self, ITERATION):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
663
664
        # Only needed for the float16 params.
        model_data, main_data = self._get_model_and_main_params_data_float16()
665
666
        _multi_tensor_copy_this_to_that(this=main_data, that=model_data,
                                        overflow_buf=self._dummy_overflow_buf)
667
668
669
670
671
        # >>>
        if ITERATION == DEBUG_ITERATION:
            pax(0, {
                "** branch **" : "** main. **",
                "ITERATION" : ITERATION,
672
                "model params" : [p for m in self.models for p in m.parameters()],
673
674
            })
        # <<<
675
676
677


    def _copy_model_params_to_main_params(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
678
679
        # Only needed for the float16 params.
        model_data, main_data = self._get_model_and_main_params_data_float16()
680
681
        _multi_tensor_copy_this_to_that(this=model_data, that=main_data,
                                        overflow_buf=self._dummy_overflow_buf)
682
683


mohammad's avatar
mohammad committed
684
685
686
    def state_dict(self):
        state_dict = {}
        state_dict['optimizer'] = self.optimizer.state_dict()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
687
688
689
        if self.grad_scaler:
            state_dict['grad_scaler'] = self.grad_scaler.state_dict()
        state_dict['fp32_from_fp16_params'] = self.fp32_from_float16_groups
mohammad's avatar
mohammad committed
690
691
692
693
        return state_dict


    def load_state_dict(self, state_dict):
mohammad's avatar
mohammad committed
694
695
696
697
698
699
700
701
702
703
704
705
706
        # Optimizer.
        optimizer_key = 'optimizer'
        if optimizer_key not in state_dict:
            optimizer_key = 'optimizer_state_dict'
            print_rank_0('***WARNING*** loading optimizer from '
                         'an old checkpoint ...')
        self.optimizer.load_state_dict(state_dict[optimizer_key])

        # Grad scaler.
        if 'grad_scaler' not in state_dict:
            print_rank_0('***WARNING*** found an old checkpoint, will not '
                         'load grad scaler ...')
        else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
707
708
709
710
711
712
            if self.grad_scaler:
                self.grad_scaler.load_state_dict(state_dict['grad_scaler'])
            else:
                print_rank_0('***WARNING*** fould the grad scaler in the '
                             'checkpoint but it is None in the class. '
                             'Skipping loading grad scaler ...')
mohammad's avatar
mohammad committed
713

714
        # Copy data for the main params.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
715
716
717
        fp32_from_float16_params_key = 'fp32_from_fp16_params'
        if fp32_from_float16_params_key not in state_dict:
            fp32_from_float16_params_key = 'fp32_from_fp16'
mohammad's avatar
mohammad committed
718
        for current_group, saved_group in zip(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
719
720
                self.fp32_from_float16_groups,
                state_dict[fp32_from_float16_params_key]):
mohammad's avatar
mohammad committed
721
722
723
724
            for current_param, saved_param in zip(current_group, saved_group):
                current_param.data.copy_(saved_param.data)


725
# >>>
726
import math
727

728
from megatron import get_args
729

Lawrence McAfee's avatar
Lawrence McAfee committed
730
731
732
733
734
735
736
737
738
739
740
# class ShardIndex:
class Shard:
    def __init__(self, start, end):
        self.start = start
        self.end = end
        self.size = end - start
    def normalize(self, start = 0):
        return Shard(start, start + self.size)
    def __str__(self):
        return "%d,%d [%d]" % (self.start, self.end, self.size)

741
# class Float16DistributedOptimizer(Float16OptimizerWithFloat16Params):
Lawrence McAfee's avatar
Lawrence McAfee committed
742
743
# class Float16DistributedOptimizer(MegatronOptimizer):
class Float16DistributedOptimizer(BaseFloat16Optimizer):
744

745
    # >>>
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
    # @classmethod
    # def test_reduce_scatter(cls):

    #     torch.manual_seed(mpu.get_data_parallel_rank())
    #     size = (20,)
    #     dtype = torch.float
    #     device = torch.cuda.current_device()
    #     data_parallel_world_size = mpu.get_data_parallel_world_size()
    #     data_parallel_group = mpu.get_data_parallel_group()

    #     input_list = [
    #         # torch.randn(size, dtype = dtype, device = device)
    #         5 * torch.randint(low = 1, high = 3, size = size, dtype = dtype, device = device)
    #         for _ in range(data_parallel_world_size)
    #     ]
    #     output = torch.empty(size, dtype = dtype, device = device)

