pipeline_utils.py 7.59 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
improve  
Patrick von Platen committed
17
import importlib
Patrick von Platen's avatar
Patrick von Platen committed
18
19
import os
from typing import Optional, Union
anton-l's avatar
Style  
anton-l committed
20

Patrick von Platen's avatar
up  
Patrick von Platen committed
21
from huggingface_hub import snapshot_download
Patrick von Platen's avatar
Patrick von Platen committed
22

Patrick von Platen's avatar
Patrick von Platen committed
23
from .configuration_utils import ConfigMixin
patil-suraj's avatar
patil-suraj committed
24
from .dynamic_modules_utils import get_class_from_dynamic_module
Patrick von Platen's avatar
Patrick von Platen committed
25
from .utils import DIFFUSERS_CACHE, logging
Patrick von Platen's avatar
improve  
Patrick von Platen committed
26

Patrick von Platen's avatar
Patrick von Platen committed
27
28
29
30
31
32
33
34
35

INDEX_FILE = "diffusion_model.pt"


logger = logging.get_logger(__name__)


LOADABLE_CLASSES = {
    "diffusers": {
Patrick von Platen's avatar
Patrick von Platen committed
36
        "ModelMixin": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
improve  
Patrick von Platen committed
37
        "GaussianDDPMScheduler": ["save_config", "from_config"],
38
        "ClassifierFreeGuidanceScheduler": ["save_config", "from_config"],
39
        "GlideDDIMScheduler": ["save_config", "from_config"],
40
        "DDIMScheduler": ["save_config", "from_config"],
Patrick von Platen's avatar
Patrick von Platen committed
41
42
    },
    "transformers": {
anton-l's avatar
anton-l committed
43
        "PreTrainedTokenizer": ["save_pretrained", "from_pretrained"],
44
        "PreTrainedTokenizerFast": ["save_pretrained", "from_pretrained"],
anton-l's avatar
anton-l committed
45
        "PreTrainedModel": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
46
47
48
    },
}

49
50
51
52
ALL_IMPORTABLE_CLASSES = {}
for library in LOADABLE_CLASSES:
    ALL_IMPORTABLE_CLASSES.update(LOADABLE_CLASSES[library])

Patrick von Platen's avatar
Patrick von Platen committed
53

Patrick von Platen's avatar
Patrick von Platen committed
54
class DiffusionPipeline(ConfigMixin):
Patrick von Platen's avatar
Patrick von Platen committed
55
56
57

    config_name = "model_index.json"

Patrick von Platen's avatar
up  
Patrick von Platen committed
58
    def register_modules(self, **kwargs):
Patrick von Platen's avatar
Patrick von Platen committed
59
60
61
        for name, module in kwargs.items():
            # retrive library
            library = module.__module__.split(".")[0]
patil-suraj's avatar
patil-suraj committed
62
63
64
65
            # if library is not in LOADABLE_CLASSES, then it is a custom module
            if library not in LOADABLE_CLASSES:
                library = module.__module__.split(".")[-1]

Patrick von Platen's avatar
Patrick von Platen committed
66
67
68
            # retrive class_name
            class_name = module.__class__.__name__

69
70
            register_dict = {name: (library, class_name)}

Patrick von Platen's avatar
Patrick von Platen committed
71
            # save model index config
72
            self.register(**register_dict)
Patrick von Platen's avatar
Patrick von Platen committed
73
74
75

            # set models
            setattr(self, name, module)
76

anton-l's avatar
Style  
anton-l committed
77
        register_dict = {"_module": self.__module__.split(".")[-1] + ".py"}
78
        self.register(**register_dict)
Patrick von Platen's avatar
Patrick von Platen committed
79
80
81
82

    def save_pretrained(self, save_directory: Union[str, os.PathLike]):
        self.save_config(save_directory)

83
        model_index_dict = self.config
Patrick von Platen's avatar
Patrick von Platen committed
84
        model_index_dict.pop("_class_name")
85
        model_index_dict.pop("_diffusers_version")
86
        model_index_dict.pop("_module")
Patrick von Platen's avatar
Patrick von Platen committed
87

anton-l's avatar
anton-l committed
88
89
90
        for pipeline_component_name in model_index_dict.keys():
            sub_model = getattr(self, pipeline_component_name)
            model_cls = sub_model.__class__
Patrick von Platen's avatar
Patrick von Platen committed
91
92

            save_method_name = None
anton-l's avatar
anton-l committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
            # search for the model's base class in LOADABLE_CLASSES
            for library_name, library_classes in LOADABLE_CLASSES.items():
                library = importlib.import_module(library_name)
                for base_class, save_load_methods in library_classes.items():
                    class_candidate = getattr(library, base_class)
                    if issubclass(model_cls, class_candidate):
                        # if we found a suitable base class in LOADABLE_CLASSES then grab its save method
                        save_method_name = save_load_methods[0]
                        break
                if save_method_name is not None:
                    break

            save_method = getattr(sub_model, save_method_name)
            save_method(os.path.join(save_directory, pipeline_component_name))
Patrick von Platen's avatar
Patrick von Platen committed
107
108
109

