pipeline_utils.py 29.1 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
improve  
Patrick von Platen committed
17
import importlib
18
import inspect
Patrick von Platen's avatar
Patrick von Platen committed
19
import os
20
from dataclasses import dataclass
21
from typing import Any, Dict, List, Optional, Union
anton-l's avatar
Style  
anton-l committed
22

23
import numpy as np
Pedro Cuenca's avatar
Pedro Cuenca committed
24
25
import torch

26
import diffusers
27
import PIL
Patrick von Platen's avatar
up  
Patrick von Platen committed
28
from huggingface_hub import snapshot_download
29
from packaging import version
30
from PIL import Image
hysts's avatar
hysts committed
31
from tqdm.auto import tqdm
Patrick von Platen's avatar
Patrick von Platen committed
32

33
from . import __version__
Patrick von Platen's avatar
Patrick von Platen committed
34
from .configuration_utils import ConfigMixin
Patrick von Platen's avatar
Patrick von Platen committed
35
from .dynamic_modules_utils import get_class_from_dynamic_module
36
from .schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
37
38
39
40
41
42
from .utils import (
    CONFIG_NAME,
    DIFFUSERS_CACHE,
    ONNX_WEIGHTS_NAME,
    WEIGHTS_NAME,
    BaseOutput,
43
    deprecate,
44
45
46
47
48
49
    is_transformers_available,
    logging,
)


if is_transformers_available():
50
    import transformers
51
    from transformers import PreTrainedModel
Patrick von Platen's avatar
improve  
Patrick von Platen committed
52

Patrick von Platen's avatar
Patrick von Platen committed
53

Patrick von Platen's avatar
Patrick von Platen committed
54
INDEX_FILE = "diffusion_pytorch_model.bin"
Patrick von Platen's avatar
Patrick von Platen committed
55
CUSTOM_PIPELINE_FILE_NAME = "pipeline.py"
56
DUMMY_MODULES_FOLDER = "diffusers.utils"
Patrick von Platen's avatar
Patrick von Platen committed
57
58
59
60
61
62
63


logger = logging.get_logger(__name__)


LOADABLE_CLASSES = {
    "diffusers": {
Patrick von Platen's avatar
Patrick von Platen committed
64
        "ModelMixin": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
65
        "SchedulerMixin": ["save_config", "from_config"],
Patrick von Platen's avatar
Patrick von Platen committed
66
        "DiffusionPipeline": ["save_pretrained", "from_pretrained"],
67
        "OnnxRuntimeModel": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
68
69
    },
    "transformers": {
anton-l's avatar
anton-l committed
70
        "PreTrainedTokenizer": ["save_pretrained", "from_pretrained"],
71
        "PreTrainedTokenizerFast": ["save_pretrained", "from_pretrained"],
anton-l's avatar
anton-l committed
72
        "PreTrainedModel": ["save_pretrained", "from_pretrained"],
Suraj Patil's avatar
Suraj Patil committed
73
        "FeatureExtractionMixin": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
74
75
76
    },
}

77
78
79
80
ALL_IMPORTABLE_CLASSES = {}
for library in LOADABLE_CLASSES:
    ALL_IMPORTABLE_CLASSES.update(LOADABLE_CLASSES[library])

Patrick von Platen's avatar
Patrick von Platen committed
81

82
83
84
85
86
87
88
89
90
91
92
93
94
95
@dataclass
class ImagePipelineOutput(BaseOutput):
    """
    Output class for image pipelines.

    Args:
        images (`List[PIL.Image.Image]` or `np.ndarray`)
            List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
            num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
    """

    images: Union[List[PIL.Image.Image], np.ndarray]


96
97
98
99
100
101
102
103
104
105
106
107
108
109
@dataclass
class AudioPipelineOutput(BaseOutput):
    """
    Output class for audio pipelines.

