scheduling_ddim.py 16.3 KB
Newer Older
1
# Copyright 2022 Stanford University Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16
17

# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
# and https://github.com/hojonathanho/diffusion

Patrick von Platen's avatar
Patrick von Platen committed
18
import math
19
from dataclasses import dataclass
20
from typing import Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
21

Patrick von Platen's avatar
Patrick von Platen committed
22
import numpy as np
23
import torch
Patrick von Platen's avatar
Patrick von Platen committed
24

25
from ..configuration_utils import ConfigMixin, register_to_config
26
from ..utils import _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS, BaseOutput
27
28
29
30
from .scheduling_utils import SchedulerMixin


@dataclass
31
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
class DDIMSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample (x_{0}) based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None
47
48


49
def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999) -> torch.Tensor:
50
    """
Patrick von Platen's avatar
Patrick von Platen committed
51
52
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
53

54
55
56
57
58
59
60
    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
61
                     prevent singularities.
62
63
64

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
65
    """
66

67
    def alpha_bar(time_step):
68
69
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

70
71
72
73
74
    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
75
    return torch.tensor(betas)
Patrick von Platen's avatar
Patrick von Platen committed
76
77


Patrick von Platen's avatar
Patrick von Platen committed
78
class DDIMScheduler(SchedulerMixin, ConfigMixin):
79
80
81
82
    """
    Denoising diffusion implicit models is a scheduler that extends the denoising procedure introduced in denoising
    diffusion probabilistic models (DDPMs) with non-Markovian guidance.

83
84
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
85
86
    [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
    [`~SchedulerMixin.from_pretrained`] functions.
87

88
89
90
91
92
93
94
95
96
    For more details, see the original paper: https://arxiv.org/abs/2010.02502

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
Nathan Lambert's avatar
Nathan Lambert committed
97
98
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
99
100
101
        clip_sample (`bool`, default `True`):
            option to clip predicted sample between -1 and 1 for numerical stability.
        set_alpha_to_one (`bool`, default `True`):
102
103
104
105
106
107
108
            each diffusion step uses the value of alphas product at that step and at the previous one. For the final
            step there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
            otherwise it uses the value of alpha at step 0.
        steps_offset (`int`, default `0`):
            an offset added to the inference steps. You can use a combination of `offset=1` and
            `set_alpha_to_one=False`, to make the last step use step 0 for the previous alpha product, as done in
            stable diffusion.
109
110
111

    """

112
    _compatibles = _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS.copy()
113

114
    @register_to_config
Patrick von Platen's avatar
Patrick von Platen committed
115
116
    def __init__(
        self,
117
118
119
120
121
122
123
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[np.ndarray] = None,
        clip_sample: bool = True,
        set_alpha_to_one: bool = True,
124
        steps_offset: int = 0,
Suraj Patil's avatar
Suraj Patil committed
125
        prediction_type: str = "epsilon",
Patrick von Platen's avatar
Patrick von Platen committed
126
    ):
127
        if trained_betas is not None:
128
            self.betas = torch.from_numpy(trained_betas)
129
        elif beta_schedule == "linear":
130
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
131
132
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
133
134
135
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
Patrick von Platen's avatar
Patrick von Platen committed
136
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
137
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
138
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
139
140
141
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

Suraj Patil's avatar
Suraj Patil committed
142
143
        self.prediction_type = prediction_type

144
        self.alphas = 1.0 - self.betas
145
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
146
147
148

        # At every step in ddim, we are looking into the previous alphas_cumprod
        # For the final step, there is no previous alphas_cumprod because we are already at 0
149
        # `set_alpha_to_one` decides whether we set this parameter simply to one or
150
        # whether we use the final alpha of the "non-previous" one.
151
        self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
Patrick von Platen's avatar
Patrick von Platen committed
152

153
154
155
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

156
        # setable values
157
        self.num_inference_steps = None
158
        self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
Patrick von Platen's avatar
Patrick von Platen committed
159

160
161
162
163
164
165
166
167
168
169
170
171
172
173
    def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
            sample (`torch.FloatTensor`): input sample
            timestep (`int`, optional): current timestep

        Returns:
            `torch.FloatTensor`: scaled input sample
        """
        return sample

174
175
    def _get_variance(self, timestep, prev_timestep):
        alpha_prod_t = self.alphas_cumprod[timestep]
176
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
Patrick von Platen's avatar
Patrick von Platen committed
177
178
179
180
181
182
183
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)

        return variance

184
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
185
186
187
188
189
190
191
        """
        Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
        """
192
        self.num_inference_steps = num_inference_steps
193
194
195
        step_ratio = self.config.num_train_timesteps // self.num_inference_steps
        # creates integer timesteps by multiplying by ratio
        # casting to int to avoid issues when num_inference_step is power of 3
196
        timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
197
        self.timesteps = torch.from_numpy(timesteps).to(device)
198
        self.timesteps += self.config.steps_offset
199
200
201

    def step(
        self,
202
        model_output: torch.FloatTensor,
203
        timestep: int,
204
        sample: torch.FloatTensor,
Patrick von Platen's avatar
Patrick von Platen committed
205
206
        eta: float = 0.0,
        use_clipped_model_output: bool = False,
207
        generator=None,
208
        variance_noise: Optional[torch.FloatTensor] = None,
209
        return_dict: bool = True,
210
    ) -> Union[DDIMSchedulerOutput, Tuple]:
211
212
213
214
215
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
216
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
217
            timestep (`int`): current discrete timestep in the diffusion chain.
218
            sample (`torch.FloatTensor`):
219
220
                current instance of sample being created by diffusion process.
            eta (`float`): weight of noise for added noise in diffusion step.
221
222
223
224
            use_clipped_model_output (`bool`): if `True`, compute "corrected" `model_output` from the clipped
                predicted original sample. Necessary because predicted original sample is clipped to [-1, 1] when
                `self.config.clip_sample` is `True`. If no clipping has happened, "corrected" `model_output` would
                coincide with the one provided as input and `use_clipped_model_output` will have not effect.
225
            generator: random number generator.
226
227
228
            variance_noise (`torch.FloatTensor`): instead of generating noise for the variance using `generator`, we
                can directly provide the noise for the variance itself. This is useful for methods such as
                CycleDiffusion. (https://arxiv.org/abs/2210.05559)
229
            return_dict (`bool`): option for returning tuple rather than DDIMSchedulerOutput class
230
231

