"vscode:/vscode.git/clone" did not exist on "b52a400cdff2cd759e53d4787d624c53572d6e5e"
optimizer.py 29.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Megatron optimizer."""
mohammad's avatar
mohammad committed
17
18
19
20
21
22
23
24
25

from abc import ABC
from abc import abstractmethod

import torch

from apex.multi_tensor_apply import multi_tensor_applier
import amp_C

mohammad's avatar
mohammad committed
26
27
from megatron import get_timers
from megatron import mpu
mohammad's avatar
mohammad committed
28
29
from megatron import print_rank_0

Rewon Child's avatar
Rewon Child committed
30
from .clip_grads import clip_grad_norm_fp32, count_zeros_fp32
mohammad's avatar
mohammad committed
31

32
33
# >>>
from lutil import pax, tp
34

35
DEBUG_ITERATION = 2 # 10
36
# <<<
mohammad's avatar
mohammad committed
37

Lawrence McAfee's avatar
Lawrence McAfee committed
38

mohammad's avatar
mohammad committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
def _zero_grad_group_helper(group, set_to_none):
    """Zero out the gradient for a group of parameters.
    Note: copied from torch.optim.optimizer."""
    for param in group:
        if param.grad is not None:
            if set_to_none:
                param.grad = None
            else:
                if param.grad.grad_fn is not None:
                    param.grad.detach_()
                else:
                    param.grad.requires_grad_(False)
                param.grad.zero_()


54
def _multi_tensor_copy_this_to_that(this, that, overflow_buf=None):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
55
56
57
58
    """Use multi-tensor-applier to copy values from one list to another.
    We don't have a blfoat16 implementation so for now if the overflow_buf
    is not provided, we default back to simple loop copy to be compatible
    with bfloat16."""
59
60
    if overflow_buf:
        overflow_buf.fill_(0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
61
62
63
64
65
        # Scaling with factor `1.0` is equivalent to copy.
        multi_tensor_applier(amp_C.multi_tensor_scale,
                             overflow_buf,
                             [this, that],
                             1.0)
66
    else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
67
68
69
        for this_, that_ in zip(this, that):
            that_.copy_(this_)

70

mohammad's avatar
mohammad committed
71
72
73

class MegatronOptimizer(ABC):

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
74
75
76

    def __init__(self, optimizer, clip_grad,
                 log_num_zeros_in_grad,
77
                 params_have_main_grad,
78
                 use_contiguous_buffers_in_local_ddp):
79

mohammad's avatar
mohammad committed
80
81
82
        """Input optimizer is the base optimizer for example Adam."""
        self.optimizer = optimizer
        assert self.optimizer, 'no optimizer is provided.'
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
83
84
85
86
        # Set gradient clipping and logging params.
        self.clip_grad = clip_grad
        self.log_num_zeros_in_grad = log_num_zeros_in_grad
        self.params_have_main_grad = params_have_main_grad
87
        self.use_contiguous_buffers_in_local_ddp = use_contiguous_buffers_in_local_ddp
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
88

89
        if self.use_contiguous_buffers_in_local_ddp:
90
91
            assert self.params_have_main_grad, \
                "use of contiguous buffer requires that params have main grad"
mohammad's avatar
mohammad committed
92

Rewon Child's avatar
Rewon Child committed
93
    def get_parameters(self):
94
95
96
97
        params = []
        for param_group in self.optimizer.param_groups:
            for param in param_group['params']:
                params.append(param)
Rewon Child's avatar
Rewon Child committed
98
99
        return params

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
100

Lawrence McAfee's avatar
Lawrence McAfee committed
101
    def clip_grad_norm(self, clip_grad, ITERATION):
Lawrence McAfee's avatar
Lawrence McAfee committed
102
        # >>>
Lawrence McAfee's avatar
Lawrence McAfee committed
103
        return
Lawrence McAfee's avatar
Lawrence McAfee committed
104
        # <<<
Lawrence McAfee's avatar
Lawrence McAfee committed
105
106
        params = self.get_parameters()
        return clip_grad_norm_fp32(params, clip_grad, ITERATION = ITERATION)
107

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
108

Rewon Child's avatar
Rewon Child committed
109
110
111
112
    def count_zeros(self):
        params = self.get_parameters()
        return count_zeros_fp32(params)

