pipeline_utils.py 7.54 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
improve  
Patrick von Platen committed
17
import importlib
Patrick von Platen's avatar
Patrick von Platen committed
18
19
import os
from typing import Optional, Union
anton-l's avatar
Style  
anton-l committed
20

Patrick von Platen's avatar
up  
Patrick von Platen committed
21
from huggingface_hub import snapshot_download
Patrick von Platen's avatar
Patrick von Platen committed
22

Patrick von Platen's avatar
Patrick von Platen committed
23
from .configuration_utils import ConfigMixin
Patrick von Platen's avatar
Patrick von Platen committed
24
from .utils import DIFFUSERS_CACHE, logging
Patrick von Platen's avatar
improve  
Patrick von Platen committed
25

Patrick von Platen's avatar
Patrick von Platen committed
26
27
28
29
30
31
32
33
34

INDEX_FILE = "diffusion_model.pt"


logger = logging.get_logger(__name__)


LOADABLE_CLASSES = {
    "diffusers": {
Patrick von Platen's avatar
Patrick von Platen committed
35
        "ModelMixin": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
36
        "SchedulerMixin": ["save_config", "from_config"],
Patrick von Platen's avatar
Patrick von Platen committed
37
        "DiffusionPipeline": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
38
39
    },
    "transformers": {
anton-l's avatar
anton-l committed
40
        "PreTrainedTokenizer": ["save_pretrained", "from_pretrained"],
41
        "PreTrainedTokenizerFast": ["save_pretrained", "from_pretrained"],
anton-l's avatar
anton-l committed
42
        "PreTrainedModel": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
43
44
45
    },
}

46
47
48
49
ALL_IMPORTABLE_CLASSES = {}
for library in LOADABLE_CLASSES:
    ALL_IMPORTABLE_CLASSES.update(LOADABLE_CLASSES[library])

Patrick von Platen's avatar
Patrick von Platen committed
50

Patrick von Platen's avatar
Patrick von Platen committed
51
class DiffusionPipeline(ConfigMixin):
Patrick von Platen's avatar
Patrick von Platen committed
52
53
54

    config_name = "model_index.json"

Patrick von Platen's avatar
up  
Patrick von Platen committed
55
    def register_modules(self, **kwargs):
56
57
        # import it here to avoid circular import
        from diffusers import pipelines
58

Patrick von Platen's avatar
Patrick von Platen committed
59
60
61
        for name, module in kwargs.items():
            # retrive library
            library = module.__module__.split(".")[0]
62

63
64
65
66
67
            # check if the module is a pipeline module
            pipeline_file = module.__module__.split(".")[-1]
            pipeline_dir = module.__module__.split(".")[-2]
            is_pipeline_module = pipeline_file == "pipeline_" + pipeline_dir and hasattr(pipelines, pipeline_dir)

68
69
            # if library is not in LOADABLE_CLASSES, then it is a custom module.
            # Or if it's a pipeline module, then the module is inside the pipeline
70
            # folder so we set the library to module name.
71
            if library not in LOADABLE_CLASSES or is_pipeline_module:
72
                library = pipeline_dir
patil-suraj's avatar
patil-suraj committed
73

Patrick von Platen's avatar
Patrick von Platen committed
74
75
76
            # retrive class_name
            class_name = module.__class__.__name__

77
78
            register_dict = {name: (library, class_name)}

Patrick von Platen's avatar
Patrick von Platen committed
79
            # save model index config
80
            self.register_to_config(**register_dict)
Patrick von Platen's avatar
Patrick von Platen committed
81
82
83

            # set models
            setattr(self, name, module)
84

Patrick von Platen's avatar
Patrick von Platen committed
85
86
87
    def save_pretrained(self, save_directory: Union[str, os.PathLike]):
        self.save_config(save_directory)

Patrick von Platen's avatar
Patrick von Platen committed
88
        model_index_dict = dict(self.config)
Patrick von Platen's avatar
Patrick von Platen committed
89
        model_index_dict.pop("_class_name")
90
        model_index_dict.pop("_diffusers_version")
91
        model_index_dict.pop("_module", None)
Patrick von Platen's avatar
Patrick von Platen committed
92

anton-l's avatar
anton-l committed
93
94
95
        for pipeline_component_name in model_index_dict.keys():
            sub_model = getattr(self, pipeline_component_name)
            model_cls = sub_model.__class__
Patrick von Platen's avatar
Patrick von Platen committed
96
97

            save_method_name = None
anton-l's avatar
anton-l committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
            # search for the model's base class in LOADABLE_CLASSES
            for library_name, library_classes in LOADABLE_CLASSES.items():
                library = importlib.import_module(library_name)
                for base_class, save_load_methods in library_classes.items():
                    class_candidate = getattr(library, base_class)
                    if issubclass(model_cls, class_candidate):
                        # if we found a suitable base class in LOADABLE_CLASSES then grab its save method
                        save_method_name = save_load_methods[0]
                        break
                if save_method_name is not None:
                    break

            save_method = getattr(sub_model, save_method_name)
            save_method(os.path.join(save_directory, pipeline_component_name))
Patrick von Platen's avatar
Patrick von Platen committed
112
113
114

