scheduling_ddim.py 24.3 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 Stanford University Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16
17

# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
# and https://github.com/hojonathanho/diffusion

Patrick von Platen's avatar
Patrick von Platen committed
18
import math
19
from dataclasses import dataclass
20
from typing import List, Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
21

Patrick von Platen's avatar
Patrick von Platen committed
22
import numpy as np
23
import torch
Patrick von Platen's avatar
Patrick von Platen committed
24

25
from ..configuration_utils import ConfigMixin, register_to_config
Dhruv Nair's avatar
Dhruv Nair committed
26
27
from ..utils import BaseOutput
from ..utils.torch_utils import randn_tensor
Kashif Rasul's avatar
Kashif Rasul committed
28
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
29
30
31


@dataclass
32
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM
33
34
class DDIMSchedulerOutput(BaseOutput):
    """
35
    Output class for the scheduler's `step` function output.
36
37
38

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
39
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
40
41
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
42
            The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
43
44
45
46
47
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None
48
49


50
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
51
52
53
54
55
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
56
    """
Patrick von Platen's avatar
Patrick von Platen committed
57
58
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
59

60
61
62
63
64
65
66
    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
67
                     prevent singularities.
YiYi Xu's avatar
YiYi Xu committed
68
69
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
70
71
72

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
73
    """
YiYi Xu's avatar
YiYi Xu committed
74
    if alpha_transform_type == "cosine":
75

YiYi Xu's avatar
YiYi Xu committed
76
77
78
79
80
81
82
83
84
85
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
        raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
86

87
88
89
90
    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
91
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
92
    return torch.tensor(betas, dtype=torch.float32)
Patrick von Platen's avatar
Patrick von Platen committed
93
94


95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
def rescale_zero_terminal_snr(betas):
    """
    Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1)


    Args:
        betas (`torch.FloatTensor`):
            the betas that the scheduler is being initialized with.

    Returns:
        `torch.FloatTensor`: rescaled betas with zero terminal SNR
    """
    # Convert betas to alphas_bar_sqrt
    alphas = 1.0 - betas
    alphas_cumprod = torch.cumprod(alphas, dim=0)
    alphas_bar_sqrt = alphas_cumprod.sqrt()

    # Store old values.
    alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
    alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()

    # Shift so the last timestep is zero.
    alphas_bar_sqrt -= alphas_bar_sqrt_T

    # Scale so the first timestep is back to the old value.
    alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)

    # Convert alphas_bar_sqrt to betas
    alphas_bar = alphas_bar_sqrt**2  # Revert sqrt
    alphas = alphas_bar[1:] / alphas_bar[:-1]  # Revert cumprod
    alphas = torch.cat([alphas_bar[0:1], alphas])
    betas = 1 - alphas

    return betas


Patrick von Platen's avatar
Patrick von Platen committed
131
class DDIMScheduler(SchedulerMixin, ConfigMixin):
132
    """
133
134
    `DDIMScheduler` extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with
    non-Markovian guidance.
135

136
137
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
138
139

    Args:
140
141
142
143
144
145
146
147
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
148
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        clip_sample (`bool`, defaults to `True`):
            Clip the predicted sample for numerical stability.
        clip_sample_range (`float`, defaults to 1.0):
            The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
        set_alpha_to_one (`bool`, defaults to `True`):
            Each diffusion step uses the alphas product value at that step and at the previous one. For the final step
            there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
            otherwise it uses the alpha value at step 0.
        steps_offset (`int`, defaults to 0):
            An offset added to the inference steps. You can use a combination of `offset=1` and
            `set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable
            Diffusion.
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        thresholding (`bool`, defaults to `False`):
            Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
            as Stable Diffusion.
        dynamic_thresholding_ratio (`float`, defaults to 0.995):
            The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
        sample_max_value (`float`, defaults to 1.0):
            The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
        timestep_spacing (`str`, defaults to `"leading"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        rescale_betas_zero_snr (`bool`, defaults to `False`):
            Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
            dark samples instead of limiting it to samples with medium brightness. Loosely related to
180
            [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
181
182
    """

Kashif Rasul's avatar
Kashif Rasul committed
183
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
184
    order = 1
185

186
    @register_to_config
Patrick von Platen's avatar
Patrick von Platen committed
187
188
    def __init__(
        self,
189
190
191
192
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
193
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
194
195
        clip_sample: bool = True,
        set_alpha_to_one: bool = True,
196
        steps_offset: int = 0,
Suraj Patil's avatar
Suraj Patil committed
197
        prediction_type: str = "epsilon",
198
199
200
201
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        clip_sample_range: float = 1.0,
        sample_max_value: float = 1.0,
202
203
        timestep_spacing: str = "leading",
        rescale_betas_zero_snr: bool = False,
Patrick von Platen's avatar
Patrick von Platen committed
204
    ):
205
        if trained_betas is not None:
206
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
207
        elif beta_schedule == "linear":
208
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
209
210
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
211
212
213
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
Patrick von Platen's avatar
Patrick von Platen committed
214
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
215
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
216
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
217
218
219
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