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
113

mohammad's avatar
mohammad committed
114
115
116
117
    @abstractmethod
    def zero_grad(self, set_to_none=True):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
118

mohammad's avatar
mohammad committed
119
120
    @abstractmethod
    def get_loss_scale(self):
121
        """The output should be a cuda tensor of size 1."""
mohammad's avatar
mohammad committed
122
123
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
124

mohammad's avatar
mohammad committed
125
126
127
128
    def scale_loss(self, loss):
        """Simple scaling."""
        return self.get_loss_scale() * loss

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
129

Lawrence McAfee's avatar
Lawrence McAfee committed
130
    @abstractmethod
131
    def reduce_grads(self):
Lawrence McAfee's avatar
Lawrence McAfee committed
132
133
134
        pass


mohammad's avatar
mohammad committed
135
136
137
138
    @abstractmethod
    def step(self):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
139

Lawrence McAfee's avatar
Lawrence McAfee committed
140
141
142
143
144
    @abstractmethod
    def gather_params(self):
        pass


145
146
    @abstractmethod
    def reload_model_params(self):
147
148
149
150
151
        """Refreshes any internal state from the current model parameters.
        Call whenever the parameters are changed outside of the optimizer.
        For example, when we load a model from a checkpoint  without loading
        the optimizer, the model parameters are updated but for fp16 optimizer
        with main parameters, the main parameters need to also be updated."""
152
153
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
154

mohammad's avatar
mohammad committed
155
156
157
158
    @abstractmethod
    def state_dict(self):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
159

mohammad's avatar
mohammad committed
160
161
162
163
    @abstractmethod
    def load_state_dict(self, state_dict):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
164

mohammad's avatar
mohammad committed
165
166
167
168
169
170
171
172
173
174
    # Promote state so it can be retrieved or set via
    # "optimizer_instance.state"
    def _get_state(self):
        return self.optimizer.state

    def _set_state(self, value):
        self.optimizer.state = value

    state = property(_get_state, _set_state)

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
175

mohammad's avatar
mohammad committed
176
177
178
179
180
181
182
183
184
185
186
187
    # Promote param_groups so it can be retrieved or set via
    # "optimizer_instance.param_groups"
    # (for example, to adjust the learning rate)
    def _get_param_groups(self):
        return self.optimizer.param_groups

    def _set_param_groups(self, value):
        self.optimizer.param_groups = value

    param_groups = property(_get_param_groups, _set_param_groups)


Lawrence McAfee's avatar
Lawrence McAfee committed
188
class BaseFloat16Optimizer(MegatronOptimizer):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
189
190

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
191
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
192
193
                 bf16, grad_scaler,
                 models):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
194

Lawrence McAfee's avatar
Lawrence McAfee committed
195
        super().__init__(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
196
            optimizer, clip_grad, log_num_zeros_in_grad,
197
            params_have_main_grad, use_contiguous_buffers_in_local_ddp)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
198

199
200
201
        # >>>
        self.models = models
        # <<<
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
202
        self.bf16 = bf16
mohammad's avatar
mohammad committed
203
        self.grad_scaler = grad_scaler
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
204
205
206
        # None grad scaler is only supported for bf16.
        if self.grad_scaler is None:
            assert self.bf16, 'fp16 expects a grad scaler.'
mohammad's avatar
mohammad committed
207
208
209

        # Tensor used to determine if a nan/if has happend.
        # Any non-zero value indicates inf/nan.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
210
211
212
213
        # Note that we keep this for the cases that grad scaler is none.
        # We still record nan/inf if we have a bfloat16 with a grad scaler.
        if self.grad_scaler:
            self.found_inf = torch.cuda.FloatTensor([0.0])
mohammad's avatar
mohammad committed
214
215

        # Dummy tensor needed for apex multi-apply tensor.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
216
217
218
219
220
221
222
223
224
225
        # For bfloat, we don't have multi-tensor apply and for now
        # we set it to none so the multi-tensor apply gets ignored.
        if bf16:
            self._dummy_overflow_buf = None
        else:
            self._dummy_overflow_buf = torch.cuda.IntTensor([0])

        # In case grad scaler is not passed, define the unity scale.
        if self.grad_scaler is None:
            self._scale_one = torch.cuda.FloatTensor([1.0])
mohammad's avatar
mohammad committed
226