    Args:
        audios (`np.ndarray`)
            List of denoised samples of shape `(batch_size, num_channels, sample_rate)`. Numpy array present the
            denoised audio samples of the diffusion pipeline.
    """

    audios: np.ndarray


Patrick von Platen's avatar
Patrick von Platen committed
110
class DiffusionPipeline(ConfigMixin):
111
112
113
114
115
116
117
118
119
120
121
122
    r"""
    Base class for all models.

    [`DiffusionPipeline`] takes care of storing all components (models, schedulers, processors) for diffusion pipelines
    and handles methods for loading, downloading and saving models as well as a few methods common to all pipelines to:

        - move all PyTorch modules to the device of your choice
        - enabling/disabling the progress bar for the denoising iteration

    Class attributes:

        - **config_name** ([`str`]) -- name of the config file that will store the class and module names of all
123
          components of the diffusion pipeline.
124
    """
Patrick von Platen's avatar
Patrick von Platen committed
125
126
    config_name = "model_index.json"

Patrick von Platen's avatar
up  
Patrick von Platen committed
127
    def register_modules(self, **kwargs):
128
129
        # import it here to avoid circular import
        from diffusers import pipelines
130

Patrick von Platen's avatar
Patrick von Platen committed
131
        for name, module in kwargs.items():
132
            # retrieve library
133
134
135
136
            if module is None:
                register_dict = {name: (None, None)}
            else:
                library = module.__module__.split(".")[0]
137

138
                # check if the module is a pipeline module
139
                pipeline_dir = module.__module__.split(".")[-2] if len(module.__module__.split(".")) > 2 else None
140
141
                path = module.__module__.split(".")
                is_pipeline_module = pipeline_dir in path and hasattr(pipelines, pipeline_dir)
142

143
144
145
146
147
                # if library is not in LOADABLE_CLASSES, then it is a custom module.
                # Or if it's a pipeline module, then the module is inside the pipeline
                # folder so we set the library to module name.
                if library not in LOADABLE_CLASSES or is_pipeline_module:
                    library = pipeline_dir
patil-suraj's avatar
patil-suraj committed
148

149
150
                # retrieve class_name
                class_name = module.__class__.__name__
Patrick von Platen's avatar
Patrick von Platen committed
151

152
                register_dict = {name: (library, class_name)}
153

Patrick von Platen's avatar
Patrick von Platen committed
154
            # save model index config
155
            self.register_to_config(**register_dict)
Patrick von Platen's avatar
Patrick von Platen committed
156
157
158

            # set models
            setattr(self, name, module)
159

Patrick von Platen's avatar
Patrick von Platen committed
160
    def save_pretrained(self, save_directory: Union[str, os.PathLike]):
161
162
163
164
165
166
167
168
169
        """
        Save all variables of the pipeline that can be saved and loaded as well as the pipelines configuration file to
        a directory. A pipeline variable can be saved and loaded if its class implements both a save and loading
        method. The pipeline can easily be re-loaded using the `[`~DiffusionPipeline.from_pretrained`]` class method.

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to which to save. Will be created if it doesn't exist.
        """
Patrick von Platen's avatar
Patrick von Platen committed
170
171
        self.save_config(save_directory)

Patrick von Platen's avatar
Patrick von Platen committed
172
        model_index_dict = dict(self.config)
Patrick von Platen's avatar
Patrick von Platen committed
173
        model_index_dict.pop("_class_name")
174
        model_index_dict.pop("_diffusers_version")
175
        model_index_dict.pop("_module", None)
Patrick von Platen's avatar
Patrick von Platen committed
176

anton-l's avatar
anton-l committed
177
178
179
        for pipeline_component_name in model_index_dict.keys():
            sub_model = getattr(self, pipeline_component_name)
            model_cls = sub_model.__class__
Patrick von Platen's avatar
Patrick von Platen committed
180
181

            save_method_name = None
anton-l's avatar
anton-l committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
            # search for the model's base class in LOADABLE_CLASSES
            for library_name, library_classes in LOADABLE_CLASSES.items():
                library = importlib.import_module(library_name)
                for base_class, save_load_methods in library_classes.items():
                    class_candidate = getattr(library, base_class)
                    if issubclass(model_cls, class_candidate):
                        # if we found a suitable base class in LOADABLE_CLASSES then grab its save method
                        save_method_name = save_load_methods[0]
                        break
                if save_method_name is not None:
                    break

            save_method = getattr(sub_model, save_method_name)
            save_method(os.path.join(save_directory, pipeline_component_name))
Patrick von Platen's avatar
Patrick von Platen committed
196