    #     torch.distributed.reduce_scatter(
    #         output,
    #         input_list,
    #         group = data_parallel_group,
    #     )

    #     if torch.distributed.get_rank() == 0:
    #         print(output)
    #     pax(0, {
    #         "data_parallel_world_size" : data_parallel_world_size,
    #         "data_parallel_group" : data_parallel_group,
    #         "input_list" : input_list,
    #         "output" : tp(output),
    #     })
777
778
    # <<<

779
    @classmethod
Lawrence McAfee's avatar
Lawrence McAfee committed
780
    def get_model_gbuf_param_shard_map(cls, model, dtype, gbuf_world_shard):
781

Lawrence McAfee's avatar
Lawrence McAfee committed
782
783
        # Param shard map.
        param_world_index_map = model._grad_buffer_param_index_map[dtype]
784
        param_shard_map = {}
Lawrence McAfee's avatar
Lawrence McAfee committed
785
        for param, param_world_indexes in param_world_index_map.items():
786

Lawrence McAfee's avatar
Lawrence McAfee committed
787
788
789
            # Shard range.
            param_world_start, param_world_end = param_world_indexes
            param_local_start = max(
790
                0,
Lawrence McAfee's avatar
Lawrence McAfee committed
791
792
793
794
795
796
797
798
                param_world_start - gbuf_world_shard.start)
            param_local_end = min(
                gbuf_world_shard.size,
                param_world_end - gbuf_world_shard.start)

            # Add shard, if within range.
            if param_local_end > param_local_start:
                param_local_shard = Shard(param_local_start, param_local_end)
Lawrence McAfee's avatar
Lawrence McAfee committed
799
800
801
                # param_world_shard = param_local_shard.normalize(param_world_start)
                param_world_shard = param_local_shard.normalize(
                    param_local_start + gbuf_world_shard.start)
802
803
                sub_param_start = max(0, gbuf_world_shard.start-param_world_start)
                sub_param_shard = param_local_shard.normalize(sub_param_start)
Lawrence McAfee's avatar
Lawrence McAfee committed
804
                param_shard_map[param] = {
805
806
807
                    "gbuf_world" : param_world_shard,
                    "gbuf_local" : param_local_shard,
                    "param" : sub_param_shard,
808
809
                }

Lawrence McAfee's avatar
Lawrence McAfee committed
810
        # pax(0, {"param_shard_map": [ str((str(p.shape), s)) for p,s in param_shard_map.items() ]})
811
812
813
814

        return param_shard_map

    @classmethod
Lawrence McAfee's avatar
Lawrence McAfee committed
815
    def get_model_gbuf_shard(cls, model, dtype):
816

Lawrence McAfee's avatar
Lawrence McAfee committed
817
818
        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_world_size = mpu.get_data_parallel_world_size()
819
820

        # Grad buffer shard.
Lawrence McAfee's avatar
Lawrence McAfee committed
821
822
823
824
        grad_buffer = model._grad_buffers[dtype]
        gbuf_size = grad_buffer.numel
        max_gbuf_shard_size = int(math.ceil(gbuf_size / data_parallel_world_size))

825
826
827
828
829
830
831
        gbuf_world_all_shards = []
        for r in range(data_parallel_world_size):
            gbuf_world_start = r * max_gbuf_shard_size
            gbuf_world_end = min(gbuf_size, gbuf_world_start+max_gbuf_shard_size)
            gbuf_world_shard = Shard(gbuf_world_start, gbuf_world_end)
            gbuf_world_all_shards.append(gbuf_world_shard)
        gbuf_world_shard = gbuf_world_all_shards[data_parallel_rank]
Lawrence McAfee's avatar
Lawrence McAfee committed
832
833
834
835
836
837
838
839
840
841
842
        gbuf_local_shard = gbuf_world_shard.normalize()

        # Param shards.
        param_shard_map = cls.get_model_gbuf_param_shard_map(model,
                                                             dtype,
                                                             gbuf_world_shard)

        # Altogether.
        data = {
            "local" : gbuf_local_shard,
            "world" : gbuf_world_shard,
843
            "world_all" : gbuf_world_all_shards,
Lawrence McAfee's avatar
Lawrence McAfee committed
844
            "param_map" : param_shard_map,
845
846
        }

Lawrence McAfee's avatar
Lawrence McAfee committed
847
        # pax(1, {"data": data})
848

Lawrence McAfee's avatar
Lawrence McAfee committed
849
        return data
850
851