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
110
        r"""
Patrick von Platen's avatar
Patrick von Platen committed
111
        Add docstrings
112
113
114
115
116
117
        """
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", False)
        use_auth_token = kwargs.pop("use_auth_token", None)
Patrick von Platen's avatar
Patrick von Platen committed
118

patil-suraj's avatar
patil-suraj committed
119
        # 1. Download the checkpoints and configs
Patrick von Platen's avatar
Patrick von Platen committed
120
        # use snapshot download here to get it working from from_pretrained
Patrick von Platen's avatar
Patrick von Platen committed
121
        if not os.path.isdir(pretrained_model_name_or_path):
122
123
124
125
126
127
128
129
            cached_folder = snapshot_download(
                pretrained_model_name_or_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
            )
Patrick von Platen's avatar
Patrick von Platen committed
130
131
        else:
            cached_folder = pretrained_model_name_or_path
132

patil-suraj's avatar
patil-suraj committed
133
        config_dict = cls.get_config_dict(cached_folder)
134

patil-suraj's avatar
patil-suraj committed
135
        # 2. Get class name and module candidates to load custom models
patil-suraj's avatar
patil-suraj committed
136
        class_name_ = config_dict["_class_name"]
Patrick von Platen's avatar
fix  
Patrick von Platen committed
137
        module_candidate = config_dict["_module"]
patil-suraj's avatar
patil-suraj committed
138
        module_candidate_name = module_candidate.replace(".py", "")
Patrick von Platen's avatar
fix  
Patrick von Platen committed
139

patil-suraj's avatar
patil-suraj committed
140
        # 3. Load the pipeline class, if using custom module then load it from the hub
141
142
        # if we load from explicit class, let's use it
        if cls != DiffusionPipeline:
143
144
            pipeline_class = cls
        else:
145
146
            # else we need to load the correct module from the Hub
            class_name_ = config_dict["_class_name"]
Patrick von Platen's avatar
fix  
Patrick von Platen committed
147
            module = module_candidate
148
            pipeline_class = get_class_from_dynamic_module(cached_folder, module, class_name_, cached_folder)
149

150
        init_dict, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
151
152
153

        init_kwargs = {}

patil-suraj's avatar
patil-suraj committed
154
        # 4. Load each module in the pipeline
patil-suraj's avatar
patil-suraj committed
155
        for name, (library_name, class_name) in init_dict.items():
patil-suraj's avatar
patil-suraj committed
156
157
158
            # if the model is not in diffusers or transformers, we need to load it from the hub
            # assumes that it's a subclass of ModelMixin
            if library_name == module_candidate_name:
patil-suraj's avatar
patil-suraj committed
159
                class_obj = get_class_from_dynamic_module(cached_folder, module_candidate, class_name, cached_folder)
160
                # since it's not from a library, we need to check class candidates for all importable classes
161
162
                importable_classes = ALL_IMPORTABLE_CLASSES
                class_candidates = {c: class_obj for c in ALL_IMPORTABLE_CLASSES.keys()}
patil-suraj's avatar
patil-suraj committed
163
            else:
patil-suraj's avatar
patil-suraj committed
164
                # else we just import it from the library.
patil-suraj's avatar
patil-suraj committed
165
166
                library = importlib.import_module(library_name)
                class_obj = getattr(library, class_name)
167
                importable_classes = LOADABLE_CLASSES[library_name]
patil-suraj's avatar
patil-suraj committed
168
                class_candidates = {c: getattr(library, c) for c in importable_classes.keys()}
169

170
171
172
173
            load_method_name = None
            for class_name, class_candidate in class_candidates.items():
                if issubclass(class_obj, class_candidate):
                    load_method_name = importable_classes[class_name][1]
Patrick von Platen's avatar
Patrick von Platen committed
174
175
176

            load_method = getattr(class_obj, load_method_name)

patil-suraj's avatar
patil-suraj committed
177
            # check if the module is in a subdirectory
Patrick von Platen's avatar
Patrick von Platen committed
178
            if os.path.isdir(os.path.join(cached_folder, name)):
179
180
                loaded_sub_model = load_method(os.path.join(cached_folder, name))
            else:
patil-suraj's avatar
patil-suraj committed
181
                # else load from the root directory
182
                loaded_sub_model = load_method(cached_folder)
Patrick von Platen's avatar
Patrick von Platen committed
183

184
            init_kwargs[name] = loaded_sub_model  # UNet(...), # DiffusionSchedule(...)
Patrick von Platen's avatar
Patrick von Platen committed
185

patil-suraj's avatar
patil-suraj committed
186
        # 5. Instantiate the pipeline
187
        model = pipeline_class(**init_kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
188
        return model