Pedro Cuenca's avatar
Pedro Cuenca committed
197
198
199
200
201
202
203
204
    def to(self, torch_device: Optional[Union[str, torch.device]] = None):
        if torch_device is None:
            return self

        module_names, _ = self.extract_init_dict(dict(self.config))
        for name in module_names.keys():
            module = getattr(self, name)
            if isinstance(module, torch.nn.Module):
205
                if module.dtype == torch.float16 and str(torch_device) in ["cpu", "mps"]:
206
207
208
209
210
211
                    logger.warning(
                        "Pipelines loaded with `torch_dtype=torch.float16` cannot run with `cpu` or `mps` device. It"
                        " is not recommended to move them to `cpu` or `mps` as running them will fail. Please make"
                        " sure to use a `cuda` device to run the pipeline in inference. due to the lack of support for"
                        " `float16` operations on those devices in PyTorch. Please remove the"
                        " `torch_dtype=torch.float16` argument, or use a `cuda` device to run inference."
212
                    )
Pedro Cuenca's avatar
Pedro Cuenca committed
213
214
215
216
217
                module.to(torch_device)
        return self

    @property
    def device(self) -> torch.device:
218
219
220
221
        r"""
        Returns:
            `torch.device`: The torch device on which the pipeline is located.
        """
Pedro Cuenca's avatar
Pedro Cuenca committed
222
223
224
225
        module_names, _ = self.extract_init_dict(dict(self.config))
        for name in module_names.keys():
            module = getattr(self, name)
            if isinstance(module, torch.nn.Module):
226
227
                if module.device == torch.device("meta"):
                    return torch.device("cpu")
Pedro Cuenca's avatar
Pedro Cuenca committed
228
229
230
                return module.device
        return torch.device("cpu")

Patrick von Platen's avatar
Patrick von Platen committed
231
232
    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
233
        r"""
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
        Instantiate a PyTorch diffusion pipeline from pre-trained pipeline weights.

        The pipeline is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated).

        The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
        pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
        task.

        The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
        weights are discarded.

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

                    - A string, the *repo id* of a pretrained pipeline hosted inside a model repo on
                      https://huggingface.co/ Valid repo ids have to be located under a user or organization name, like
                      `CompVis/ldm-text2im-large-256`.
                    - A path to a *directory* containing pipeline weights saved using
                      [`~DiffusionPipeline.save_pretrained`], e.g., `./my_pipeline_directory/`.
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model under this dtype. If `"auto"` is passed the dtype
                will be automatically derived from the model's weights.
Patrick von Platen's avatar
Patrick von Platen committed
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
            custom_pipeline (`str`, *optional*):

                <Tip warning={true}>

                    This is an experimental feature and is likely to change in the future.

                </Tip>

                Can be either:

                    - A string, the *repo id* of a custom pipeline hosted inside a model repo on
                      https://huggingface.co/. Valid repo ids have to be located under a user or organization name,
                      like `hf-internal-testing/diffusers-dummy-pipeline`.

                        <Tip>

                         It is required that the model repo has a file, called `pipeline.py` that defines the custom
                         pipeline.

                        </Tip>

                    - A string, the *file name* of a community pipeline hosted on GitHub under
                      https://github.com/huggingface/diffusers/tree/main/examples/community. Valid file names have to
                      match exactly the file name without `.py` located under the above link, *e.g.*
                      `clip_guided_stable_diffusion`.

                        <Tip>

                         Community pipelines are always loaded from the current `main` branch of GitHub.

