pipeline_utils.py 25.3 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
improve  
Patrick von Platen committed
17
import importlib
18
import inspect
Patrick von Platen's avatar
Patrick von Platen committed
19
import os
20
21
from dataclasses import dataclass
from typing import List, Optional, Union
anton-l's avatar
Style  
anton-l committed
22

23
import numpy as np
Pedro Cuenca's avatar
Pedro Cuenca committed
24
25
import torch

26
import diffusers
27
import PIL
Patrick von Platen's avatar
up  
Patrick von Platen committed
28
from huggingface_hub import snapshot_download
29
from PIL import Image
hysts's avatar
hysts committed
30
from tqdm.auto import tqdm
Patrick von Platen's avatar
Patrick von Platen committed
31

32
from . import __version__
Patrick von Platen's avatar
Patrick von Platen committed
33
from .configuration_utils import ConfigMixin
Patrick von Platen's avatar
Patrick von Platen committed
34
from .dynamic_modules_utils import get_class_from_dynamic_module
35
from .schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
36
37
38
39
40
41
42
43
44
45
46
47
48
from .utils import (
    CONFIG_NAME,
    DIFFUSERS_CACHE,
    ONNX_WEIGHTS_NAME,
    WEIGHTS_NAME,
    BaseOutput,
    is_transformers_available,
    logging,
)


if is_transformers_available():
    from transformers import PreTrainedModel
Patrick von Platen's avatar
improve  
Patrick von Platen committed
49

Patrick von Platen's avatar
Patrick von Platen committed
50

Patrick von Platen's avatar
Patrick von Platen committed
51
INDEX_FILE = "diffusion_pytorch_model.bin"
Patrick von Platen's avatar
Patrick von Platen committed
52
CUSTOM_PIPELINE_FILE_NAME = "pipeline.py"
53
DUMMY_MODULES_FOLDER = "diffusers.utils"
Patrick von Platen's avatar
Patrick von Platen committed
54
55
56
57
58
59
60


logger = logging.get_logger(__name__)


LOADABLE_CLASSES = {
    "diffusers": {
Patrick von Platen's avatar
Patrick von Platen committed
61
        "ModelMixin": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
62
        "SchedulerMixin": ["save_config", "from_config"],
Patrick von Platen's avatar
Patrick von Platen committed
63
        "DiffusionPipeline": ["save_pretrained", "from_pretrained"],
64
        "OnnxRuntimeModel": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
65
66
    },
    "transformers": {
anton-l's avatar
anton-l committed
67
        "PreTrainedTokenizer": ["save_pretrained", "from_pretrained"],
68
        "PreTrainedTokenizerFast": ["save_pretrained", "from_pretrained"],
anton-l's avatar
anton-l committed
69
        "PreTrainedModel": ["save_pretrained", "from_pretrained"],
Suraj Patil's avatar
Suraj Patil committed
70
        "FeatureExtractionMixin": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
71
72
73
    },
}

74
75
76
77
ALL_IMPORTABLE_CLASSES = {}
for library in LOADABLE_CLASSES:
    ALL_IMPORTABLE_CLASSES.update(LOADABLE_CLASSES[library])

Patrick von Platen's avatar
Patrick von Platen committed
78

79
80
81
82
83
84
85
86
87
88
89
90
91
92
@dataclass
class ImagePipelineOutput(BaseOutput):
    """
    Output class for image pipelines.

    Args:
        images (`List[PIL.Image.Image]` or `np.ndarray`)
            List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
            num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
    """

    images: Union[List[PIL.Image.Image], np.ndarray]


Patrick von Platen's avatar
Patrick von Platen committed
93
class DiffusionPipeline(ConfigMixin):
94
95
96
97
98
99
100
101
102
103
104
105
    r"""
    Base class for all models.