220
221
222
223
        # Rescale for zero SNR
        if rescale_betas_zero_snr:
            self.betas = rescale_zero_terminal_snr(self.betas)

224
        self.alphas = 1.0 - self.betas
225
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
226
227
228

        # At every step in ddim, we are looking into the previous alphas_cumprod
        # For the final step, there is no previous alphas_cumprod because we are already at 0
229
        # `set_alpha_to_one` decides whether we set this parameter simply to one or
230
        # whether we use the final alpha of the "non-previous" one.
231
        self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
Patrick von Platen's avatar
Patrick von Platen committed
232

233
234
235
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

236
        # setable values
237
        self.num_inference_steps = None
238
        self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
Patrick von Platen's avatar
Patrick von Platen committed
239

240
241
242
243
244
245
    def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
246
247
248
249
            sample (`torch.FloatTensor`):
                The input sample.
            timestep (`int`, *optional*):
                The current timestep in the diffusion chain.
250
251

        Returns:
252
253
            `torch.FloatTensor`:
                A scaled input sample.
254
255
256
        """
        return sample

257
258
    def _get_variance(self, timestep, prev_timestep):
        alpha_prod_t = self.alphas_cumprod[timestep]
259
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
Patrick von Platen's avatar
Patrick von Platen committed
260
261
262
263
264
265
266
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)

        return variance

267
268
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
    def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
        """
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

        https://arxiv.org/abs/2205.11487
        """
        dtype = sample.dtype
        batch_size, channels, height, width = sample.shape

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
        sample = sample.reshape(batch_size, channels * height * width)

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
        s = torch.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]

        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

        sample = sample.reshape(batch_size, channels, height, width)
        sample = sample.to(dtype)

        return sample
301

302
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
303
        """
304
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
305
306
307

        Args:
            num_inference_steps (`int`):
308
                The number of diffusion steps used when generating samples with a pre-trained model.
309
        """
310
311
312
313
314
315
316
317

        if num_inference_steps > self.config.num_train_timesteps:
            raise ValueError(
                f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
                f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
                f" maximal {self.config.num_train_timesteps} timesteps."
            )

318
        self.num_inference_steps = num_inference_steps
319

320
321
322
323
324
325
326
327
328
        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
        if self.config.timestep_spacing == "linspace":
            timesteps = (
                np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps)
                .round()[::-1]
                .copy()
                .astype(np.int64)
            )
        elif self.config.timestep_spacing == "leading":
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
            step_ratio = self.config.num_train_timesteps // self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
            timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = self.config.num_train_timesteps / self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64)
            timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'leading' or 'trailing'."
            )

345
        self.timesteps = torch.from_numpy(timesteps).to(device)
346
347
348

    def step(
        self,
349
        model_output: torch.FloatTensor,
350
        timestep: int,
351
        sample: torch.FloatTensor,
Patrick von Platen's avatar
Patrick von Platen committed
352
353
        eta: float = 0.0,
        use_clipped_model_output: bool = False,
354
        generator=None,
355
        variance_noise: Optional[torch.FloatTensor] = None,
356
        return_dict: bool = True,
357
    ) -> Union[DDIMSchedulerOutput, Tuple]:
358
        """
359
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
360
361
362
        process from the learned model outputs (most often the predicted noise).

        Args:
363
364
365
366
            model_output (`torch.FloatTensor`):
                The direct output from learned diffusion model.
            timestep (`float`):
                The current discrete timestep in the diffusion chain.
367
            sample (`torch.FloatTensor`):
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
                A current instance of a sample created by the diffusion process.
            eta (`float`):
                The weight of noise for added noise in diffusion step.
            use_clipped_model_output (`bool`, defaults to `False`):
                If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary
                because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no
                clipping has happened, "corrected" `model_output` would coincide with the one provided as input and
                `use_clipped_model_output` has no effect.
            generator (`torch.Generator`, *optional*):
                A random number generator.
            variance_noise (`torch.FloatTensor`):
                Alternative to generating noise with `generator` by directly providing the noise for the variance
                itself. Useful for methods such as [`CycleDiffusion`].
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`.
383
384

        Returns:
385
            [`~schedulers.scheduling_utils.DDIMSchedulerOutput`] or `tuple`:
386
387
                If return_dict is `True`, [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
388
389

        """
390
391
392
393
394
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

Patrick von Platen's avatar
Patrick von Platen committed
395
396
397
398
399
        # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
        # Ideally, read DDIM paper in-detail understanding