    @classmethod
Lawrence McAfee's avatar
Lawrence McAfee committed
852
    def get_model_gbuf_shard_map(cls, model):
853
        return {
Lawrence McAfee's avatar
Lawrence McAfee committed
854
            dtype : cls.get_model_gbuf_shard(model, dtype)
855
856
857
            for dtype in model._grad_buffers
        }

Lawrence McAfee's avatar
Lawrence McAfee committed
858
859
    @classmethod
    def get_param_gbuf_map(cls, model_gbuf_shards):
860

Lawrence McAfee's avatar
Lawrence McAfee committed
861
862
863
864
865
866
867
868
869
870
871
872
873
        param_gbuf_map = {}
        for model_index, model_gbuf_shard_map in enumerate(model_gbuf_shards):
            for dtype, gbuf_shard_map in model_gbuf_shard_map.items():
                for param, param_shard_map in gbuf_shard_map["param_map"].items():
                    # assert param not in param_size_map
                    # param_size_map[param] = param_shard_map["local"].size
                    param_gbuf_map[param] = (model_index, dtype)
                    # pax(0, {
                    #     "dtype" : dtype,
                    #     "gbuf_shard_map" : gbuf_shard_map,
                    #     "param" : tp(param),
                    #     "param_shard_map" : param_shard_map,
                    # })
874

Lawrence McAfee's avatar
Lawrence McAfee committed
875
876
877
878
879
880
        # pax(0, {
        #     "model_gbuf_shards" : model_gbuf_shards,
        #     # "param_size_map" :
        #     # [ (str(p.shape), s) for p, s in param_size_map.items() ],
        #     "param_gbuf_map" : param_gbuf_map,
        # })
881

Lawrence McAfee's avatar
Lawrence McAfee committed
882
        return param_gbuf_map
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903

    @classmethod
    def get_optimizer_group_shards(cls, param_groups, model_gbuf_shards):

        num_groups = len(param_groups)

        # Param group map.
        param_group_map = {}
        for group_index, group in enumerate(param_groups):
            for param in group["params"]:
                assert param.requires_grad
                param_group_map[param] = group_index

        # Optimizer group shards.
        group_shards = [ {"size": 0, "param_map": {}} for _ in param_groups ]
        for model_gbuf_shard_map in model_gbuf_shards:
            for dtype, gbuf_shard_map in model_gbuf_shard_map.items():
                for param in gbuf_shard_map["param_map"]:
                    
                    group_index = param_group_map[param]
                    group_shard = group_shards[group_index]
904
                    param_size = gbuf_shard_map["param_map"][param]["param"].size
905
906
907
908
909
910
911
912

                    param_group_start = group_shard["size"]
                    param_group_end = param_group_start + param_size
                    param_group_shard = Shard(param_group_start, param_group_end)

                    group_shard["size"] += param_size
                    group_shard["param_map"][param] = param_group_shard

913
914
915
916
917
918
919
920
921
922
                    # >>>
                    # if torch.distributed.get_rank() == 1:
                    #     print(">>> [%d] ... group %d, size %d, param %s. <<<" % (
                    #         torch.distributed.get_rank(),
                    #         group_index,
                    #         param_size,
                    #         str(tuple(param.shape)),
                    #     ))
                    # <<<

923
924
925
926
927
928
        # Squeeze zero-size group shards.
        for group_index, group_shard in enumerate(group_shards):
            group_shard["orig_group"] = param_groups[group_index]
        group_shards = [ g for g in group_shards if g["size"] > 0 ]

        # pax(0, {
929
930
931
932
933
934
        #     "param_group_map": [
        #         (g, str(p.shape))
        #         for p, g in param_group_map.items()
        #     ],
        #     "group_shards" : group_shards,
        # })
935
936
937

        return group_shards

938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
    @classmethod
    def allocate_main_param_shards(cls, opt_group_shards):

        # Allocate main param/grad shard.
        # ** torch.nn.Parameter ??
        # ** MemoryBuffer ??
        allocate_shard = lambda shard_size, dtype : torch.empty(
            (shard_size,),
            dtype = dtype,
            device = torch.cuda.current_device(),
            requires_grad = True)
        
        # main_param_shards = []
        for group_index, group_shard in enumerate(opt_group_shards):

            group_size = group_shard["size"]
            assert group_size != 0, "temporary check ... remove me."