    [`DiffusionPipeline`] takes care of storing all components (models, schedulers, processors) for diffusion pipelines
    and handles methods for loading, downloading and saving models as well as a few methods common to all pipelines to:

        - move all PyTorch modules to the device of your choice
        - enabling/disabling the progress bar for the denoising iteration

    Class attributes:

        - **config_name** ([`str`]) -- name of the config file that will store the class and module names of all
106
          components of the diffusion pipeline.
107
    """
Patrick von Platen's avatar
Patrick von Platen committed
108
109
    config_name = "model_index.json"

Patrick von Platen's avatar
up  
Patrick von Platen committed
110
    def register_modules(self, **kwargs):
111
112
        # import it here to avoid circular import
        from diffusers import pipelines
113

Patrick von Platen's avatar
Patrick von Platen committed
114
        for name, module in kwargs.items():
115
            # retrieve library
116
117
118
119
            if module is None:
                register_dict = {name: (None, None)}
            else:
                library = module.__module__.split(".")[0]
120

121
122
123
124
                # check if the module is a pipeline module
                pipeline_dir = module.__module__.split(".")[-2]
                path = module.__module__.split(".")
                is_pipeline_module = pipeline_dir in path and hasattr(pipelines, pipeline_dir)
125

126
127
128
129
130
                # if library is not in LOADABLE_CLASSES, then it is a custom module.
                # Or if it's a pipeline module, then the module is inside the pipeline
                # folder so we set the library to module name.
                if library not in LOADABLE_CLASSES or is_pipeline_module:
                    library = pipeline_dir
patil-suraj's avatar
patil-suraj committed
131

132
133
                # retrieve class_name
                class_name = module.__class__.__name__
Patrick von Platen's avatar
Patrick von Platen committed
134

135
                register_dict = {name: (library, class_name)}
136

Patrick von Platen's avatar
Patrick von Platen committed
137
            # save model index config
138
            self.register_to_config(**register_dict)
Patrick von Platen's avatar
Patrick von Platen committed
139
140
141

            # set models
            setattr(self, name, module)
142

Patrick von Platen's avatar
Patrick von Platen committed
143
    def save_pretrained(self, save_directory: Union[str, os.PathLike]):
144
145
146
147
148
149
150
151
152
        """
        Save all variables of the pipeline that can be saved and loaded as well as the pipelines configuration file to
        a directory. A pipeline variable can be saved and loaded if its class implements both a save and loading
        method. The pipeline can easily be re-loaded using the `[`~DiffusionPipeline.from_pretrained`]` class method.

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to which to save. Will be created if it doesn't exist.
        """
Patrick von Platen's avatar
Patrick von Platen committed
153
154
        self.save_config(save_directory)

Patrick von Platen's avatar
Patrick von Platen committed
155
        model_index_dict = dict(self.config)
Patrick von Platen's avatar
Patrick von Platen committed
156
        model_index_dict.pop("_class_name")
157
        model_index_dict.pop("_diffusers_version")
158
        model_index_dict.pop("_module", None)
Patrick von Platen's avatar
Patrick von Platen committed
159

anton-l's avatar
anton-l committed
160
161
162
        for pipeline_component_name in model_index_dict.keys():
            sub_model = getattr(self, pipeline_component_name)
            model_cls = sub_model.__class__
Patrick von Platen's avatar
Patrick von Platen committed
163
164

            save_method_name = None
anton-l's avatar
anton-l committed
165
166
167
168
169
170
171
172
173
174
175
176
177
178
            # search for the model's base class in LOADABLE_CLASSES
            for library_name, library_classes in LOADABLE_CLASSES.items():
                library = importlib.import_module(library_name)
                for base_class, save_load_methods in library_classes.items():
                    class_candidate = getattr(library, base_class)
                    if issubclass(model_cls, class_candidate):
                        # if we found a suitable base class in LOADABLE_CLASSES then grab its save method
                        save_method_name = save_load_methods[0]
                        break
                if save_method_name is not None:
                    break

            save_method = getattr(sub_model, save_method_name)
            save_method(os.path.join(save_directory, pipeline_component_name))
Patrick von Platen's avatar
Patrick von Platen committed
179

