pipeline_utils.py 7.91 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
improve  
Patrick von Platen committed
17
import importlib
Patrick von Platen's avatar
Patrick von Platen committed
18
19
import os
from typing import Optional, Union
anton-l's avatar
Style  
anton-l committed
20

Patrick von Platen's avatar
up  
Patrick von Platen committed
21
from huggingface_hub import snapshot_download
22
from PIL import Image
Patrick von Platen's avatar
Patrick von Platen committed
23

Patrick von Platen's avatar
Patrick von Platen committed
24
from .configuration_utils import ConfigMixin
Patrick von Platen's avatar
Patrick von Platen committed
25
from .utils import DIFFUSERS_CACHE, logging
Patrick von Platen's avatar
improve  
Patrick von Platen committed
26

Patrick von Platen's avatar
Patrick von Platen committed
27
28
29
30
31
32
33
34
35

INDEX_FILE = "diffusion_model.pt"


logger = logging.get_logger(__name__)


LOADABLE_CLASSES = {
    "diffusers": {
Patrick von Platen's avatar
Patrick von Platen committed
36
        "ModelMixin": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
37
        "SchedulerMixin": ["save_config", "from_config"],
Patrick von Platen's avatar
Patrick von Platen committed
38
        "DiffusionPipeline": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
39
40
    },
    "transformers": {
anton-l's avatar
anton-l committed
41
        "PreTrainedTokenizer": ["save_pretrained", "from_pretrained"],
42
        "PreTrainedTokenizerFast": ["save_pretrained", "from_pretrained"],
anton-l's avatar
anton-l committed
43
        "PreTrainedModel": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
44
45
46
    },
}

47
48
49
50
ALL_IMPORTABLE_CLASSES = {}
for library in LOADABLE_CLASSES:
    ALL_IMPORTABLE_CLASSES.update(LOADABLE_CLASSES[library])

Patrick von Platen's avatar
Patrick von Platen committed
51

Patrick von Platen's avatar
Patrick von Platen committed
52
class DiffusionPipeline(ConfigMixin):
Patrick von Platen's avatar
Patrick von Platen committed
53
54
55

    config_name = "model_index.json"

Patrick von Platen's avatar
up  
Patrick von Platen committed
56
    def register_modules(self, **kwargs):
57
58
        # import it here to avoid circular import
        from diffusers import pipelines
59

Patrick von Platen's avatar
Patrick von Platen committed
60
61
62
        for name, module in kwargs.items():
            # retrive library
            library = module.__module__.split(".")[0]
63

64
65
66
67
68
            # check if the module is a pipeline module
            pipeline_file = module.__module__.split(".")[-1]
            pipeline_dir = module.__module__.split(".")[-2]
            is_pipeline_module = pipeline_file == "pipeline_" + pipeline_dir and hasattr(pipelines, pipeline_dir)

69
70
            # if library is not in LOADABLE_CLASSES, then it is a custom module.
            # Or if it's a pipeline module, then the module is inside the pipeline
71
            # folder so we set the library to module name.
72
            if library not in LOADABLE_CLASSES or is_pipeline_module:
73
                library = pipeline_dir
patil-suraj's avatar
patil-suraj committed
74

Patrick von Platen's avatar
Patrick von Platen committed
75
76
77
            # retrive class_name
            class_name = module.__class__.__name__

78
79
            register_dict = {name: (library, class_name)}

Patrick von Platen's avatar
Patrick von Platen committed
80
            # save model index config
81
            self.register_to_config(**register_dict)
Patrick von Platen's avatar
Patrick von Platen committed
82
83
84

            # set models
            setattr(self, name, module)
85

Patrick von Platen's avatar
Patrick von Platen committed
86
87
88
    def save_pretrained(self, save_directory: Union[str, os.PathLike]):
        self.save_config(save_directory)

Patrick von Platen's avatar
Patrick von Platen committed
89
        model_index_dict = dict(self.config)
Patrick von Platen's avatar
Patrick von Platen committed
90
        model_index_dict.pop("_class_name")
91
        model_index_dict.pop("_diffusers_version")
92
        model_index_dict.pop("_module", None)
Patrick von Platen's avatar
Patrick von Platen committed
93

anton-l's avatar
anton-l committed
94
95
96
        for pipeline_component_name in model_index_dict.keys():
            sub_model = getattr(self, pipeline_component_name)
            model_cls = sub_model.__class__
Patrick von Platen's avatar
Patrick von Platen committed
97
98

            save_method_name = None
anton-l's avatar
anton-l committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
            # search for the model's base class in LOADABLE_CLASSES
            for library_name, library_classes in LOADABLE_CLASSES.items():
                library = importlib.import_module(library_name)
                for base_class, save_load_methods in library_classes.items():
                    class_candidate = getattr(library, base_class)
                    if issubclass(model_cls, class_candidate):
                        # if we found a suitable base class in LOADABLE_CLASSES then grab its save method
                        save_method_name = save_load_methods[0]
                        break
                if save_method_name is not None:
                    break

            save_method = getattr(sub_model, save_method_name)
            save_method(os.path.join(save_directory, pipeline_component_name))
Patrick von Platen's avatar
Patrick von Platen committed
113
114
115