                        </Tip>

                    - A path to a *directory* containing a custom pipeline, e.g., `./my_pipeline_directory/`.

                        <Tip>

                         It is required that the directory has a file, called `pipeline.py` that defines the custom
                         pipeline.

                        </Tip>

                For more information on how to load and create custom pipelines, please have a look at [Loading and
                Creating Custom
                Pipelines](https://huggingface.co/docs/diffusers/main/en/using-diffusers/custom_pipelines)

            torch_dtype (`str` or `torch.dtype`, *optional*):
303
304
305
306
307
308
309
310
311
312
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
313
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
            local_files_only(`bool`, *optional*, defaults to `False`):
                Whether or not to only look at local files (i.e., do not try to download the model).
            use_auth_token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
                when running `huggingface-cli login` (stored in `~/.huggingface`).
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
                identifier allowed by git.
            mirror (`str`, *optional*):
                Mirror source to accelerate downloads in China. If you are from China and have an accessibility
                problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
                Please refer to the mirror site for more information. specify the folder name here.

            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load - and saveable variables - *i.e.* the pipeline components - of the
330
331
                specific pipeline class. The overwritten components are then directly passed to the pipelines
                `__init__` method. See example below for more information.
332
333
334

        <Tip>

335
         It is required to be logged in (`huggingface-cli login`) when you want to use private or [gated
apolinario's avatar
apolinario committed
336
         models](https://huggingface.co/docs/hub/models-gated#gated-models), *e.g.* `"runwayml/stable-diffusion-v1-5"`
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357

        </Tip>

        <Tip>

        Activate the special ["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use
        this method in a firewalled environment.

        </Tip>

        Examples:

        ```py
        >>> from diffusers import DiffusionPipeline

        >>> # Download pipeline from huggingface.co and cache.
        >>> pipeline = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256")

        >>> # Download pipeline that requires an authorization token
        >>> # For more information on access tokens, please refer to this section
        >>> # of the documentation](https://huggingface.co/docs/hub/security-tokens)
apolinario's avatar
apolinario committed
358
        >>> pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
359
360
361
362
363

        >>> # Download pipeline, but overwrite scheduler
        >>> from diffusers import LMSDiscreteScheduler

        >>> scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
apolinario's avatar
apolinario committed
364
        >>> pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", scheduler=scheduler)
365
        ```
366
367
368
        """
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
369
        force_download = kwargs.pop("force_download", False)
370
371
372
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", False)
        use_auth_token = kwargs.pop("use_auth_token", None)
373
        revision = kwargs.pop("revision", None)
374
        torch_dtype = kwargs.pop("torch_dtype", None)
Patrick von Platen's avatar
Patrick von Platen committed
375
        custom_pipeline = kwargs.pop("custom_pipeline", None)
376
        provider = kwargs.pop("provider", None)
377
        sess_options = kwargs.pop("sess_options", None)
378
        device_map = kwargs.pop("device_map", None)
Patrick von Platen's avatar
Patrick von Platen committed
379

patil-suraj's avatar
patil-suraj committed
380
        # 1. Download the checkpoints and configs
Patrick von Platen's avatar
Patrick von Platen committed
381
        # use snapshot download here to get it working from from_pretrained
Patrick von Platen's avatar
Patrick von Platen committed
382
        if not os.path.isdir(pretrained_model_name_or_path):
383
384
385
386
            config_dict = cls.get_config_dict(
                pretrained_model_name_or_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
387
                force_download=force_download,
388
389
390
391
392
393
394
395
396
397
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
            )
            # make sure we only download sub-folders and `diffusers` filenames
            folder_names = [k for k in config_dict.keys() if not k.startswith("_")]
            allow_patterns = [os.path.join(k, "*") for k in folder_names]
            allow_patterns += [WEIGHTS_NAME, SCHEDULER_CONFIG_NAME, CONFIG_NAME, ONNX_WEIGHTS_NAME, cls.config_name]

Patrick von Platen's avatar
Patrick von Platen committed
398
399
400
            if custom_pipeline is not None:
                allow_patterns += [CUSTOM_PIPELINE_FILE_NAME]