Pedro Cuenca's avatar
Pedro Cuenca committed
180
181
182
183
184
185
186
187
    def to(self, torch_device: Optional[Union[str, torch.device]] = None):
        if torch_device is None:
            return self

        module_names, _ = self.extract_init_dict(dict(self.config))
        for name in module_names.keys():
            module = getattr(self, name)
            if isinstance(module, torch.nn.Module):
188
                if module.dtype == torch.float16 and str(torch_device) in ["cpu", "mps"]:
189
190
191
192
193
194
                    logger.warning(
                        "Pipelines loaded with `torch_dtype=torch.float16` cannot run with `cpu` or `mps` device. It"
                        " is not recommended to move them to `cpu` or `mps` as running them will fail. Please make"
                        " sure to use a `cuda` device to run the pipeline in inference. due to the lack of support for"
                        " `float16` operations on those devices in PyTorch. Please remove the"
                        " `torch_dtype=torch.float16` argument, or use a `cuda` device to run inference."
195
                    )
Pedro Cuenca's avatar
Pedro Cuenca committed
196
197
198
199
200
                module.to(torch_device)
        return self

    @property
    def device(self) -> torch.device:
201
202
203
204
        r"""
        Returns:
            `torch.device`: The torch device on which the pipeline is located.
        """
Pedro Cuenca's avatar
Pedro Cuenca committed
205
206
207
208
209
210
211
        module_names, _ = self.extract_init_dict(dict(self.config))
        for name in module_names.keys():
            module = getattr(self, name)
            if isinstance(module, torch.nn.Module):
                return module.device
        return torch.device("cpu")

Patrick von Platen's avatar
Patrick von Platen committed
212
213
    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
214
        r"""
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
        Instantiate a PyTorch diffusion pipeline from pre-trained pipeline weights.

        The pipeline is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated).

        The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
        pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
        task.

        The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
        weights are discarded.

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

                    - A string, the *repo id* of a pretrained pipeline hosted inside a model repo on
                      https://huggingface.co/ Valid repo ids have to be located under a user or organization name, like
                      `CompVis/ldm-text2im-large-256`.
                    - A path to a *directory* containing pipeline weights saved using
                      [`~DiffusionPipeline.save_pretrained`], e.g., `./my_pipeline_directory/`.
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model under this dtype. If `"auto"` is passed the dtype
                will be automatically derived from the model's weights.
Patrick von Platen's avatar
Patrick von Platen committed
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
            custom_pipeline (`str`, *optional*):

                <Tip warning={true}>

                    This is an experimental feature and is likely to change in the future.

                </Tip>

                Can be either:

                    - A string, the *repo id* of a custom pipeline hosted inside a model repo on
                      https://huggingface.co/. Valid repo ids have to be located under a user or organization name,
                      like `hf-internal-testing/diffusers-dummy-pipeline`.

                        <Tip>

                         It is required that the model repo has a file, called `pipeline.py` that defines the custom
                         pipeline.

                        </Tip>

                    - A string, the *file name* of a community pipeline hosted on GitHub under
                      https://github.com/huggingface/diffusers/tree/main/examples/community. Valid file names have to
                      match exactly the file name without `.py` located under the above link, *e.g.*
                      `clip_guided_stable_diffusion`.

                        <Tip>

                         Community pipelines are always loaded from the current `main` branch of GitHub.

                        </Tip>

                    - A path to a *directory* containing a custom pipeline, e.g., `./my_pipeline_directory/`.

                        <Tip>

                         It is required that the directory has a file, called `pipeline.py` that defines the custom
                         pipeline.

                        </Tip>

                For more information on how to load and create custom pipelines, please have a look at [Loading and
                Creating Custom
                Pipelines](https://huggingface.co/docs/diffusers/main/en/using-diffusers/custom_pipelines)

            torch_dtype (`str` or `torch.dtype`, *optional*):
284
285
286
287
288
289
290
291
292
293
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
294
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
            local_files_only(`bool`, *optional*, defaults to `False`):
                Whether or not to only look at local files (i.e., do not try to download the model).
            use_auth_token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
                when running `huggingface-cli login` (stored in `~/.huggingface`).
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
                identifier allowed by git.
            mirror (`str`, *optional*):
                Mirror source to accelerate downloads in China. If you are from China and have an accessibility
                problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
                Please refer to the mirror site for more information. specify the folder name here.