            # ** todo: for dtype in model_main_dtypes ........ **

            # Allocate shard.
            # if group_size == 0:
            #     main_param = None
            # else:
            main_param = allocate_shard(group_size, torch.float)
            main_param.grad = allocate_shard(group_size, torch.float)
            mpu.set_tensor_model_parallel_attributes(main_param, True, 0, 1)

            # main_param_shards.append(main_param)
            group_shard["orig_group"]["params"] = [ main_param ]

            # # Update optimizer group.
            # self.optimizer.param_groups[group_index]["params"] = [ main_param ]

        # pax(1, {
        #     "opt_group_shards" : opt_group_shards,
        #     "main_param_shards" : main_param_shards,
        # })

        # return main_param_shards

979
980
    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
981
                 bf16, grad_scaler, models):
982
983
984

        super().__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
Lawrence McAfee's avatar
Lawrence McAfee committed
985
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
986
            bf16, grad_scaler, models)
987

988
989
        # >>>
        args = get_args()
990
        assert args.use_contiguous_buffers_in_local_ddp # already checked in args
991
        # <<<
992

Lawrence McAfee's avatar
Lawrence McAfee committed
993
994
995
996
        # # Data parallel info.
        # self.data_parallel_group = mpu.get_data_parallel_group()
        # self.data_parallel_rank = mpu.get_data_parallel_rank()
        # self.data_parallel_world_size = mpu.get_data_parallel_world_size()
997

998
999
1000
1001
        # Model grad buffer shards.
        self.model_gbuf_shards = []
        for model_index, model in enumerate(self.models):
            self.model_gbuf_shards.append(self.get_model_gbuf_shard_map(model))
Lawrence McAfee's avatar
Lawrence McAfee committed
1002
        self.param_gbuf_map = self.get_param_gbuf_map(self.model_gbuf_shards)
1003

1004
1005
        # pax(0, {"param_gbuf_map": [ (str(tuple(p.shape)), d) for p, d in self.param_gbuf_map.items() ]})

1006
1007
1008
1009
1010
        # Optimizer shards.
        self.opt_group_shards = self.get_optimizer_group_shards(
            self.optimizer.param_groups,
            self.model_gbuf_shards)

1011
        # pax(0, {**{"opt_group_shards / %d" % i : g for i, g in enumerate(self.opt_group_shards)}})
Lawrence McAfee's avatar
Lawrence McAfee committed
1012

1013
1014
1015
1016
        # Allocate main param shards.
        # self.main_param_shards = \
        #     self.allocate_main_param_shards(self.opt_group_shards)
        self.allocate_main_param_shards(self.opt_group_shards)
1017

1018
        # >>>
1019
1020
1021
1022
1023
        # pax(0, {
        #     "model_gbuf_shards" : self.model_gbuf_shards,
        #     "opt_group_shards" : self.opt_group_shards,
        #     "main_param_shards" : self.main_param_shards,
        # })
1024
1025
        # <<<

1026
1027
1028
1029
1030
        # Update optimizer groups.
        # - Also, leverage state_dict() and load_state_dict() to
        #   recast preexisting per-param state tensors.
        self.optimizer.param_groups = \
            [ g["orig_group"] for g in self.opt_group_shards ]
Lawrence McAfee's avatar
Lawrence McAfee committed
1031
1032
        self.optimizer.load_state_dict(self.optimizer.state_dict())

1033
1034
1035
1036
1037
1038
        # pax(0, {
        #     # "opt_group_shards" : self.opt_group_shards,
        #     # "param_groups" : self.optimizer.param_groups,
        #     "optimizer" : self.optimizer,
        #     "optimizer / state" : self.optimizer.state,
        # })
1039
        # pax(1, {
1040
1041
1042
1043
1044
        #     "optimizer" : self.optimizer,
        #     **{"optimizer / param_groups / %d" % i : g
        #        for i, g in enumerate(self.optimizer.param_groups)},
        #     "optimizer / state" : self.optimizer.state,
        #     "optimizer / state_dict" : self.optimizer.state_dict(),
1045
1046
1047
1048
        # })