401
402
403
404
405
            requested_pipeline_class = config_dict.get("_class_name", cls.__name__)
            user_agent = {"diffusers": __version__, "pipeline_class": requested_pipeline_class}
            if custom_pipeline is not None:
                user_agent["custom_pipeline"] = custom_pipeline

406
            # download all allow_patterns
407
408
409
410
411
412
413
            cached_folder = snapshot_download(
                pretrained_model_name_or_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
414
                revision=revision,
415
                allow_patterns=allow_patterns,
416
                user_agent=user_agent,
417
            )
Patrick von Platen's avatar
Patrick von Platen committed
418
419
        else:
            cached_folder = pretrained_model_name_or_path
420

patil-suraj's avatar
patil-suraj committed
421
        config_dict = cls.get_config_dict(cached_folder)
422

Patrick von Platen's avatar
Patrick von Platen committed
423
        # 2. Load the pipeline class, if using custom module then load it from the hub
424
        # if we load from explicit class, let's use it
Patrick von Platen's avatar
Patrick von Platen committed
425
426
427
428
429
        if custom_pipeline is not None:
            pipeline_class = get_class_from_dynamic_module(
                custom_pipeline, module_file=CUSTOM_PIPELINE_FILE_NAME, cache_dir=custom_pipeline
            )
        elif cls != DiffusionPipeline:
430
431
            pipeline_class = cls
        else:
Patrick von Platen's avatar
Patrick von Platen committed
432
433
434
            diffusers_module = importlib.import_module(cls.__module__.split(".")[0])
            pipeline_class = getattr(diffusers_module, config_dict["_class_name"])

435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
        # To be removed in 1.0.0
        if pipeline_class.__name__ == "StableDiffusionInpaintPipeline" and version.parse(
            version.parse(config_dict["_diffusers_version"]).base_version
        ) <= version.parse("0.5.1"):
            from diffusers import StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy

            pipeline_class = StableDiffusionInpaintPipelineLegacy

            deprecation_message = (
                "You are using a legacy checkpoint for inpainting with Stable Diffusion, therefore we are loading the"
                f" {StableDiffusionInpaintPipelineLegacy} class instead of {StableDiffusionInpaintPipeline}. For"
                " better inpainting results, we strongly suggest using Stable Diffusion's official inpainting"
                " checkpoint: https://huggingface.co/runwayml/stable-diffusion-inpainting instead or adapting your"
                f" checkpoint {pretrained_model_name_or_path} to the format of"
                " https://huggingface.co/runwayml/stable-diffusion-inpainting. Note that we do not actively maintain"
                " the {StableDiffusionInpaintPipelineLegacy} class and will likely remove it in version 1.0.0."
            )
            deprecate("StableDiffusionInpaintPipelineLegacy", "1.0.0", deprecation_message, standard_warn=False)

454
455
456
        # some modules can be passed directly to the init
        # in this case they are already instantiated in `kwargs`
        # extract them here
Patrick von Platen's avatar
Patrick von Platen committed
457
        expected_modules = set(inspect.signature(pipeline_class.__init__).parameters.keys()) - set(["self"])
458
459
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}

460
461
462
463
        init_dict, unused_kwargs = pipeline_class.extract_init_dict(config_dict, **kwargs)

        if len(unused_kwargs) > 0:
            logger.warning(f"Keyword arguments {unused_kwargs} not recognized.")
Patrick von Platen's avatar
Patrick von Platen committed
464
465

        init_kwargs = {}
466

467
468
        # import it here to avoid circular import
        from diffusers import pipelines
469

Patrick von Platen's avatar
Patrick von Platen committed
470
        # 3. Load each module in the pipeline
patil-suraj's avatar
patil-suraj committed
471
        for name, (library_name, class_name) in init_dict.items():
472
473
474
475
            # 3.1 - now that JAX/Flax is an official framework of the library, we might load from Flax names
            if class_name.startswith("Flax"):
                class_name = class_name[4:]