            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load - and saveable variables - *i.e.* the pipeline components - of the
311
312
                specific pipeline class. The overwritten components are then directly passed to the pipelines
                `__init__` method. See example below for more information.
313
314
315

        <Tip>

316
317
         It is required to be logged in (`huggingface-cli login`) when you want to use private or [gated
         models](https://huggingface.co/docs/hub/models-gated#gated-models), *e.g.* `"CompVis/stable-diffusion-v1-4"`
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338

        </Tip>

        <Tip>

        Activate the special ["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use
        this method in a firewalled environment.

        </Tip>

        Examples:

        ```py
        >>> from diffusers import DiffusionPipeline

        >>> # Download pipeline from huggingface.co and cache.
        >>> pipeline = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256")

        >>> # Download pipeline that requires an authorization token
        >>> # For more information on access tokens, please refer to this section
        >>> # of the documentation](https://huggingface.co/docs/hub/security-tokens)
339
        >>> pipeline = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
340
341
342
343
344

        >>> # Download pipeline, but overwrite scheduler
        >>> from diffusers import LMSDiscreteScheduler

        >>> scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear")
345
        >>> pipeline = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", scheduler=scheduler)
346
        ```
347
348
349
350
351
352
        """
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", False)
        use_auth_token = kwargs.pop("use_auth_token", None)
353
        revision = kwargs.pop("revision", None)
354
        torch_dtype = kwargs.pop("torch_dtype", None)
Patrick von Platen's avatar
Patrick von Platen committed
355
        custom_pipeline = kwargs.pop("custom_pipeline", None)
356
        provider = kwargs.pop("provider", None)
357
        sess_options = kwargs.pop("sess_options", None)
358
        device_map = kwargs.pop("device_map", None)
Patrick von Platen's avatar
Patrick von Platen committed
359

patil-suraj's avatar
patil-suraj committed
360
        # 1. Download the checkpoints and configs
Patrick von Platen's avatar
Patrick von Platen committed
361
        # use snapshot download here to get it working from from_pretrained
Patrick von Platen's avatar
Patrick von Platen committed
362
        if not os.path.isdir(pretrained_model_name_or_path):
363
364
365
366
367
368
369
370
371
372
373
374
375
376
            config_dict = cls.get_config_dict(
                pretrained_model_name_or_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
            )
            # make sure we only download sub-folders and `diffusers` filenames
            folder_names = [k for k in config_dict.keys() if not k.startswith("_")]
            allow_patterns = [os.path.join(k, "*") for k in folder_names]
            allow_patterns += [WEIGHTS_NAME, SCHEDULER_CONFIG_NAME, CONFIG_NAME, ONNX_WEIGHTS_NAME, cls.config_name]

Patrick von Platen's avatar
Patrick von Platen committed
377
378
379
            if custom_pipeline is not None:
                allow_patterns += [CUSTOM_PIPELINE_FILE_NAME]

380
381
382
383
384
            requested_pipeline_class = config_dict.get("_class_name", cls.__name__)
            user_agent = {"diffusers": __version__, "pipeline_class": requested_pipeline_class}
            if custom_pipeline is not None:
                user_agent["custom_pipeline"] = custom_pipeline

385
            # download all allow_patterns
386
387
388
389
390
391
392
            cached_folder = snapshot_download(
                pretrained_model_name_or_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
393
                revision=revision,
394
                allow_patterns=allow_patterns,
395
                user_agent=user_agent,
396
            )
Patrick von Platen's avatar
Patrick von Platen committed
397
398
        else:
            cached_folder = pretrained_model_name_or_path
399

patil-suraj's avatar
patil-suraj committed
400
        config_dict = cls.get_config_dict(cached_folder)
401