        # Initialize main params.
        self._copy_model_params_to_main_params()
1049

1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
    @staticmethod
    def has_nan_debug(tensors):
        if isinstance(tensors, torch.Tensor):
            tensors = [ tensors ]
        assert isinstance(tensors, list)
        has_nans = [ (not torch.all(torch.isfinite(t)).item()) for t in tensors ]
        has_nan = any(has_nans)
        return has_nan
    def get_local_model_param_views(self):
        '''** FOR DEBUGGING. **'''
        model_param_views = []
        for group_index, opt_group_shard in enumerate(self.opt_group_shards):
            for param, opt_shard in opt_group_shard["param_map"].items():
                model_index, dtype = self.param_gbuf_map[param]
                gbuf_shard_map = \
                    self.model_gbuf_shards[model_index][dtype]["param_map"][param]
                model_param_shard = gbuf_shard_map["param"]
                model_param_views.append(
                    param.view(-1)[model_param_shard.start:model_param_shard.end])
        return model_param_views
    def get_local_model_grad_views(self):
        '''** FOR DEBUGGING. **'''
        model_grad_views = []
        for group_index, opt_group_shard in enumerate(self.opt_group_shards):
            for param, opt_shard in opt_group_shard["param_map"].items():
                model_index, dtype = self.param_gbuf_map[param]
                gbuf = self.models[model_index]._grad_buffers[dtype].data
                gbuf_shard_map = \
                    self.model_gbuf_shards[model_index][dtype]["param_map"][param]
                gbuf_world_shard = gbuf_shard_map["gbuf_world"]
                model_grad_views.append(
                    gbuf[gbuf_world_shard.start:gbuf_world_shard.end])
        return model_grad_views
    def get_world_model_params(self):
        '''** FOR DEBUGGING. **'''
        return [ p for m in self.models for p in m.parameters() ]
1086
1087
1088
    def get_world_model_grads(self):
        '''** FOR DEBUGGING. **'''
        return [ p.main_grad for p in self.get_world_model_params() ]
1089
1090
1091
1092
1093

    def get_main_params(self):
        return [ g["params"][0] for g in self.optimizer.param_groups ]
    def get_main_grads(self):
        return [ p.grad for p in self.get_main_params() ]
1094
    def get_main_param(self, group_index):
1095
1096
        # return self.optimizer.param_groups[group_index]["params"][0]
        return self.get_main_params()[group_index]
1097
1098
1099
    def get_main_grad(self, group_index):
        return self.get_main_param(group_index).grad

1100
1101
1102
1103
1104
1105
    def load_state_dict(self):
        raise Exception("hi.")
    def reload_model_params(self):
        raise Exception("hi.")
    def state_dict(self):
        raise Exception("hi.")
Lawrence McAfee's avatar
Lawrence McAfee committed
1106
1107
1108

    def zero_grad(self, set_to_none=True):

Lawrence McAfee's avatar
Lawrence McAfee committed
1109
        model_params = []
Lawrence McAfee's avatar
Lawrence McAfee committed
1110
1111
        for model in self.models:
            for dtype, param_map in model._grad_buffer_param_index_map.items():
Lawrence McAfee's avatar
Lawrence McAfee committed
1112
1113
1114
1115
                model_params.extend(param_map.keys())
        # main_params = []
        # for main_group in self.optimizer.param_groups:
        #     main_params.extend(main_group["params"])
Lawrence McAfee's avatar
Lawrence McAfee committed
1116

1117
1118
        # ** using contiguous buffer; don't set_to_none **
        _zero_grad_group_helper(model_params, set_to_none = False) # set_to_none)
Lawrence McAfee's avatar
Lawrence McAfee committed
1119
        # _zero_grad_group_helper(params, set_to_none = False)
Lawrence McAfee's avatar
Lawrence McAfee committed
1120

1121
        # pax(0, {"model_params": model_params})
1122

1123
1124
    def get_model_grad_buffer_dp_views(self):

Lawrence McAfee's avatar
Lawrence McAfee committed
1125
        # >>>
1126
1127
1128
        # ** only contiguous grad buffer supported, for now [ TEMPORARY ] **
        args = get_args()
        assert args.use_contiguous_buffers_in_local_ddp
Lawrence McAfee's avatar
Lawrence McAfee committed
1129
        # <<<
1130
1131
1132
1133
1134
1135

        # Grad buffer views.
        gbuf_view_items = []
        for model_index, model in enumerate(self.models):
            for dtype, gbuf_shard in self.model_gbuf_shards[model_index].items():
                world_shards = gbuf_shard["world_all"]
1136
1137
                gbuf = model._grad_buffers[dtype].data
                gbuf_views = [ gbuf[s.start:s.end] for s in world_shards ]
1138
1139
                gbuf_view_items.append((model_index, dtype, gbuf_views))

1140
1141
1142
1143
1144
                # pax(0, {
                #     "world_shards" : world_shards,
                #     "gbuf_views" : gbuf_views,
                # })

1145
1146
1147
1148
        # pax(0, {"gbuf_view_items": gbuf_view_items})

        return gbuf_view_items

1149
    def reduce_grads(self, model):
1150

1151
1152
1153
1154
        # >>>
        timers = get_timers()
        # <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
1155
1156
1157
1158
1159
        # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        # Sync word embedding params.