476
            is_pipeline_module = hasattr(pipelines, library_name)
477
            loaded_sub_model = None
478
            sub_model_should_be_defined = True
479

480
            # if the model is in a pipeline module, then we load it from the pipeline
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
            if name in passed_class_obj:
                # 1. check that passed_class_obj has correct parent class
                if not is_pipeline_module:
                    library = importlib.import_module(library_name)
                    class_obj = getattr(library, class_name)
                    importable_classes = LOADABLE_CLASSES[library_name]
                    class_candidates = {c: getattr(library, c) for c in importable_classes.keys()}

                    expected_class_obj = None
                    for class_name, class_candidate in class_candidates.items():
                        if issubclass(class_obj, class_candidate):
                            expected_class_obj = class_candidate

                    if not issubclass(passed_class_obj[name].__class__, expected_class_obj):
                        raise ValueError(
                            f"{passed_class_obj[name]} is of type: {type(passed_class_obj[name])}, but should be"
                            f" {expected_class_obj}"
                        )
499
500
501
502
503
504
                elif passed_class_obj[name] is None:
                    logger.warn(
                        f"You have passed `None` for {name} to disable its functionality in {pipeline_class}. Note"
                        f" that this might lead to problems when using {pipeline_class} and is not recommended."
                    )
                    sub_model_should_be_defined = False
505
506
507
508
509
510
511
512
513
                else:
                    logger.warn(
                        f"You have passed a non-standard module {passed_class_obj[name]}. We cannot verify whether it"
                        " has the correct type"
                    )

                # set passed class object
                loaded_sub_model = passed_class_obj[name]
            elif is_pipeline_module:
514
515
516
                pipeline_module = getattr(pipelines, library_name)
                class_obj = getattr(pipeline_module, class_name)
                importable_classes = ALL_IMPORTABLE_CLASSES
Patrick von Platen's avatar
Patrick von Platen committed
517
                class_candidates = {c: class_obj for c in importable_classes.keys()}
patil-suraj's avatar
patil-suraj committed
518
            else:
patil-suraj's avatar
patil-suraj committed
519
                # else we just import it from the library.
patil-suraj's avatar
patil-suraj committed
520
521
                library = importlib.import_module(library_name)
                class_obj = getattr(library, class_name)
522
                importable_classes = LOADABLE_CLASSES[library_name]
patil-suraj's avatar
patil-suraj committed
523
                class_candidates = {c: getattr(library, c) for c in importable_classes.keys()}
524

525
            if loaded_sub_model is None and sub_model_should_be_defined:
526
527
528
529
                load_method_name = None
                for class_name, class_candidate in class_candidates.items():
                    if issubclass(class_obj, class_candidate):
                        load_method_name = importable_classes[class_name][1]
Patrick von Platen's avatar
Patrick von Platen committed
530

531
532
533
534
535
536
537
538
539
540
                if load_method_name is None:
                    none_module = class_obj.__module__
                    if none_module.startswith(DUMMY_MODULES_FOLDER) and "dummy" in none_module:
                        # call class_obj for nice error message of missing requirements
                        class_obj()

                    raise ValueError(
                        f"The component {class_obj} of {pipeline_class} cannot be loaded as it does not seem to have"
                        f" any of the loading methods defined in {ALL_IMPORTABLE_CLASSES}."
                    )
Patrick von Platen's avatar
Patrick von Platen committed
541

542
                load_method = getattr(class_obj, load_method_name)
543
                loading_kwargs = {}
544

545
546
                if issubclass(class_obj, torch.nn.Module):
                    loading_kwargs["torch_dtype"] = torch_dtype
547
548
                if issubclass(class_obj, diffusers.OnnxRuntimeModel):
                    loading_kwargs["provider"] = provider
549
                    loading_kwargs["sess_options"] = sess_options
550

