pipeline_utils.py 3.96 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
improve  
Patrick von Platen committed
17
import importlib
Patrick von Platen's avatar
Patrick von Platen committed
18
19
import os
from typing import Optional, Union
Patrick von Platen's avatar
up  
Patrick von Platen committed
20
from huggingface_hub import snapshot_download
Patrick von Platen's avatar
Patrick von Platen committed
21
22
23
24

# CHANGE to diffusers.utils
from transformers.utils import logging

Patrick von Platen's avatar
Patrick von Platen committed
25
from .configuration_utils import ConfigMixin
Patrick von Platen's avatar
improve  
Patrick von Platen committed
26

Patrick von Platen's avatar
Patrick von Platen committed
27
28
29
30
31
32
33
34
35

INDEX_FILE = "diffusion_model.pt"


logger = logging.get_logger(__name__)


LOADABLE_CLASSES = {
    "diffusers": {
Patrick von Platen's avatar
Patrick von Platen committed
36
        "ModelMixin": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
improve  
Patrick von Platen committed
37
        "GaussianDDPMScheduler": ["save_config", "from_config"],
Patrick von Platen's avatar
Patrick von Platen committed
38
39
    },
    "transformers": {
Patrick von Platen's avatar
Patrick von Platen committed
40
        "ModelMixin": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
41
42
43
44
    },
}


Patrick von Platen's avatar
Patrick von Platen committed
45
class DiffusionPipeline(ConfigMixin):
Patrick von Platen's avatar
Patrick von Platen committed
46
47
48

    config_name = "model_index.json"

Patrick von Platen's avatar
up  
Patrick von Platen committed
49
    def register_modules(self, **kwargs):
Patrick von Platen's avatar
Patrick von Platen committed
50
51
52
53
54
55
        for name, module in kwargs.items():
            # retrive library
            library = module.__module__.split(".")[0]
            # retrive class_name
            class_name = module.__class__.__name__

56
57
58
            register_dict = {name: (library, class_name)}
            register_dict["_module"] = self.__module__

Patrick von Platen's avatar
Patrick von Platen committed
59
            # save model index config
60
            self.register(**register_dict)
Patrick von Platen's avatar
Patrick von Platen committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

            # set models
            setattr(self, name, module)

    def save_pretrained(self, save_directory: Union[str, os.PathLike]):
        self.save_config(save_directory)

        model_index_dict = self._dict_to_save
        model_index_dict.pop("_class_name")

        for name, (library_name, class_name) in self._dict_to_save.items():
            importable_classes = LOADABLE_CLASSES[library_name]

            library = importlib.import_module(library_name)
            class_obj = getattr(library, class_name)
            class_candidates = {c: getattr(library, c) for c in importable_classes.keys()}

            save_method_name = None
            for class_name, class_candidate in class_candidates.items():
                if issubclass(class_obj, class_candidate):
                    save_method_name = importable_classes[class_name][0]

            save_method = getattr(getattr(self, name), save_method_name)
            save_method(os.path.join(save_directory, name))

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
        # use snapshot download here to get it working from from_pretrained
Patrick von Platen's avatar
up  
Patrick von Platen committed
89
        cached_folder = snapshot_download(pretrained_model_name_or_path)
90
91
92
93
        config_dict, pipeline_kwargs = cls.get_config_dict(cached_folder)

        module = pipeline_kwargs["_module"]
        # TODO(Suraj) - make from hub import work
Patrick von Platen's avatar
Patrick von Platen committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

        init_kwargs = {}

        for name, (library_name, class_name) in config_dict.items():
            importable_classes = LOADABLE_CLASSES[library_name]

            library = importlib.import_module(library_name)
            class_obj = getattr(library, class_name)
            class_candidates = {c: getattr(library, c) for c in importable_classes.keys()}

            load_method_name = None
            for class_name, class_candidate in class_candidates.items():
                if issubclass(class_obj, class_candidate):
                    load_method_name = importable_classes[class_name][1]

            load_method = getattr(class_obj, load_method_name)

Patrick von Platen's avatar
up  
Patrick von Platen committed
111
            loaded_sub_model = load_method(os.path.join(cached_folder, name))
Patrick von Platen's avatar
Patrick von Platen committed
112
113
114
115
116

            init_kwargs[name] = loaded_sub_model

        model = cls(**init_kwargs)
        return model