        # ... todo ...

1160
1161
1162
1163
1164
1165
1166
        # All-reduce word_embeddings' grad across first and last stages to ensure
        # that word_embeddings parameters stay in sync.
        # This should only run for models that support pipelined model parallelism
        # (BERT and GPT-2).
        timers('backward-embedding-all-reduce').start()
        if mpu.is_rank_in_embedding_group(ignore_virtual=True) and \
                mpu.get_pipeline_model_parallel_world_size() > 1:
1167
1168
1169
            # >>>
            raise Exception("hi.")
            # <<<
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
            if mpu.is_pipeline_first_stage(ignore_virtual=True):
                unwrapped_model = model[0]
            elif mpu.is_pipeline_last_stage(ignore_virtual=True):
                unwrapped_model = model[-1]
            else:  # We do not support the interleaved schedule for T5 yet.
                unwrapped_model = model[0]
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))

            if unwrapped_model.share_word_embeddings:
                word_embeddings_weight = unwrapped_model.word_embeddings_weight()
                # >>>
                if args.DDP_impl == 'local':
                    grad = word_embeddings_weight.main_grad
                else:
1185
                    raise Exception("only 'main_grad' supported for distrib-opt.")
1186
1187
1188
1189
1190
1191
1192
                    grad = word_embeddings_weight.grad
                torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())
                # +++
                # grad_shard = optimizer.get_grad_shard(word_embeddings)
                # torch.distributed.all_reduce(grad_shard,
                #                              group=mpu.get_embedding_group())
                # <<<
1193
        timers('backward-embedding-all-reduce').stop()
1194

Lawrence McAfee's avatar
Lawrence McAfee committed
1195
1196
1197
1198
1199
        # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        # Sync T5 position embedding params.

        # ... todo ...

1200
1201
        # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        # Reduce-scatter.
Lawrence McAfee's avatar
Lawrence McAfee committed
1202
        data_parallel_rank = mpu.get_data_parallel_rank()
1203
        data_parallel_world_size = mpu.get_data_parallel_world_size()
Lawrence McAfee's avatar
Lawrence McAfee committed
1204
        data_parallel_group = mpu.get_data_parallel_group()
1205

1206
        gbuf_view_items = self.get_model_grad_buffer_dp_views()
Lawrence McAfee's avatar
Lawrence McAfee committed
1207

1208
1209
        # pax(0, {"gbuf_views": [g for item in gbuf_view_items for g in item[2]]})

1210
        for model_index, dtype, gbuf_views in gbuf_view_items:
1211
1212
1213
1214
1215
1216
1217
1218
1219
            # coalesced /= mpu.get_data_parallel_world_size()
            gbuf = self.models[model_index]._grad_buffers[dtype].data
            torch.mul(gbuf.data, 1. / data_parallel_world_size, out = gbuf.data)
            # gbuf_views = [ t / data_parallel_world_size for t in gbuf_views ]
            # gbuf_d
            # pax(0, {
            #     "data_parallel_world_size" : data_parallel_world_size,
            #     "gbuf" : tp(gbuf),
            # })
1220
1221
1222
1223
1224
1225
            torch.distributed.reduce_scatter(
                gbuf_views[data_parallel_rank],
                gbuf_views,
                group = data_parallel_group,
            )
            
1226
        # pax(0, {"gbuf_views": [g for item in gbuf_view_items for g in item[2]]})
Lawrence McAfee's avatar
Lawrence McAfee committed
1227

1228
    def gather_params(self):
Lawrence McAfee's avatar
Lawrence McAfee committed
1229

1230
1231
        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_group = mpu.get_data_parallel_group()
1232

1233
1234
        gbuf_view_items = self.get_model_grad_buffer_dp_views()

Lawrence McAfee's avatar
Lawrence McAfee committed
1235
        # All-gather updated main params.
1236
1237
1238
1239
1240
1241
1242
        for model_index, dtype, gbuf_views in gbuf_view_items:
            torch.distributed.all_gather(
                gbuf_views,
                gbuf_views[data_parallel_rank],
                group = data_parallel_group,
            )

1243
        # Each model param now contains its updated values in its
Lawrence McAfee's avatar
Lawrence McAfee committed
1244
        # '.main_grad' field.
1245
1246
        for param in self.param_gbuf_map:
            param.detach().copy_(param.main_grad)
1247