551
552
553
                is_diffusers_model = issubclass(class_obj, diffusers.ModelMixin)
                is_transformers_model = (
                    is_transformers_available()
554
                    and issubclass(class_obj, PreTrainedModel)
555
556
557
558
                    and version.parse(version.parse(transformers.__version__).base_version) >= version.parse("4.20.0")
                )

                if is_diffusers_model or is_transformers_model:
559
560
                    loading_kwargs["device_map"] = device_map

561
562
                # check if the module is in a subdirectory
                if os.path.isdir(os.path.join(cached_folder, name)):
563
                    loaded_sub_model = load_method(os.path.join(cached_folder, name), **loading_kwargs)
564
565
                else:
                    # else load from the root directory
566
                    loaded_sub_model = load_method(cached_folder, **loading_kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
567

568
            init_kwargs[name] = loaded_sub_model  # UNet(...), # DiffusionSchedule(...)
Patrick von Platen's avatar
Patrick von Platen committed
569

Patrick von Platen's avatar
Patrick von Platen committed
570
571
572
573
574
575
        # 4. Potentially add passed objects if expected
        missing_modules = set(expected_modules) - set(init_kwargs.keys())
        if len(missing_modules) > 0 and missing_modules <= set(passed_class_obj.keys()):
            for module in missing_modules:
                init_kwargs[module] = passed_class_obj[module]
        elif len(missing_modules) > 0:
576
            passed_modules = set(list(init_kwargs.keys()) + list(passed_class_obj.keys()))
Patrick von Platen's avatar
Patrick von Platen committed
577
578
579
580
581
            raise ValueError(
                f"Pipeline {pipeline_class} expected {expected_modules}, but only {passed_modules} were passed."
            )

        # 5. Instantiate the pipeline
582
        model = pipeline_class(**init_kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
583
        return model
584

585
586
587
588
    @property
    def components(self) -> Dict[str, Any]:
        r"""

Yuta Hayashibe's avatar
Yuta Hayashibe committed
589
        The `self.components` property can be useful to run different pipelines with the same weights and
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
        configurations to not have to re-allocate memory.

        Examples:

        ```py
        >>> from diffusers import (
        ...     StableDiffusionPipeline,
        ...     StableDiffusionImg2ImgPipeline,
        ...     StableDiffusionInpaintPipeline,
        ... )

        >>> img2text = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
        >>> img2img = StableDiffusionImg2ImgPipeline(**img2text.components)
        >>> inpaint = StableDiffusionInpaintPipeline(**img2text.components)
        ```

        Returns:
Yuta Hayashibe's avatar
Yuta Hayashibe committed
607
            A dictionaly containing all the modules needed to initialize the pipeline.
608
609
610
611
612
613
614
615
616
617
618
619
        """
        components = {k: getattr(self, k) for k in self.config.keys() if not k.startswith("_")}
        expected_modules = set(inspect.signature(self.__init__).parameters.keys()) - set(["self"])

        if set(components.keys()) != expected_modules:
            raise ValueError(
                f"{self} has been incorrectly initialized or {self.__class__} is incorrectly implemented. Expected"
                f" {expected_modules} to be defined, but {components} are defined."
            )

        return components

620
621
622
623
624
625
626
627
    @staticmethod
    def numpy_to_pil(images):
        """
        Convert a numpy image or a batch of images to a PIL image.
        """
        if images.ndim == 3:
            images = images[None, ...]
        images = (images * 255).round().astype("uint8")
628
629
630
631
632
        if images.shape[-1] == 1:
            # special case for grayscale (single channel) images
            pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
        else:
            pil_images = [Image.fromarray(image) for image in images]
633
634

        return pil_images
hysts's avatar
hysts committed
635
636
637
638
639
640
641
642
643
644
645
646
647

    def progress_bar(self, iterable):
        if not hasattr(self, "_progress_bar_config"):
            self._progress_bar_config = {}
        elif not isinstance(self._progress_bar_config, dict):
            raise ValueError(
                f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}."
            )

        return tqdm(iterable, **self._progress_bar_config)

    def set_progress_bar_config(self, **kwargs):
        self._progress_bar_config = kwargs