Lawrence McAfee's avatar
Lawrence McAfee committed
227
228
229
230
231
232
233

    def get_loss_scale(self):
        if self.grad_scaler is None:
            return self._scale_one
        return self.grad_scaler.scale


Lawrence McAfee's avatar
Lawrence McAfee committed
234
235
236
237
    def reload_model_params(self):
        self._copy_model_params_to_main_params()


Lawrence McAfee's avatar
Lawrence McAfee committed
238
239
240
241
242
243
244
245
246
247
248
249
250
251
    def _unscale_main_grads_and_check_for_nan(self):

        # Collect main grads.
        main_grads = self._collect_main_grad_data_for_unscaling()
        # pax(1, {"main_grads": main_grads})

        # Reset found inf.
        self.found_inf.fill_(0.0)

        # Unscale and set found inf/nan
        torch._amp_foreach_non_finite_check_and_unscale_(
            main_grads, self.found_inf, self.grad_scaler.inv_scale)

        # Update across all model parallel instances.
252
253
254
255
256
        # >>>
        # torch.distributed.all_reduce(self.found_inf,
        #                              op=torch.distributed.ReduceOp.MAX,
        #                              group=mpu.get_model_parallel_group())
        # +++
Lawrence McAfee's avatar
Lawrence McAfee committed
257
        torch.distributed.all_reduce(self.found_inf,
258
259
                                     op=torch.distributed.ReduceOp.MAX)
        # <<<
Lawrence McAfee's avatar
Lawrence McAfee committed
260
261
262
263
264
265

        # Check for nan.
        found_inf_flag = (self.found_inf.item() > 0)

        return found_inf_flag

Lawrence McAfee's avatar
Lawrence McAfee committed
266
267
    # >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
    @classmethod
268
    def debug_base(cls, ITERATION, key, value):
Lawrence McAfee's avatar
Lawrence McAfee committed
269
270
271
272
273
274
275
        from megatron import get_args
        args = get_args()
        my_rank = torch.distributed.get_rank()
        if ITERATION != DEBUG_ITERATION:
            return
        for r in range(torch.distributed.get_world_size()):
            if my_rank == r:
276
                print("            + br/%s; [r%d, i%d]; %s, %.12e" % ("fix " if args.use_distributed_optimizer else "main", my_rank, ITERATION, key, value))
Lawrence McAfee's avatar
Lawrence McAfee committed
277
278
279
280
281
282
283
            torch.distributed.barrier()
        torch.distributed.barrier()
        # if my_rank == 0:
        #     raise Exception("debug.")
        # else:
        #     exit(0)
        exit(0)
284
285
    def debug_model(self, ITERATION, key, use_grad):
        use_grad = bool(use_grad)
286
        tensors = [
287
            (p.main_grad.float() if use_grad else p.float())
288
289
290
            for m in self.models for p in m.parameters()
        ]
        count = sum(t.nelement() for t in tensors)
291
        return self.debug_base(
292
293
            ITERATION,
            "model/%s, %s [count %d]" % (
294
                "grad" if use_grad else "param",
295
296
297
                key,
                count,
            ),
298
299
            # sum(torch.sum(torch.abs(t)) for t in tensors).item() / count,
            sum(torch.sum(torch.abs(t)) for t in tensors),
300
        )
301
302
303
304
305
306
307
308
309
    def debug_main(self, ITERATION, key, use_grad):
        use_grad = bool(use_grad)
        tensors = [
            p.grad if use_grad else p
            for g in self.optimizer.param_groups
            for p in g["params"]
        ]
        tensors = [ t.float() for t in tensors ]
        count = sum(t.nelement() for t in tensors)
310
        return self.debug_base(
Lawrence McAfee's avatar
Lawrence McAfee committed
311
            ITERATION,
312
313
314
315
316
317
            "main/%s, %s [count %d]" % (
                "grad" if use_grad else "param",
                key,
                count,
            ),
            sum(torch.sum(torch.abs(t)) for t in tensors),
Lawrence McAfee's avatar
Lawrence McAfee committed
318
319
        )
    # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
Lawrence McAfee's avatar
Lawrence McAfee committed
320
321

    @torch.no_grad()
322
    def step(self, ITERATION):
Lawrence McAfee's avatar
Lawrence McAfee committed
323
324
325

        timers = get_timers()