1248
        # pax(0, {"gbuf_view_items": gbuf_view_items})
1249

Lawrence McAfee's avatar
Lawrence McAfee committed
1250
    def _collect_main_grad_data_for_unscaling(self):
1251
        return [ g.data for g in self.get_main_grads() ]
Lawrence McAfee's avatar
Lawrence McAfee committed
1252

1253
1254
1255
    def _copy_model_params_to_main_params(self):

        for group_index, group_shard in enumerate(self.opt_group_shards):
1256
            main_param = self.get_main_param(group_index)
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
            for model_param, main_shard in group_shard["param_map"].items():

                # Model shard.
                model_index, dtype = self.param_gbuf_map[model_param]
                model_shard = self.model_gbuf_shards \
                    [model_index][dtype]["param_map"][model_param]["param"]

                assert main_shard.size == model_shard.size

                # Copy shard data.
                main_view = main_param[main_shard.start:main_shard.end]
1268
                model_view = model_param.view(-1)[model_shard.start:model_shard.end]
1269

1270
                main_view.detach().copy_(model_view)
1271

1272

1273
1274
    def _copy_model_grads_to_main_grads(self, ITERATION):

Lawrence McAfee's avatar
Lawrence McAfee committed
1275
        for group_index, group_shard in enumerate(self.opt_group_shards):
1276
            for model_param, main_shard in group_shard["param_map"].items():
Lawrence McAfee's avatar
Lawrence McAfee committed
1277

1278
                # Model shard.
1279
                model_index, dtype = self.param_gbuf_map[model_param]
Lawrence McAfee's avatar
Lawrence McAfee committed
1280
                model_shard = self.model_gbuf_shards \
1281
                    [model_index][dtype]["param_map"][model_param]["gbuf_world"]
Lawrence McAfee's avatar
Lawrence McAfee committed
1282
1283
1284

                assert main_shard.size == model_shard.size

1285
1286
1287
1288
1289
1290
1291
                # pax(0, {
                #     "model_param" : tp(model_param),
                #     "main_shard" : str(main_shard),
                #     "param shard" : self.model_gbuf_shards \
                #     [model_index][dtype]["param_map"][model_param],
                # })

Lawrence McAfee's avatar
Lawrence McAfee committed
1292
                # Copy from DDP's contiguous buffer to main shard's grad.
1293
                model_grad = self.models[model_index]._grad_buffers[dtype].data
1294
                main_grad = self.get_main_grad(group_index)
Lawrence McAfee's avatar
Lawrence McAfee committed
1295

Lawrence McAfee's avatar
Lawrence McAfee committed
1296
                # Copy sub-range within tensor.
1297
1298
                model_view = model_grad[model_shard.start:model_shard.end]
                main_view = main_grad[main_shard.start:main_shard.end]
Lawrence McAfee's avatar
Lawrence McAfee committed
1299

1300
                main_view.detach().copy_(model_view)
Lawrence McAfee's avatar
Lawrence McAfee committed
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315

                # pax(0, {
                #     "group_index" : group_index,
                #     "group_shard" : group_shard,
                #     "param" : tp(param),
                #     "model_index" : model_index,
                #     "gbuf_dtype" : str(gbuf_dtype),
                #     "model_grad_tensor" : tp(model_grad_tensor),
                #     "main_grad_tensor" : tp(main_grad_tensor),
                #     "model_grad_view" : tp(model_grad_view),
                #     "main_grad_view" : tp(main_grad_view),
                #     "model_shard" : str(model_shard),
                #     "main_shard" : str(main_shard),
                # })

Lawrence McAfee's avatar
Lawrence McAfee committed
1316
        # >>>
1317
1318
1319
1320
1321
1322
1323
        # if ITERATION == DEBUG_ITERATION:
        #     pax(0, {
        #         "** branch **" : "** fix. **",
        #         "ITERATION" : ITERATION,
        #         # "model grads" : self.get_world_model_grads(),
        #         "main_grads" : self.get_main_grads(),
        #     })
Lawrence McAfee's avatar
Lawrence McAfee committed
1324
        # <<<
Lawrence McAfee's avatar
Lawrence McAfee committed
1325

1326

1327
    def _copy_main_params_to_model_params(self, ITERATION):
1328
1329

        for group_index, group_shard in enumerate(self.opt_group_shards):
1330
            for model_param, main_shard in group_shard["param_map"].items():
1331