Patrick von Platen's avatar
Patrick von Platen committed
402
        # 2. Load the pipeline class, if using custom module then load it from the hub
403
        # if we load from explicit class, let's use it
Patrick von Platen's avatar
Patrick von Platen committed
404
405
406
407
408
        if custom_pipeline is not None:
            pipeline_class = get_class_from_dynamic_module(
                custom_pipeline, module_file=CUSTOM_PIPELINE_FILE_NAME, cache_dir=custom_pipeline
            )
        elif cls != DiffusionPipeline:
409
410
            pipeline_class = cls
        else:
Patrick von Platen's avatar
Patrick von Platen committed
411
412
413
            diffusers_module = importlib.import_module(cls.__module__.split(".")[0])
            pipeline_class = getattr(diffusers_module, config_dict["_class_name"])

414
415
416
        # some modules can be passed directly to the init
        # in this case they are already instantiated in `kwargs`
        # extract them here
Patrick von Platen's avatar
Patrick von Platen committed
417
        expected_modules = set(inspect.signature(pipeline_class.__init__).parameters.keys()) - set(["self"])
418
419
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}

420
        init_dict, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
421
422

        init_kwargs = {}
423

424
425
        # import it here to avoid circular import
        from diffusers import pipelines
426

Patrick von Platen's avatar
Patrick von Platen committed
427
        # 3. Load each module in the pipeline
patil-suraj's avatar
patil-suraj committed
428
        for name, (library_name, class_name) in init_dict.items():
429
430
431
432
            # 3.1 - now that JAX/Flax is an official framework of the library, we might load from Flax names
            if class_name.startswith("Flax"):
                class_name = class_name[4:]

433
            is_pipeline_module = hasattr(pipelines, library_name)
434
            loaded_sub_model = None
435
            sub_model_should_be_defined = True
436

437
            # if the model is in a pipeline module, then we load it from the pipeline
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
            if name in passed_class_obj:
                # 1. check that passed_class_obj has correct parent class
                if not is_pipeline_module:
                    library = importlib.import_module(library_name)
                    class_obj = getattr(library, class_name)
                    importable_classes = LOADABLE_CLASSES[library_name]
                    class_candidates = {c: getattr(library, c) for c in importable_classes.keys()}

                    expected_class_obj = None
                    for class_name, class_candidate in class_candidates.items():
                        if issubclass(class_obj, class_candidate):
                            expected_class_obj = class_candidate

                    if not issubclass(passed_class_obj[name].__class__, expected_class_obj):
                        raise ValueError(
                            f"{passed_class_obj[name]} is of type: {type(passed_class_obj[name])}, but should be"
                            f" {expected_class_obj}"
                        )
456
457
458
459
460
461
                elif passed_class_obj[name] is None:
                    logger.warn(
                        f"You have passed `None` for {name} to disable its functionality in {pipeline_class}. Note"
                        f" that this might lead to problems when using {pipeline_class} and is not recommended."
                    )
                    sub_model_should_be_defined = False
462
463
464
465
466
467
468
469
470
                else:
                    logger.warn(
                        f"You have passed a non-standard module {passed_class_obj[name]}. We cannot verify whether it"
                        " has the correct type"
                    )

                # set passed class object
                loaded_sub_model = passed_class_obj[name]
            elif is_pipeline_module:
471
472
473
                pipeline_module = getattr(pipelines, library_name)
                class_obj = getattr(pipeline_module, class_name)
                importable_classes = ALL_IMPORTABLE_CLASSES
Patrick von Platen's avatar
Patrick von Platen committed
474
                class_candidates = {c: class_obj for c in importable_classes.keys()}
patil-suraj's avatar
patil-suraj committed
475
            else:
patil-suraj's avatar
patil-suraj committed
476
                # else we just import it from the library.
patil-suraj's avatar
patil-suraj committed
477
478
                library = importlib.import_module(library_name)
                class_obj = getattr(library, class_name)
479
                importable_classes = LOADABLE_CLASSES[library_name]
patil-suraj's avatar
patil-suraj committed
480
                class_candidates = {c: getattr(library, c) for c in importable_classes.keys()}
481