326
327
328
        # >>>
        # self.debug_model_param(ITERATION, "before copy grad.")
        # self.debug_model_grad(ITERATION, "before copy grad.")
329
330
        # self.debug_main_param(ITERATION, "before copy grad.")
        # self.debug_main_grad(ITERATION, "before copy grad.")
331
332
        # <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
333
334
        # Copy gradients from model params to main params.
        timers('optimizer-copy-to-main-grad').start()
335
        self._copy_model_grads_to_main_grads(ITERATION)
Lawrence McAfee's avatar
Lawrence McAfee committed
336
337
        timers('optimizer-copy-to-main-grad').stop()

338
        # >>>
339
340
        # self.debug_model(ITERATION, "after copy grad.", 0)
        # self.debug_main(ITERATION, "after copy grad.", 1)
341
342
        # <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
        # Do unscale, check for inf, and update grad scaler only for
        # the case that grad scaler is provided.
        if self.grad_scaler:

            # Unscale and check for inf/nan.
            timers('optimizer-unscale-and-check-inf').start()
            found_inf_flag = self._unscale_main_grads_and_check_for_nan()
            timers('optimizer-unscale-and-check-inf').stop()

            # We are done with scaling gradients
            # so we can update the loss scale.
            self.grad_scaler.update(found_inf_flag)

            # If we found inf/nan, skip the update.
            if found_inf_flag:
358
359
360
361
362
                pax(0, {
                    "main params" : self.get_main_params(),
                    "main grads" : self.get_main_grads(),
                    "found_inf_flag" : found_inf_flag,
                })
Lawrence McAfee's avatar
Lawrence McAfee committed
363
364
365
366
367
368
                return False, None, None

        # Clip the main gradients.
        timers('optimizer-clip-main-grad').start()
        grad_norm = None
        if self.clip_grad > 0.0:
Lawrence McAfee's avatar
Lawrence McAfee committed
369
            grad_norm = self.clip_grad_norm(self.clip_grad, ITERATION)
Lawrence McAfee's avatar
Lawrence McAfee committed
370
371
372
373
374
375
        timers('optimizer-clip-main-grad').stop()

        # count the zeros in the grads
        num_zeros_in_grad = self.count_zeros() if \
                            self.log_num_zeros_in_grad else None

376
377
378
379
380
381
382
383
384
385
386
387
        # >>>
        # param = self.optimizer.param_groups[0]["params"][0]
        # pax(0, {
        #     "param" : tp(param),
        #     "grad" : tp(param.grad),
        # })
        # <<<

        # >>>
        # self.debug_main(ITERATION, "before step.", 0)
        # <<<

388
389
390
        # Step the optimizer.
        self.optimizer.step()

Lawrence McAfee's avatar
Lawrence McAfee committed
391
        # >>>
392
        # self.debug_main(ITERATION, "after step.", 0)
Lawrence McAfee's avatar
Lawrence McAfee committed
393
394
        # <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
395
396
        # Update params from main params.
        timers('optimizer-copy-main-to-model-params').start()
397
        self._copy_main_params_to_model_params(ITERATION)
Lawrence McAfee's avatar
Lawrence McAfee committed
398
399
        timers('optimizer-copy-main-to-model-params').stop()

400
        # >>>
401
402
        # self.debug_main_param(ITERATION, "after copy param.")
        # self.debug_main_grad(ITERATION, "after copy param.")
403
404
        # <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
405
406
407
408
        # Successful update.
        return True, grad_norm, num_zeros_in_grad


Lawrence McAfee's avatar
Lawrence McAfee committed
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
# class Float16OptimizerWithFloat16Params(MegatronOptimizer):
class Float16OptimizerWithFloat16Params(BaseFloat16Optimizer):
    """Float16 optimizer for fp16 and bf16 data types.

    Arguments:
        optimizer: base optimizer such as Adam or SGD
        clip_grad: clip gradeints with this global L2 norm. Note
            that clipping is ignored if clip_grad == 0
        log_num_zeros_in_grad: return number of zeros in the gradients.
        params_have_main_grad: flag indicating if parameters have
            a `main_grad` field. If this is set, we are assuming
            that the model parameters are store in the `main_grad`
            field instead of the typical `grad` field. This happens
            for the DDP cases where there is a continuous buffer
            holding the gradients. For example for bfloat16, we want
            to do gradient accumulation and all-reduces in float32
            and as a result we store those gradients in the main_grad.
            Note that main grad is not necessarily in float32.
        bf16: if true, the model is running in bfloat16.
        grad_scaler: used for scaling gradients. Note that this can be
            None. This case happens when `bf16 = True` and we don't
            use any loss scale. Note that for `bf16 = True`, we can have
            a constnat gradient scaler. Also for `bf16 = False`, we
            always require a grad scaler.
    """