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
116
        r"""
Patrick von Platen's avatar
Patrick von Platen committed
117
        Add docstrings
118
119
120
121
122
123
        """
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", False)
        use_auth_token = kwargs.pop("use_auth_token", None)
124
        revision = kwargs.pop("revision", None)
Patrick von Platen's avatar
Patrick von Platen committed
125

patil-suraj's avatar
patil-suraj committed
126
        # 1. Download the checkpoints and configs
Patrick von Platen's avatar
Patrick von Platen committed
127
        # use snapshot download here to get it working from from_pretrained
Patrick von Platen's avatar
Patrick von Platen committed
128
        if not os.path.isdir(pretrained_model_name_or_path):
129
130
131
132
133
134
135
            cached_folder = snapshot_download(
                pretrained_model_name_or_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
136
                revision=revision,
137
            )
Patrick von Platen's avatar
Patrick von Platen committed
138
139
        else:
            cached_folder = pretrained_model_name_or_path
140

patil-suraj's avatar
patil-suraj committed
141
        config_dict = cls.get_config_dict(cached_folder)
142

Patrick von Platen's avatar
Patrick von Platen committed
143
        # 2. Load the pipeline class, if using custom module then load it from the hub
144
145
        # if we load from explicit class, let's use it
        if cls != DiffusionPipeline:
146
147
            pipeline_class = cls
        else:
Patrick von Platen's avatar
Patrick von Platen committed
148
149
150
            diffusers_module = importlib.import_module(cls.__module__.split(".")[0])
            pipeline_class = getattr(diffusers_module, config_dict["_class_name"])

151
        init_dict, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
152
153

        init_kwargs = {}
154

155
156
        # import it here to avoid circular import
        from diffusers import pipelines
157

Patrick von Platen's avatar
Patrick von Platen committed
158
        # 3. Load each module in the pipeline
patil-suraj's avatar
patil-suraj committed
159
        for name, (library_name, class_name) in init_dict.items():
160
161
162
163
164
165
            is_pipeline_module = hasattr(pipelines, library_name)
            # if the model is in a pipeline module, then we load it from the pipeline
            if is_pipeline_module:
                pipeline_module = getattr(pipelines, library_name)
                class_obj = getattr(pipeline_module, class_name)
                importable_classes = ALL_IMPORTABLE_CLASSES
Patrick von Platen's avatar
Patrick von Platen committed
166
                class_candidates = {c: class_obj for c in importable_classes.keys()}
patil-suraj's avatar
patil-suraj committed
167
            else:
patil-suraj's avatar
patil-suraj committed
168
                # else we just import it from the library.
patil-suraj's avatar
patil-suraj committed
169
170
                library = importlib.import_module(library_name)
                class_obj = getattr(library, class_name)
171
                importable_classes = LOADABLE_CLASSES[library_name]
patil-suraj's avatar
patil-suraj committed
172
                class_candidates = {c: getattr(library, c) for c in importable_classes.keys()}
173

174
175
176
177
            load_method_name = None
            for class_name, class_candidate in class_candidates.items():
                if issubclass(class_obj, class_candidate):
                    load_method_name = importable_classes[class_name][1]
Patrick von Platen's avatar
Patrick von Platen committed
178
179
180

            load_method = getattr(class_obj, load_method_name)

patil-suraj's avatar
patil-suraj committed
181
            # check if the module is in a subdirectory
Patrick von Platen's avatar
Patrick von Platen committed
182
            if os.path.isdir(os.path.join(cached_folder, name)):
183
184
                loaded_sub_model = load_method(os.path.join(cached_folder, name))
            else:
patil-suraj's avatar
patil-suraj committed
185
                # else load from the root directory
186
                loaded_sub_model = load_method(cached_folder)
Patrick von Platen's avatar
Patrick von Platen committed
187

188
            init_kwargs[name] = loaded_sub_model  # UNet(...), # DiffusionSchedule(...)
Patrick von Platen's avatar
Patrick von Platen committed
189

patil-suraj's avatar
patil-suraj committed
190
        # 5. Instantiate the pipeline
191
        model = pipeline_class(**init_kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
192
        return model
193
194
195
196
197
198
199
200
201
202
203
204

    @staticmethod
    def numpy_to_pil(images):
        """
        Convert a numpy image or a batch of images to a PIL image.
        """
        if images.ndim == 3:
            images = images[None, ...]
        images = (images * 255).round().astype("uint8")
        pil_images = [Image.fromarray(image) for image in images]

        return pil_images