        Returns:
232
233
            [`~schedulers.scheduling_utils.DDIMSchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.DDIMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
234
            returning a tuple, the first element is the sample tensor.
235
236

        """
237
238
239
240
241
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

Patrick von Platen's avatar
Patrick von Platen committed
242
243
244
245
246
        # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
        # Ideally, read DDIM paper in-detail understanding

        # Notation (<variable name> -> <name in paper>
        # - pred_noise_t -> e_theta(x_t, t)
247
        # - pred_original_sample -> f_theta(x_t, t) or x_0
Patrick von Platen's avatar
Patrick von Platen committed
248
249
        # - std_dev_t -> sigma_t
        # - eta -> η
250
        # - pred_sample_direction -> "direction pointing to x_t"
251
        # - pred_prev_sample -> "x_t-1"
Patrick von Platen's avatar
Patrick von Platen committed
252

253
        # 1. get previous step value (=t-1)
Nathan Lambert's avatar
Nathan Lambert committed
254
        prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
Patrick von Platen's avatar
Patrick von Platen committed
255
256

        # 2. compute alphas, betas
257
        alpha_prod_t = self.alphas_cumprod[timestep]
258
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
259

Patrick von Platen's avatar
Patrick von Platen committed
260
261
        beta_prod_t = 1 - alpha_prod_t

262
        # 3. compute predicted original sample from predicted noise also called
Patrick von Platen's avatar
Patrick von Platen committed
263
        # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
Suraj Patil's avatar
Suraj Patil committed
264
265
266
267
268
269
270
271
272
273
274
275
276
        if self.prediction_type == "epsilon":
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
        elif self.prediction_type == "sample":
            pred_original_sample = model_output
        elif self.prediction_type == "v_prediction":
            pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
            # predict V
            model_output = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
        else:
            raise ValueError(
                f"prediction_type given as {self.prediction_type} must be one of `epsilon`, `sample`, or"
                " `v_prediction`"
            )
Patrick von Platen's avatar
Patrick von Platen committed
277
278

        # 4. Clip "predicted x_0"
279
        if self.config.clip_sample:
280
            pred_original_sample = torch.clamp(pred_original_sample, -1, 1)
Patrick von Platen's avatar
Patrick von Platen committed
281
282
283

        # 5. compute variance: "sigma_t(η)" -> see formula (16)
        # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
284
        variance = self._get_variance(timestep, prev_timestep)
Patrick von Platen's avatar
Patrick von Platen committed
285
        std_dev_t = eta * variance ** (0.5)
Patrick von Platen's avatar
Patrick von Platen committed
286

Patrick von Platen's avatar
Patrick von Platen committed
287
288
289
        if use_clipped_model_output:
            # the model_output is always re-derived from the clipped x_0 in Glide
            model_output = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
anton-l's avatar
anton-l committed
290

Patrick von Platen's avatar
Patrick von Platen committed
291
        # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
Patrick von Platen's avatar
Patrick von Platen committed
292
        pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output
Patrick von Platen's avatar
Patrick von Platen committed
293
294

        # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
295
296
297
        prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction

        if eta > 0:
298
            # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072
Patrick von Platen's avatar
Patrick von Platen committed
299
            device = model_output.device
300
301
302
303
304
305
306
            if variance_noise is not None and generator is not None:
                raise ValueError(
                    "Cannot pass both generator and variance_noise. Please make sure that either `generator` or"
                    " `variance_noise` stays `None`."
                )

            if variance_noise is None:
307
308
309
310
311
312
313
314
                if device.type == "mps":
                    # randn does not work reproducibly on mps
                    variance_noise = torch.randn(model_output.shape, dtype=model_output.dtype, generator=generator)
                    variance_noise = variance_noise.to(device)
                else:
                    variance_noise = torch.randn(
                        model_output.shape, generator=generator, device=device, dtype=model_output.dtype
                    )
315
            variance = self._get_variance(timestep, prev_timestep) ** (0.5) * eta * variance_noise
316
317

            prev_sample = prev_sample + variance
Patrick von Platen's avatar
Patrick von Platen committed
318

319
320
321
        if not return_dict:
            return (prev_sample,)

322
        return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
Patrick von Platen's avatar
Patrick von Platen committed
323

324
325
    def add_noise(
        self,
326
327
328
329
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.IntTensor,
    ) -> torch.FloatTensor:
330
331
332
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
        self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
        timesteps = timesteps.to(original_samples.device)
333

334
        sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
335
336
337
338
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

339
        sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
340
341
342
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
343
344
345
346

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
        return noisy_samples

Patrick von Platen's avatar
Patrick von Platen committed
347
    def __len__(self):
Nathan Lambert's avatar
Nathan Lambert committed
348
        return self.config.num_train_timesteps