pipeline_utils.py 5.28 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
improve  
Patrick von Platen committed
17
import importlib
Patrick von Platen's avatar
Patrick von Platen committed
18
19
import os
from typing import Optional, Union
anton-l's avatar
Style  
anton-l committed
20

Patrick von Platen's avatar
up  
Patrick von Platen committed
21
from huggingface_hub import snapshot_download
Patrick von Platen's avatar
Patrick von Platen committed
22
23
24
25

# CHANGE to diffusers.utils
from transformers.utils import logging

Patrick von Platen's avatar
Patrick von Platen committed
26
from .configuration_utils import ConfigMixin
patil-suraj's avatar
patil-suraj committed
27
from .dynamic_modules_utils import get_class_from_dynamic_module
Patrick von Platen's avatar
improve  
Patrick von Platen committed
28

Patrick von Platen's avatar
Patrick von Platen committed
29
30
31
32
33
34
35
36
37

INDEX_FILE = "diffusion_model.pt"


logger = logging.get_logger(__name__)


LOADABLE_CLASSES = {
    "diffusers": {
Patrick von Platen's avatar
Patrick von Platen committed
38
        "ModelMixin": ["save_pretrained", "from_pretrained"],
39
        "CLIPTextModel": ["save_pretrained", "from_pretrained"],  # TODO (Anton): move to transformers
Patrick von Platen's avatar
improve  
Patrick von Platen committed
40
        "GaussianDDPMScheduler": ["save_config", "from_config"],
41
        "ClassifierFreeGuidanceScheduler": ["save_config", "from_config"],
Patrick von Platen's avatar
Patrick von Platen committed
42
43
    },
    "transformers": {
44
        "GPT2Tokenizer": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
45
46
47
48
    },
}


Patrick von Platen's avatar
Patrick von Platen committed
49
class DiffusionPipeline(ConfigMixin):
Patrick von Platen's avatar
Patrick von Platen committed
50
51
52

    config_name = "model_index.json"

Patrick von Platen's avatar
up  
Patrick von Platen committed
53
    def register_modules(self, **kwargs):
Patrick von Platen's avatar
Patrick von Platen committed
54
55
56
57
58
59
        for name, module in kwargs.items():
            # retrive library
            library = module.__module__.split(".")[0]
            # retrive class_name
            class_name = module.__class__.__name__

60
61
            register_dict = {name: (library, class_name)}

Patrick von Platen's avatar
Patrick von Platen committed
62
            # save model index config
63
            self.register(**register_dict)
Patrick von Platen's avatar
Patrick von Platen committed
64
65
66

            # set models
            setattr(self, name, module)
67

anton-l's avatar
Style  
anton-l committed
68
        register_dict = {"_module": self.__module__.split(".")[-1] + ".py"}
69
        self.register(**register_dict)
Patrick von Platen's avatar
Patrick von Platen committed
70
71
72
73
74
75

    def save_pretrained(self, save_directory: Union[str, os.PathLike]):
        self.save_config(save_directory)

        model_index_dict = self._dict_to_save
        model_index_dict.pop("_class_name")
76
        model_index_dict.pop("_module")
Patrick von Platen's avatar
Patrick von Platen committed
77
78
79
80

        for name, (library_name, class_name) in self._dict_to_save.items():
            importable_classes = LOADABLE_CLASSES[library_name]

81
82
83
84
            # TODO: Suraj
            if library_name == self.__module__:
                library_name = self

Patrick von Platen's avatar
Patrick von Platen committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
            library = importlib.import_module(library_name)
            class_obj = getattr(library, class_name)
            class_candidates = {c: getattr(library, c) for c in importable_classes.keys()}

            save_method_name = None
            for class_name, class_candidate in class_candidates.items():
                if issubclass(class_obj, class_candidate):
                    save_method_name = importable_classes[class_name][0]

            save_method = getattr(getattr(self, name), save_method_name)
            save_method(os.path.join(save_directory, name))

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
        # use snapshot download here to get it working from from_pretrained
Patrick von Platen's avatar
Patrick von Platen committed
100
101
102
103
        if not os.path.isdir(pretrained_model_name_or_path):
            cached_folder = snapshot_download(pretrained_model_name_or_path)
        else:
            cached_folder = pretrained_model_name_or_path
104

patil-suraj's avatar
patil-suraj committed
105
        config_dict = cls.get_config_dict(cached_folder)
106

Patrick von Platen's avatar
fix  
Patrick von Platen committed
107
108
        module_candidate = config_dict["_module"]

109
110
        # if we load from explicit class, let's use it
        if cls != DiffusionPipeline:
111
112
            pipeline_class = cls
        else:
113
114
            # else we need to load the correct module from the Hub
            class_name_ = config_dict["_class_name"]
Patrick von Platen's avatar
fix  
Patrick von Platen committed
115
            module = module_candidate
116
            pipeline_class = get_class_from_dynamic_module(cached_folder, module, class_name_, cached_folder)
117

118
        init_dict, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
119
120
121

        init_kwargs = {}

patil-suraj's avatar
patil-suraj committed
122
        for name, (library_name, class_name) in init_dict.items():
Patrick von Platen's avatar
Patrick von Platen committed
123
124
            importable_classes = LOADABLE_CLASSES[library_name]

Patrick von Platen's avatar
fix  
Patrick von Platen committed
125
            if library_name == module_candidate:
126
                # TODO(Suraj)
127
                # for vq
128
129
                pass

Patrick von Platen's avatar
Patrick von Platen committed
130
131
132
133
134
135
136
137
138
139
140
            library = importlib.import_module(library_name)
            class_obj = getattr(library, class_name)
            class_candidates = {c: getattr(library, c) for c in importable_classes.keys()}

            load_method_name = None
            for class_name, class_candidate in class_candidates.items():
                if issubclass(class_obj, class_candidate):
                    load_method_name = importable_classes[class_name][1]

            load_method = getattr(class_obj, load_method_name)

Patrick von Platen's avatar
Patrick von Platen committed
141
            if os.path.isdir(os.path.join(cached_folder, name)):
142
143
144
                loaded_sub_model = load_method(os.path.join(cached_folder, name))
            else:
                loaded_sub_model = load_method(cached_folder)
Patrick von Platen's avatar
Patrick von Platen committed
145

146
            init_kwargs[name] = loaded_sub_model  # UNet(...), # DiffusionSchedule(...)
Patrick von Platen's avatar
Patrick von Platen committed
147

148
        model = pipeline_class(**init_kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
149
        return model