pipeline_utils.py 5.34 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
improve  
Patrick von Platen committed
17
import importlib
Patrick von Platen's avatar
Patrick von Platen committed
18
19
import os
from typing import Optional, Union
anton-l's avatar
Style  
anton-l committed
20

Patrick von Platen's avatar
up  
Patrick von Platen committed
21
from huggingface_hub import snapshot_download
Patrick von Platen's avatar
Patrick von Platen committed
22
23
24
25

# CHANGE to diffusers.utils
from transformers.utils import logging

Patrick von Platen's avatar
Patrick von Platen committed
26
from .configuration_utils import ConfigMixin
patil-suraj's avatar
patil-suraj committed
27
from .dynamic_modules_utils import get_class_from_dynamic_module
Patrick von Platen's avatar
improve  
Patrick von Platen committed
28

Patrick von Platen's avatar
Patrick von Platen committed
29
30
31
32
33
34
35
36
37

INDEX_FILE = "diffusion_model.pt"


logger = logging.get_logger(__name__)


LOADABLE_CLASSES = {
    "diffusers": {
Patrick von Platen's avatar
Patrick von Platen committed
38
        "ModelMixin": ["save_pretrained", "from_pretrained"],
39
        "CLIPTextModel": ["save_pretrained", "from_pretrained"],  # TODO (Anton): move to transformers
Patrick von Platen's avatar
improve  
Patrick von Platen committed
40
        "GaussianDDPMScheduler": ["save_config", "from_config"],
41
        "ClassifierFreeGuidanceScheduler": ["save_config", "from_config"],
42
        "GlideDDIMScheduler": ["save_config", "from_config"],
Patrick von Platen's avatar
Patrick von Platen committed
43
44
    },
    "transformers": {
45
        "GPT2Tokenizer": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
46
47
48
49
    },
}


Patrick von Platen's avatar
Patrick von Platen committed
50
class DiffusionPipeline(ConfigMixin):
Patrick von Platen's avatar
Patrick von Platen committed
51
52
53

    config_name = "model_index.json"

Patrick von Platen's avatar
up  
Patrick von Platen committed
54
    def register_modules(self, **kwargs):
Patrick von Platen's avatar
Patrick von Platen committed
55
56
57
58
59
60
        for name, module in kwargs.items():
            # retrive library
            library = module.__module__.split(".")[0]
            # retrive class_name
            class_name = module.__class__.__name__

61
62
            register_dict = {name: (library, class_name)}

Patrick von Platen's avatar
Patrick von Platen committed
63
            # save model index config
64
            self.register(**register_dict)
Patrick von Platen's avatar
Patrick von Platen committed
65
66
67

            # set models
            setattr(self, name, module)
68

anton-l's avatar
Style  
anton-l committed
69
        register_dict = {"_module": self.__module__.split(".")[-1] + ".py"}
70
        self.register(**register_dict)
Patrick von Platen's avatar
Patrick von Platen committed
71
72
73
74
75
76

    def save_pretrained(self, save_directory: Union[str, os.PathLike]):
        self.save_config(save_directory)

        model_index_dict = self._dict_to_save
        model_index_dict.pop("_class_name")
77
        model_index_dict.pop("_module")
Patrick von Platen's avatar
Patrick von Platen committed
78
79
80
81

        for name, (library_name, class_name) in self._dict_to_save.items():
            importable_classes = LOADABLE_CLASSES[library_name]

82
83
84
85
            # TODO: Suraj
            if library_name == self.__module__:
                library_name = self

Patrick von Platen's avatar
Patrick von Platen committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
            library = importlib.import_module(library_name)
            class_obj = getattr(library, class_name)
            class_candidates = {c: getattr(library, c) for c in importable_classes.keys()}

            save_method_name = None
            for class_name, class_candidate in class_candidates.items():
                if issubclass(class_obj, class_candidate):
                    save_method_name = importable_classes[class_name][0]

            save_method = getattr(getattr(self, name), save_method_name)
            save_method(os.path.join(save_directory, name))

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
        # use snapshot download here to get it working from from_pretrained
Patrick von Platen's avatar
Patrick von Platen committed
101
102
103
104
        if not os.path.isdir(pretrained_model_name_or_path):
            cached_folder = snapshot_download(pretrained_model_name_or_path)
        else:
            cached_folder = pretrained_model_name_or_path
105

patil-suraj's avatar
patil-suraj committed
106
        config_dict = cls.get_config_dict(cached_folder)
107

Patrick von Platen's avatar
fix  
Patrick von Platen committed
108
109
        module_candidate = config_dict["_module"]

110
111
        # if we load from explicit class, let's use it
        if cls != DiffusionPipeline:
112
113
            pipeline_class = cls
        else:
114
115
            # else we need to load the correct module from the Hub
            class_name_ = config_dict["_class_name"]
Patrick von Platen's avatar
fix  
Patrick von Platen committed
116
            module = module_candidate
117
            pipeline_class = get_class_from_dynamic_module(cached_folder, module, class_name_, cached_folder)
118

119
        init_dict, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
120
121
122

        init_kwargs = {}

patil-suraj's avatar
patil-suraj committed
123
        for name, (library_name, class_name) in init_dict.items():
Patrick von Platen's avatar
Patrick von Platen committed
124
125
            importable_classes = LOADABLE_CLASSES[library_name]

Patrick von Platen's avatar
fix  
Patrick von Platen committed
126
            if library_name == module_candidate:
127
                # TODO(Suraj)
128
                # for vq
129
130
                pass

Patrick von Platen's avatar
Patrick von Platen committed
131
132
133
134
135
136
137
138
139
140
141
            library = importlib.import_module(library_name)
            class_obj = getattr(library, class_name)
            class_candidates = {c: getattr(library, c) for c in importable_classes.keys()}

            load_method_name = None
            for class_name, class_candidate in class_candidates.items():
                if issubclass(class_obj, class_candidate):
                    load_method_name = importable_classes[class_name][1]

            load_method = getattr(class_obj, load_method_name)

Patrick von Platen's avatar
Patrick von Platen committed
142
            if os.path.isdir(os.path.join(cached_folder, name)):
143
144
145
                loaded_sub_model = load_method(os.path.join(cached_folder, name))
            else:
                loaded_sub_model = load_method(cached_folder)
Patrick von Platen's avatar
Patrick von Platen committed
146

147
            init_kwargs[name] = loaded_sub_model  # UNet(...), # DiffusionSchedule(...)
Patrick von Platen's avatar
Patrick von Platen committed
148

149
        model = pipeline_class(**init_kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
150
        return model