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
Lawrence McAfee's avatar
Lawrence McAfee committed
437
                 bf16, grad_scaler, models):
Lawrence McAfee's avatar
Lawrence McAfee committed
438
439
440
441

        super().__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
Lawrence McAfee's avatar
Lawrence McAfee committed
442
            bf16, grad_scaler, models)
Lawrence McAfee's avatar
Lawrence McAfee committed
443

mohammad's avatar
mohammad committed
444
        # ======================
445
        # main parameter stuff
mohammad's avatar
mohammad committed
446
447
448
        # ======================

        # Three groups of parameters:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
449
450
        #   float16_groups: original float16 parameters
        #   fp32_from_float16_groups: fp32 copy of float16 parameters
mohammad's avatar
mohammad committed
451
        #   fp32_from_fp32_groups: original fp32 parameters
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
452
453
        self.float16_groups = []
        self.fp32_from_float16_groups = []
mohammad's avatar
mohammad committed
454
455
456
457
        self.fp32_from_fp32_groups = []

        # For all the groups in the original optimizer:
        for param_group in self.optimizer.param_groups:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
458
            float16_params_this_group = []
mohammad's avatar
mohammad committed
459
            fp32_params_this_group = []
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
460
            fp32_from_float16_params_this_group = []
mohammad's avatar
mohammad committed
461
462
463
464
            # For all the parameters in this group:
            for i, param in enumerate(param_group['params']):
                if param.requires_grad:

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
465
466
467
468
                    # float16 params:
                    if param.type() in ['torch.cuda.HalfTensor',
                                        'torch.cuda.BFloat16Tensor']:
                        float16_params_this_group.append(param)
mohammad's avatar
mohammad committed
469
                        # Create a copy
470
                        main_param = param.detach().clone().float()
mohammad's avatar
mohammad committed
471
                        # Copy tensor model parallel attributes.
472
                        mpu.copy_tensor_model_parallel_attributes(main_param,
mohammad's avatar
mohammad committed
473
                                                                  param)
474
                        if hasattr(param, 'shared'):
475
                            main_param.shared = param.shared
mohammad's avatar
mohammad committed
476
                        # Replace the optimizer params with the new fp32 copy.
477
                        param_group['params'][i] = main_param
478

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
479
                        fp32_from_float16_params_this_group.append(main_param)
480
                        # Reset existing state dict key to the new main param.
mohammad's avatar
mohammad committed
481
                        if param in self.optimizer.state:
482
483
484
                            # >>>
                            raise Exception("hi.")
                            # <<<
485
                            self.optimizer.state[main_param] \
mohammad's avatar
mohammad committed
486
487
488
489
                                = self.optimizer.state.pop(param)

                    # fp32 params.
                    elif param.type() == 'torch.cuda.FloatTensor':
Lawrence McAfee's avatar
Lawrence McAfee committed
490
491
492
                        # >>>
                        pax(0, {"param": param})
                        # <<<
mohammad's avatar
mohammad committed
493
494
495
496
                        fp32_params_this_group.append(param)
                        param_group['params'][i] = param

                    else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
497
498
499
500
501
502
503
504
505
                        raise TypeError('Wrapped parameters must be one of '
                                        'torch.cuda.FloatTensor,  '
                                        'torch.cuda.HalfTensor, or '
                                        'torch.cuda.BFloat16Tensor. '
                                        'Received {}'.format(param.type()))

            self.float16_groups.append(float16_params_this_group)
            self.fp32_from_float16_groups.append(
                fp32_from_float16_params_this_group)
mohammad's avatar
mohammad committed
506
507
508
509
510
511
            self.fp32_from_fp32_groups.append(fp32_params_this_group)

        # Leverage state_dict() and load_state_dict() to
        # recast preexisting per-param state tensors
        self.optimizer.load_state_dict(self.optimizer.state_dict())