482
            if loaded_sub_model is None and sub_model_should_be_defined:
483
484
485
486
                load_method_name = None
                for class_name, class_candidate in class_candidates.items():
                    if issubclass(class_obj, class_candidate):
                        load_method_name = importable_classes[class_name][1]
Patrick von Platen's avatar
Patrick von Platen committed
487

488
489
490
491
492
493
494
495
496
497
                if load_method_name is None:
                    none_module = class_obj.__module__
                    if none_module.startswith(DUMMY_MODULES_FOLDER) and "dummy" in none_module:
                        # call class_obj for nice error message of missing requirements
                        class_obj()

                    raise ValueError(
                        f"The component {class_obj} of {pipeline_class} cannot be loaded as it does not seem to have"
                        f" any of the loading methods defined in {ALL_IMPORTABLE_CLASSES}."
                    )
Patrick von Platen's avatar
Patrick von Platen committed
498

499
                load_method = getattr(class_obj, load_method_name)
500
                loading_kwargs = {}
501

502
503
                if issubclass(class_obj, torch.nn.Module):
                    loading_kwargs["torch_dtype"] = torch_dtype
504
505
                if issubclass(class_obj, diffusers.OnnxRuntimeModel):
                    loading_kwargs["provider"] = provider
506
                    loading_kwargs["sess_options"] = sess_options
507

508
509
510
511
512
513
514
                if (
                    issubclass(class_obj, diffusers.ModelMixin)
                    or is_transformers_available()
                    and issubclass(class_obj, PreTrainedModel)
                ):
                    loading_kwargs["device_map"] = device_map

515
516
                # check if the module is in a subdirectory
                if os.path.isdir(os.path.join(cached_folder, name)):
517
                    loaded_sub_model = load_method(os.path.join(cached_folder, name), **loading_kwargs)
518
519
                else:
                    # else load from the root directory
520
                    loaded_sub_model = load_method(cached_folder, **loading_kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
521

522
            init_kwargs[name] = loaded_sub_model  # UNet(...), # DiffusionSchedule(...)
Patrick von Platen's avatar
Patrick von Platen committed
523

Patrick von Platen's avatar
Patrick von Platen committed
524
525
526
527
528
529
        # 4. Potentially add passed objects if expected
        missing_modules = set(expected_modules) - set(init_kwargs.keys())
        if len(missing_modules) > 0 and missing_modules <= set(passed_class_obj.keys()):
            for module in missing_modules:
                init_kwargs[module] = passed_class_obj[module]
        elif len(missing_modules) > 0:
530
            passed_modules = set(list(init_kwargs.keys()) + list(passed_class_obj.keys()))
Patrick von Platen's avatar
Patrick von Platen committed
531
532
533
534
535
            raise ValueError(
                f"Pipeline {pipeline_class} expected {expected_modules}, but only {passed_modules} were passed."
            )

        # 5. Instantiate the pipeline
536
        model = pipeline_class(**init_kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
537
        return model
538
539
540
541
542
543
544
545
546
547
548
549

    @staticmethod
    def numpy_to_pil(images):
        """
        Convert a numpy image or a batch of images to a PIL image.
        """
        if images.ndim == 3:
            images = images[None, ...]
        images = (images * 255).round().astype("uint8")
        pil_images = [Image.fromarray(image) for image in images]

        return pil_images
hysts's avatar
hysts committed
550
551
552
553
554
555
556
557
558
559
560
561
562

    def progress_bar(self, iterable):
        if not hasattr(self, "_progress_bar_config"):
            self._progress_bar_config = {}
        elif not isinstance(self._progress_bar_config, dict):
            raise ValueError(
                f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}."
            )

        return tqdm(iterable, **self._progress_bar_config)

    def set_progress_bar_config(self, **kwargs):
        self._progress_bar_config = kwargs