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
115
        r"""
Patrick von Platen's avatar
Patrick von Platen committed
116
        Add docstrings
117
118
119
120
121
122
        """
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", False)
        use_auth_token = kwargs.pop("use_auth_token", None)
123
        revision = kwargs.pop("revision", None)
Patrick von Platen's avatar
Patrick von Platen committed
124

patil-suraj's avatar
patil-suraj committed
125
        # 1. Download the checkpoints and configs
Patrick von Platen's avatar
Patrick von Platen committed
126
        # use snapshot download here to get it working from from_pretrained
Patrick von Platen's avatar
Patrick von Platen committed
127
        if not os.path.isdir(pretrained_model_name_or_path):
128
129
130
131
132
133
134
            cached_folder = snapshot_download(
                pretrained_model_name_or_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
135
                revision=revision,
136
            )
Patrick von Platen's avatar
Patrick von Platen committed
137
138
        else:
            cached_folder = pretrained_model_name_or_path
139

patil-suraj's avatar
patil-suraj committed
140
        config_dict = cls.get_config_dict(cached_folder)
141

Patrick von Platen's avatar
Patrick von Platen committed
142
        # 2. Load the pipeline class, if using custom module then load it from the hub
143
144
        # if we load from explicit class, let's use it
        if cls != DiffusionPipeline:
145
146
            pipeline_class = cls
        else:
Patrick von Platen's avatar
Patrick von Platen committed
147
148
149
            diffusers_module = importlib.import_module(cls.__module__.split(".")[0])
            pipeline_class = getattr(diffusers_module, config_dict["_class_name"])

150
        init_dict, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
151
152

        init_kwargs = {}
153

154
155
        # import it here to avoid circular import
        from diffusers import pipelines
156

Patrick von Platen's avatar
Patrick von Platen committed
157
        # 3. Load each module in the pipeline
patil-suraj's avatar
patil-suraj committed
158
        for name, (library_name, class_name) in init_dict.items():
159
160
161
162
163
164
            is_pipeline_module = hasattr(pipelines, library_name)
            # if the model is in a pipeline module, then we load it from the pipeline
            if is_pipeline_module:
                pipeline_module = getattr(pipelines, library_name)
                class_obj = getattr(pipeline_module, class_name)
                importable_classes = ALL_IMPORTABLE_CLASSES
Patrick von Platen's avatar
Patrick von Platen committed
165
                class_candidates = {c: class_obj for c in importable_classes.keys()}
patil-suraj's avatar
patil-suraj committed
166
            else:
patil-suraj's avatar
patil-suraj committed
167
                # else we just import it from the library.
patil-suraj's avatar
patil-suraj committed
168
169
                library = importlib.import_module(library_name)
                class_obj = getattr(library, class_name)
170
                importable_classes = LOADABLE_CLASSES[library_name]
patil-suraj's avatar
patil-suraj committed
171
                class_candidates = {c: getattr(library, c) for c in importable_classes.keys()}
172

173
174
175
176
            load_method_name = None
            for class_name, class_candidate in class_candidates.items():
                if issubclass(class_obj, class_candidate):
                    load_method_name = importable_classes[class_name][1]
Patrick von Platen's avatar
Patrick von Platen committed
177
178
179

            load_method = getattr(class_obj, load_method_name)

patil-suraj's avatar
patil-suraj committed
180
            # check if the module is in a subdirectory
Patrick von Platen's avatar
Patrick von Platen committed
181
            if os.path.isdir(os.path.join(cached_folder, name)):
182
183
                loaded_sub_model = load_method(os.path.join(cached_folder, name))
            else:
patil-suraj's avatar
patil-suraj committed
184
                # else load from the root directory
185
                loaded_sub_model = load_method(cached_folder)
Patrick von Platen's avatar
Patrick von Platen committed
186

187
            init_kwargs[name] = loaded_sub_model  # UNet(...), # DiffusionSchedule(...)
Patrick von Platen's avatar
Patrick von Platen committed
188

patil-suraj's avatar
patil-suraj committed
189
        # 5. Instantiate the pipeline
190
        model = pipeline_class(**init_kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
191
        return model