Lawrence McAfee's avatar
Lawrence McAfee committed
512
513
514
515
516
517
518
519
520
521
        # >>>
        # from megatron.mpu.layers import param_is_not_tensor_parallel_duplicate
        # params = self.get_parameters()
        # pax(0, {
        #     # "params / 0" : params[0],
        #     "params" : [ (p.tensor_model_parallel, tp(p)) for p in params ],
        #     "grads" : [ (param_is_not_tensor_parallel_duplicate(p.grad), tp(p.grad)) for p in params ],
        # })
        # <<<

mohammad's avatar
mohammad committed
522
523
524

    def zero_grad(self, set_to_none=True):
        """We only need to zero the model related parameters, i.e.,
525
526
527
528
        float16_groups & fp32_from_fp32_groups. We additionally zero
        fp32_from_float16_groups as a memory optimization to reduce
        fragmentation; in the case of set_to_none==True, the space
        used by this field can be safely deallocated at this point."""
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
529
        for group in self.float16_groups:
mohammad's avatar
mohammad committed
530
            _zero_grad_group_helper(group, set_to_none)
531
532
        for group in self.fp32_from_float16_groups:
            _zero_grad_group_helper(group, set_to_none)
mohammad's avatar
mohammad committed
533
534
535
536
        for group in self.fp32_from_fp32_groups:
            _zero_grad_group_helper(group, set_to_none)


537
    # >>>
538
    def reduce_grads(self, model):
539
540
541
542
543
544
545
546
547
548
549
550
551

        # >>>
        from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

        from megatron import get_args
        from megatron import get_timers
        from megatron.model import DistributedDataParallel as LocalDDP
        from megatron.model import Float16Module
        from megatron.utils import unwrap_model

        args = get_args()
        timers = get_timers()
        # <<<
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566

        # All-reduce if needed.
        if args.DDP_impl == 'local':
            timers('backward-params-all-reduce').start()
            for model_module in model:
                model_module.allreduce_gradients()
            timers('backward-params-all-reduce').stop()

        # All-reduce word_embeddings' grad across first and last stages to ensure
        # that word_embeddings parameters stay in sync.
        # This should only run for models that support pipelined model parallelism
        # (BERT and GPT-2).
        timers('backward-embedding-all-reduce').start()
        if mpu.is_rank_in_embedding_group(ignore_virtual=True) and \
                mpu.get_pipeline_model_parallel_world_size() > 1:
567
            # >>>
568
            # raise Exception("[main] ready for weight sync?")
569
            # <<<
570
571
572
573
574
575
576
577
578
579
580
            if mpu.is_pipeline_first_stage(ignore_virtual=True):
                unwrapped_model = model[0]
            elif mpu.is_pipeline_last_stage(ignore_virtual=True):
                unwrapped_model = model[-1]
            else:  # We do not support the interleaved schedule for T5 yet.
                unwrapped_model = model[0]
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))

            if unwrapped_model.share_word_embeddings:
                word_embeddings_weight = unwrapped_model.word_embeddings_weight()
581
582
583
584
585
                if args.DDP_impl == 'local':
                    grad = word_embeddings_weight.main_grad
                else:
                    grad = word_embeddings_weight.grad
                torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())
586
587
588
589
590
591
592

        # All-reduce position_embeddings grad across first (encoder) and split (decoder) 
        # stages to ensure that position embeddings parameters stay in sync.
        # This should only run for T5 models with pipeline parallelism
        if mpu.is_rank_in_position_embedding_group() and \
                mpu.get_pipeline_model_parallel_world_size() > 1 and \
                args.pipeline_model_parallel_split_rank is not None:
593
594
595
            # >>>
            raise Exception("[main] ready for t5 sync?")
            # <<<
596
597
598
599
600
            unwrapped_model = model[0]
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))
            assert args.DDP_impl == 'local', \
                'T5 model is only supported with local DDP mode'
601
602
            grad = unwrapped_model.language_model.embedding.position_embeddings.weight.main_grad
            torch.distributed.all_reduce(grad, group=mpu.get_position_embedding_group())
603
604
        timers('backward-embedding-all-reduce').stop()

605
    def gather_params(self, ITERATION):
Lawrence McAfee's avatar
Lawrence McAfee committed
606
        pass
Lawrence McAfee's avatar
Lawrence McAfee committed
607