1332
                model_index, dtype = self.param_gbuf_map[model_param]
1333
                model_shard = self.model_gbuf_shards \
1334
                    [model_index][dtype]["param_map"][model_param]["gbuf_world"]
1335
1336
1337
1338

                assert main_shard.size == model_shard.size

                # Use DDP's contiguous buffer to temporarily hold params.
1339
                model_param = self.models[model_index]._grad_buffers[dtype].data
1340
                main_param = self.get_main_param(group_index)
1341
1342

                # Copy sub-range within tensor.
1343
1344
                model_view = model_param[model_shard.start:model_shard.end]
                main_view = main_param[main_shard.start:main_shard.end]
1345
1346
1347
1348

                model_view.detach().copy_(main_view)

                # Debug.
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
                # pax(1, {
                #     "group_index" : group_index,
                #     "group_shard" : group_shard,
                #     "model_param" : tp(model_param),
                #     "model_index" : model_index,
                #     "dtype" : str(dtype),
                #     "model_param" : tp(model_param),
                #     "main_param" : tp(main_param),
                #     "model_view" : tp(model_view),
                #     "main_view" : tp(main_view),
                #     "model_shard" : str(model_shard),
                #     "main_shard" : str(main_shard),
                # })
1362

Lawrence McAfee's avatar
Lawrence McAfee committed
1363
        # >>>
1364
1365
1366
1367
        if ITERATION == DEBUG_ITERATION:
            pax(0, {
                "** branch **" : "** fix. **",
                "ITERATION" : ITERATION,
1368
                "model params" : self.get_world_model_params(),
1369
            })
Lawrence McAfee's avatar
Lawrence McAfee committed
1370
        # <<<
1371

1372
1373
# <<<

mohammad's avatar
mohammad committed
1374

mohammad's avatar
mohammad committed
1375
1376
class FP32Optimizer(MegatronOptimizer):

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1377
1378
    def __init__(self, optimizer, clip_grad,
                 log_num_zeros_in_grad,
1379
                 params_have_main_grad,
1380
                 use_contiguous_buffers_in_local_ddp):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1381
1382
1383

        super(FP32Optimizer, self).__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
1384
            params_have_main_grad, use_contiguous_buffers_in_local_ddp)
mohammad's avatar
mohammad committed
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402

        self._scale = torch.cuda.FloatTensor([1.0])


    def zero_grad(self, set_to_none=True):
        """Copied from torch.optim.optimizer"""
        for group in self.optimizer.param_groups:
            _zero_grad_group_helper(group['params'], set_to_none)


    def get_loss_scale(self):
        """FP32 optimizer does not do any scaling."""
        return self._scale


    @torch.no_grad()
    def step(self):
        """Clip gradients (if needed) and step the base optimizer.
mohammad's avatar
mohammad committed
1403
        Always return successful since there is no overflow."""
mohammad's avatar
mohammad committed
1404

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1405
1406
1407
1408
1409
1410
        # Copy main_grads to grads.
        if self.params_have_main_grad:
            for param_group in self.optimizer.param_groups:
                for param in param_group['params']:
                    param.grad = param.main_grad

1411
1412
1413
                    # Safe to de-reference model's main_grad after copying.
                    # (If using contiguous buffers, main_grad's memory should
                    # persist and therefore should not be deallocated.)
1414
                    if not self.use_contiguous_buffers_in_local_ddp:
1415
1416
                        param.main_grad = None

mohammad's avatar
mohammad committed
1417
        # Clip gradients.
1418
        grad_norm = None
mohammad's avatar
mohammad committed
1419
        if self.clip_grad > 0.0:
1420
            grad_norm = self.clip_grad_norm(self.clip_grad)
mohammad's avatar
mohammad committed
1421

Rewon Child's avatar
Rewon Child committed
1422
        # count the zeros in the grads
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1423
1424
        num_zeros_in_grad = self.count_zeros() if \
                            self.log_num_zeros_in_grad else None
Rewon Child's avatar
Rewon Child committed
1425

mohammad's avatar
mohammad committed
1426
1427
1428
1429
        # Update parameters.
        self.optimizer.step()

        # No overflow for FP32 optimizer.
1430
        return True, grad_norm, num_zeros_in_grad
mohammad's avatar
mohammad committed
1431
1432


1433
1434
1435
1436
    def reload_model_params(self):
        pass


mohammad's avatar
mohammad committed
1437
1438
1439
1440
1441
1442
    def state_dict(self):
        return self.optimizer.state_dict()


    def load_state_dict(self, state_dict):
        self.optimizer.load_state_dict(state_dict)