        # Notation (<variable name> -> <name in paper>
        # - pred_noise_t -> e_theta(x_t, t)
400
        # - pred_original_sample -> f_theta(x_t, t) or x_0
Patrick von Platen's avatar
Patrick von Platen committed
401
402
        # - std_dev_t -> sigma_t
        # - eta -> η
403
        # - pred_sample_direction -> "direction pointing to x_t"
404
        # - pred_prev_sample -> "x_t-1"
Patrick von Platen's avatar
Patrick von Platen committed
405

406
        # 1. get previous step value (=t-1)
Nathan Lambert's avatar
Nathan Lambert committed
407
        prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
Patrick von Platen's avatar
Patrick von Platen committed
408
409

        # 2. compute alphas, betas
410
        alpha_prod_t = self.alphas_cumprod[timestep]
411
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
412

Patrick von Platen's avatar
Patrick von Platen committed
413
414
        beta_prod_t = 1 - alpha_prod_t

415
        # 3. compute predicted original sample from predicted noise also called
Patrick von Platen's avatar
Patrick von Platen committed
416
        # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
417
        if self.config.prediction_type == "epsilon":
Suraj Patil's avatar
Suraj Patil committed
418
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
419
            pred_epsilon = model_output
420
        elif self.config.prediction_type == "sample":
Suraj Patil's avatar
Suraj Patil committed
421
            pred_original_sample = model_output
422
            pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
423
        elif self.config.prediction_type == "v_prediction":
Suraj Patil's avatar
Suraj Patil committed
424
            pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
425
            pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
Suraj Patil's avatar
Suraj Patil committed
426
427
        else:
            raise ValueError(
428
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
Suraj Patil's avatar
Suraj Patil committed
429
430
                " `v_prediction`"
            )
Patrick von Platen's avatar
Patrick von Platen committed
431

432
        # 4. Clip or threshold "predicted x_0"
433
434
435
        if self.config.thresholding:
            pred_original_sample = self._threshold_sample(pred_original_sample)
        elif self.config.clip_sample:
436
437
438
439
            pred_original_sample = pred_original_sample.clamp(
                -self.config.clip_sample_range, self.config.clip_sample_range
            )

Patrick von Platen's avatar
Patrick von Platen committed
440
441
        # 5. compute variance: "sigma_t(η)" -> see formula (16)
        # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
442
        variance = self._get_variance(timestep, prev_timestep)
Patrick von Platen's avatar
Patrick von Platen committed
443
        std_dev_t = eta * variance ** (0.5)
Patrick von Platen's avatar
Patrick von Platen committed
444

Patrick von Platen's avatar
Patrick von Platen committed
445
        if use_clipped_model_output:
446
447
            # the pred_epsilon is always re-derived from the clipped x_0 in Glide
            pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
anton-l's avatar
anton-l committed
448

Patrick von Platen's avatar
Patrick von Platen committed
449
        # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
450
        pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * pred_epsilon
Patrick von Platen's avatar
Patrick von Platen committed
451
452

        # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
453
454
455
        prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction

        if eta > 0:
456
457
458
459
460
461
462
            if variance_noise is not None and generator is not None:
                raise ValueError(
                    "Cannot pass both generator and variance_noise. Please make sure that either `generator` or"
                    " `variance_noise` stays `None`."
                )

            if variance_noise is None:
463
                variance_noise = randn_tensor(
464
                    model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype
465
                )
466
            variance = std_dev_t * variance_noise
467
468

            prev_sample = prev_sample + variance
Patrick von Platen's avatar
Patrick von Platen committed
469

470
471
472
        if not return_dict:
            return (prev_sample,)

473
        return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
Patrick von Platen's avatar
Patrick von Platen committed
474

475
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
476
477
    def add_noise(
        self,
478
479
480
481
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.IntTensor,
    ) -> torch.FloatTensor:
482
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
483
        alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
484
        timesteps = timesteps.to(original_samples.device)
485

486
        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
487
488
489
490
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

491
        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
492
493
494
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
495
496
497
498

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
        return noisy_samples

499
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.get_velocity
500
501
502
503
    def get_velocity(
        self, sample: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor
    ) -> torch.FloatTensor:
        # Make sure alphas_cumprod and timestep have same device and dtype as sample
504
        alphas_cumprod = self.alphas_cumprod.to(device=sample.device, dtype=sample.dtype)
505
506
        timesteps = timesteps.to(sample.device)

507
        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
508
509
510
511
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(sample.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

512
        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
513
514
515
516
517
518
519
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)

        velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
        return velocity

Patrick von Platen's avatar
Patrick von Platen committed
520
    def __len__(self):
Nathan Lambert's avatar
Nathan Lambert committed
521
        return self.config.num_train_timesteps