608
    def _copy_model_grads_to_main_grads(self, ITERATION):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
609
610
611
        # This only needs to be done for the float16 group.
        for model_group, main_group in zip(self.float16_groups,
                                           self.fp32_from_float16_groups):
612
            for model_param, main_param in zip(model_group, main_group):
613
                if self.params_have_main_grad and hasattr(model_param, 'main_grad'):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
614
615
616
617
                    main_param.grad = model_param.main_grad.float()
                else:
                    if model_param.grad is not None:
                        main_param.grad = model_param.grad.float()
618
619
620
621
622

                # Safe to deallocate model's grad/main_grad after copying.
                # (If using contiguous buffers, main_grad's memory should
                # persist and therefore should not be deallocated.)
                model_param.grad = None
623
                if self.params_have_main_grad and \
624
                   not self.use_contiguous_buffers_in_local_ddp:
625
626
                    model_param.main_grad = None

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
627
628
629
630
631
        # For fp32 grads, we need to reset the grads to main grad.
        if self.params_have_main_grad:
            for model_group in self.fp32_from_fp32_groups:
                for model_param in model_group:
                    model_param.grad = model_param.main_grad
mohammad's avatar
mohammad committed
632

633
634
635
                    # Safe to de-reference model's main_grad after copying.
                    # (If using contiguous buffers, main_grad's memory should
                    # persist and therefore should not be deallocated.)
636
                    if not self.use_contiguous_buffers_in_local_ddp:
637
                        model_param.main_grad = None
mohammad's avatar
mohammad committed
638

639
640
641
642
643
644
645
646
647
648
        # >>>
        # if ITERATION == DEBUG_ITERATION:
        #     pax(0, {
        #         "** branch **" : "** main. **",
        #         "ITERATION" : ITERATION,
        #         "model grads" :
        #         [ p.main_grad for m in self.models for p in m.parameters() ],
        #     })
        # <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
649
650
    def _collect_main_grad_data_for_unscaling(self):

651
        main_grads = []
Lawrence McAfee's avatar
Lawrence McAfee committed
652
653

        # fp32 params from float16 ones.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
654
        for main_group in self.fp32_from_float16_groups:
655
656
657
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
Lawrence McAfee's avatar
Lawrence McAfee committed
658

mohammad's avatar
mohammad committed
659
        # Append fp32 parameters.
660
661
662
663
        for main_group in self.fp32_from_fp32_groups:
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
Lawrence McAfee's avatar
Lawrence McAfee committed
664
665
        
        return main_grads
mohammad's avatar
mohammad committed
666
667


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
668
    def _get_model_and_main_params_data_float16(self):
mohammad's avatar
mohammad committed
669
        model_data = []
670
        main_data = []
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
671
672
        for model_group, main_group in zip(self.float16_groups,
                                           self.fp32_from_float16_groups):
673
            for model_param, main_param in zip(model_group, main_group):
mohammad's avatar
mohammad committed
674
                model_data.append(model_param.data)
675
676
                main_data.append(main_param.data)
        return model_data, main_data
677
678


679
    def _copy_main_params_to_model_params(self, ITERATION):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
680
681
        # Only needed for the float16 params.
        model_data, main_data = self._get_model_and_main_params_data_float16()
682
683
        _multi_tensor_copy_this_to_that(this=main_data, that=model_data,
                                        overflow_buf=self._dummy_overflow_buf)
684
        # >>>
Lawrence McAfee's avatar
Lawrence McAfee committed
685
686
687
688
689
690
        # if ITERATION == DEBUG_ITERATION:
        #     pax(0, {
        #         "** branch **" : "** main. **",
        #         "ITERATION" : ITERATION,
        #         "model params" : [p for m in self.models for p in m.parameters()],
        #     })
691
        # <<<
692
693
694


    def _copy_model_params_to_main_params(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
695
696
        # Only needed for the float16 params.
        model_data, main_data = self._get_model_and_main_params_data_float16()
697
698
        _multi_tensor_copy_this_to_that(this=model_data, that=main_data,
                                        overflow_buf=self._dummy_overflow_buf)
699
700


mohammad's avatar
mohammad committed
701
702
703
    def state_dict(self):
        state_dict = {}
        state_dict['optimizer'] = self.optimizer.state_dict()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
704
705
706
        if self.grad_scaler:
            state_dict['grad_scaler'] = self.grad_scaler.state_dict()
        state_dict['fp32_from_fp16_params'] = self.fp32_from_float16_groups
mohammad's avatar
mohammad committed
707
708
709
710
        return state_dict


    def load_state_dict(self, state_dict):
mohammad's avatar
mohammad committed
711
712
713
714
715
716
717
718
719
720
721
722
723
        # Optimizer.
        optimizer_key = 'optimizer'
        if optimizer_key not in state_dict:
            optimizer_key = 'optimizer_state_dict'
            print_rank_0('***WARNING*** loading optimizer from '
                         'an old checkpoint ...')
        self.optimizer.load_state_dict(state_dict[optimizer_key])

