pipeline_utils.py 8.54 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
improve  
Patrick von Platen committed
17
import importlib
Patrick von Platen's avatar
Patrick von Platen committed
18
19
import os
from typing import Optional, Union
anton-l's avatar
Style  
anton-l committed
20

Patrick von Platen's avatar
up  
Patrick von Platen committed
21
from huggingface_hub import snapshot_download
Patrick von Platen's avatar
Patrick von Platen committed
22

Patrick von Platen's avatar
Patrick von Platen committed
23
from .configuration_utils import ConfigMixin
patil-suraj's avatar
patil-suraj committed
24
from .dynamic_modules_utils import get_class_from_dynamic_module
Patrick von Platen's avatar
Patrick von Platen committed
25
from .utils import DIFFUSERS_CACHE, logging
Patrick von Platen's avatar
improve  
Patrick von Platen committed
26

Patrick von Platen's avatar
Patrick von Platen committed
27
28
29
30
31
32
33
34
35

INDEX_FILE = "diffusion_model.pt"


logger = logging.get_logger(__name__)


LOADABLE_CLASSES = {
    "diffusers": {
Patrick von Platen's avatar
Patrick von Platen committed
36
        "ModelMixin": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
37
        "SchedulerMixin": ["save_config", "from_config"],
Patrick von Platen's avatar
Patrick von Platen committed
38
        "DiffusionPipeline": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
39
40
    },
    "transformers": {
anton-l's avatar
anton-l committed
41
        "PreTrainedTokenizer": ["save_pretrained", "from_pretrained"],
42
        "PreTrainedTokenizerFast": ["save_pretrained", "from_pretrained"],
anton-l's avatar
anton-l committed
43
        "PreTrainedModel": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
44
45
46
    },
}

47
48
49
50
ALL_IMPORTABLE_CLASSES = {}
for library in LOADABLE_CLASSES:
    ALL_IMPORTABLE_CLASSES.update(LOADABLE_CLASSES[library])

Patrick von Platen's avatar
Patrick von Platen committed
51

Patrick von Platen's avatar
Patrick von Platen committed
52
class DiffusionPipeline(ConfigMixin):
Patrick von Platen's avatar
Patrick von Platen committed
53
54
55

    config_name = "model_index.json"

Patrick von Platen's avatar
up  
Patrick von Platen committed
56
    def register_modules(self, **kwargs):
57
58
        # import it here to avoid circular import
        from diffusers import pipelines
59

Patrick von Platen's avatar
Patrick von Platen committed
60
        for name, module in kwargs.items():
61
62
            # check if the module is a pipeline module
            is_pipeline_module = hasattr(pipelines, module.__module__.split(".")[-1])
63

Patrick von Platen's avatar
Patrick von Platen committed
64
65
            # retrive library
            library = module.__module__.split(".")[0]
66

67
68
69
70
            # if library is not in LOADABLE_CLASSES, then it is a custom module.
            # Or if it's a pipeline module, then the module is inside the pipeline
            # so we set the library to module name.
            if library not in LOADABLE_CLASSES or is_pipeline_module:
patil-suraj's avatar
patil-suraj committed
71
72
                library = module.__module__.split(".")[-1]

Patrick von Platen's avatar
Patrick von Platen committed
73
74
75
            # retrive class_name
            class_name = module.__class__.__name__

76
77
            register_dict = {name: (library, class_name)}

Patrick von Platen's avatar
Patrick von Platen committed
78
            # save model index config
79
            self.register_to_config(**register_dict)
Patrick von Platen's avatar
Patrick von Platen committed
80
81
82

            # set models
            setattr(self, name, module)
83

Patrick von Platen's avatar
Patrick von Platen committed
84
        register_dict = {"_module": self.__module__.split(".")[-1]}
85
        self.register_to_config(**register_dict)
Patrick von Platen's avatar
Patrick von Platen committed
86
87
88
89

    def save_pretrained(self, save_directory: Union[str, os.PathLike]):
        self.save_config(save_directory)

Patrick von Platen's avatar
Patrick von Platen committed
90
        model_index_dict = dict(self.config)
Patrick von Platen's avatar
Patrick von Platen committed
91
        model_index_dict.pop("_class_name")
92
        model_index_dict.pop("_diffusers_version")
93
        model_index_dict.pop("_module")
Patrick von Platen's avatar
Patrick von Platen committed
94

anton-l's avatar
anton-l committed
95
96
97
        for pipeline_component_name in model_index_dict.keys():
            sub_model = getattr(self, pipeline_component_name)
            model_cls = sub_model.__class__
Patrick von Platen's avatar
Patrick von Platen committed
98
99

            save_method_name = None
anton-l's avatar
anton-l committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
            # search for the model's base class in LOADABLE_CLASSES
            for library_name, library_classes in LOADABLE_CLASSES.items():
                library = importlib.import_module(library_name)
                for base_class, save_load_methods in library_classes.items():
                    class_candidate = getattr(library, base_class)
                    if issubclass(model_cls, class_candidate):
                        # if we found a suitable base class in LOADABLE_CLASSES then grab its save method
                        save_method_name = save_load_methods[0]
                        break
                if save_method_name is not None:
                    break

            save_method = getattr(sub_model, save_method_name)
            save_method(os.path.join(save_directory, pipeline_component_name))
Patrick von Platen's avatar
Patrick von Platen committed
114
115
116

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
117
        r"""
Patrick von Platen's avatar
Patrick von Platen committed
118
        Add docstrings
119
120
121
122
123
124
        """
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", False)
        use_auth_token = kwargs.pop("use_auth_token", None)
Patrick von Platen's avatar
Patrick von Platen committed
125

patil-suraj's avatar
patil-suraj committed
126
        # 1. Download the checkpoints and configs
Patrick von Platen's avatar
Patrick von Platen committed
127
        # use snapshot download here to get it working from from_pretrained
Patrick von Platen's avatar
Patrick von Platen committed
128
        if not os.path.isdir(pretrained_model_name_or_path):
129
130
131
132
133
134
135
136
            cached_folder = snapshot_download(
                pretrained_model_name_or_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
            )
Patrick von Platen's avatar
Patrick von Platen committed
137
138
        else:
            cached_folder = pretrained_model_name_or_path
139

patil-suraj's avatar
patil-suraj committed
140
        config_dict = cls.get_config_dict(cached_folder)
141

patil-suraj's avatar
patil-suraj committed
142
        # 2. Get class name and module candidates to load custom models
Patrick von Platen's avatar
Patrick von Platen committed
143
144
        module_candidate_name = config_dict["_module"]
        module_candidate = module_candidate_name + ".py"
Patrick von Platen's avatar
fix  
Patrick von Platen committed
145

patil-suraj's avatar
patil-suraj committed
146
        # 3. Load the pipeline class, if using custom module then load it from the hub
147
148
        # if we load from explicit class, let's use it
        if cls != DiffusionPipeline:
149
150
            pipeline_class = cls
        else:
Patrick von Platen's avatar
Patrick von Platen committed
151
152
153
154
            diffusers_module = importlib.import_module(cls.__module__.split(".")[0])
            pipeline_class = getattr(diffusers_module, config_dict["_class_name"])

            # (TODO - we should allow to load custom pipelines
155
            # else we need to load the correct module from the Hub
Patrick von Platen's avatar
Patrick von Platen committed
156
157
            # module = module_candidate
            # pipeline_class = get_class_from_dynamic_module(cached_folder, module, class_name_, cached_folder)
158

159
        init_dict, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
160
161

        init_kwargs = {}
162

163
164
        # import it here to avoid circular import
        from diffusers import pipelines
165

patil-suraj's avatar
patil-suraj committed
166
        # 4. Load each module in the pipeline
patil-suraj's avatar
patil-suraj committed
167
        for name, (library_name, class_name) in init_dict.items():
168
169
170
171
172
173
174
175
176
177
            is_pipeline_module = hasattr(pipelines, library_name)
            # if the model is in a pipeline module, then we load it from the pipeline
            if is_pipeline_module:
                pipeline_module = getattr(pipelines, library_name)
                class_obj = getattr(pipeline_module, class_name)
                importable_classes = ALL_IMPORTABLE_CLASSES
                class_candidates = {c: class_obj for c in ALL_IMPORTABLE_CLASSES.keys()}
            elif library_name == module_candidate_name:
                # if the model is not in diffusers or transformers, we need to load it from the hub
                # assumes that it's a subclass of ModelMixin
patil-suraj's avatar
patil-suraj committed
178
                class_obj = get_class_from_dynamic_module(cached_folder, module_candidate, class_name, cached_folder)
179
                # since it's not from a library, we need to check class candidates for all importable classes
180
181
                importable_classes = ALL_IMPORTABLE_CLASSES
                class_candidates = {c: class_obj for c in ALL_IMPORTABLE_CLASSES.keys()}
patil-suraj's avatar
patil-suraj committed
182
            else:
patil-suraj's avatar
patil-suraj committed
183
                # else we just import it from the library.
patil-suraj's avatar
patil-suraj committed
184
185
                library = importlib.import_module(library_name)
                class_obj = getattr(library, class_name)
186
                importable_classes = LOADABLE_CLASSES[library_name]
patil-suraj's avatar
patil-suraj committed
187
                class_candidates = {c: getattr(library, c) for c in importable_classes.keys()}
188

189
190
191
192
            load_method_name = None
            for class_name, class_candidate in class_candidates.items():
                if issubclass(class_obj, class_candidate):
                    load_method_name = importable_classes[class_name][1]
Patrick von Platen's avatar
Patrick von Platen committed
193
194
195

            load_method = getattr(class_obj, load_method_name)

patil-suraj's avatar
patil-suraj committed
196
            # check if the module is in a subdirectory
Patrick von Platen's avatar
Patrick von Platen committed
197
            if os.path.isdir(os.path.join(cached_folder, name)):
198
199
                loaded_sub_model = load_method(os.path.join(cached_folder, name))
            else:
patil-suraj's avatar
patil-suraj committed
200
                # else load from the root directory
201
                loaded_sub_model = load_method(cached_folder)
Patrick von Platen's avatar
Patrick von Platen committed
202

203
            init_kwargs[name] = loaded_sub_model  # UNet(...), # DiffusionSchedule(...)
Patrick von Platen's avatar
Patrick von Platen committed
204

patil-suraj's avatar
patil-suraj committed
205
        # 5. Instantiate the pipeline
206
        model = pipeline_class(**init_kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
207
        return model