        # Grad scaler.
        if 'grad_scaler' not in state_dict:
            print_rank_0('***WARNING*** found an old checkpoint, will not '
                         'load grad scaler ...')
        else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
724
725
726
727
728
729
            if self.grad_scaler:
                self.grad_scaler.load_state_dict(state_dict['grad_scaler'])
            else:
                print_rank_0('***WARNING*** fould the grad scaler in the '
                             'checkpoint but it is None in the class. '
                             'Skipping loading grad scaler ...')
mohammad's avatar
mohammad committed
730

731
        # Copy data for the main params.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
732
733
734
        fp32_from_float16_params_key = 'fp32_from_fp16_params'
        if fp32_from_float16_params_key not in state_dict:
            fp32_from_float16_params_key = 'fp32_from_fp16'
mohammad's avatar
mohammad committed
735
        for current_group, saved_group in zip(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
736
737
                self.fp32_from_float16_groups,
                state_dict[fp32_from_float16_params_key]):
mohammad's avatar
mohammad committed
738
739
740
741
            for current_param, saved_param in zip(current_group, saved_group):
                current_param.data.copy_(saved_param.data)


mohammad's avatar
mohammad committed
742
743
class FP32Optimizer(MegatronOptimizer):

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
744
745
    def __init__(self, optimizer, clip_grad,
                 log_num_zeros_in_grad,
746
                 params_have_main_grad,
747
                 use_contiguous_buffers_in_local_ddp):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
748
749
750

        super(FP32Optimizer, self).__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
751
            params_have_main_grad, use_contiguous_buffers_in_local_ddp)
mohammad's avatar
mohammad committed
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

        self._scale = torch.cuda.FloatTensor([1.0])


    def zero_grad(self, set_to_none=True):
        """Copied from torch.optim.optimizer"""
        for group in self.optimizer.param_groups:
            _zero_grad_group_helper(group['params'], set_to_none)


    def get_loss_scale(self):
        """FP32 optimizer does not do any scaling."""
        return self._scale


    @torch.no_grad()
    def step(self):
        """Clip gradients (if needed) and step the base optimizer.
mohammad's avatar
mohammad committed
770
        Always return successful since there is no overflow."""
mohammad's avatar
mohammad committed
771

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
772
773
774
775
776
777
        # Copy main_grads to grads.
        if self.params_have_main_grad:
            for param_group in self.optimizer.param_groups:
                for param in param_group['params']:
                    param.grad = param.main_grad

778
779
780
                    # Safe to de-reference model's main_grad after copying.
                    # (If using contiguous buffers, main_grad's memory should
                    # persist and therefore should not be deallocated.)
781
                    if not self.use_contiguous_buffers_in_local_ddp:
782
783
                        param.main_grad = None

mohammad's avatar
mohammad committed
784
        # Clip gradients.
785
        grad_norm = None
mohammad's avatar
mohammad committed
786
        if self.clip_grad > 0.0:
787
            grad_norm = self.clip_grad_norm(self.clip_grad)
mohammad's avatar
mohammad committed
788

Rewon Child's avatar
Rewon Child committed
789
        # count the zeros in the grads
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
790
791
        num_zeros_in_grad = self.count_zeros() if \
                            self.log_num_zeros_in_grad else None
Rewon Child's avatar
Rewon Child committed
792

mohammad's avatar
mohammad committed
793
794
795
796
        # Update parameters.
        self.optimizer.step()

        # No overflow for FP32 optimizer.
797
        return True, grad_norm, num_zeros_in_grad
mohammad's avatar
mohammad committed
798
799


800
801
802
803
    def reload_model_params(self):
        pass


mohammad's avatar
mohammad committed
804
805
806
807
808
809
    def state_dict(self):
        return self.optimizer.state_dict()


    def load_state_dict(self, state_dict):
        self.optimizer.load_state_dict(state_dict)