scheduling_ddim.py 23.7 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 Stanford University Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16
17

# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
# and https://github.com/hojonathanho/diffusion

Patrick von Platen's avatar
Patrick von Platen committed
18
import math
19
from dataclasses import dataclass
20
from typing import List, Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
21

Patrick von Platen's avatar
Patrick von Platen committed
22
import numpy as np
23
import torch
Patrick von Platen's avatar
Patrick von Platen committed
24

25
from ..configuration_utils import ConfigMixin, register_to_config
26
from ..utils import BaseOutput, randn_tensor
Kashif Rasul's avatar
Kashif Rasul committed
27
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
28
29
30


@dataclass
31
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
class DDIMSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample (x_{0}) based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None
47
48


49
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
50
def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999) -> torch.Tensor:
51
    """
Patrick von Platen's avatar
Patrick von Platen committed
52
53
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
54

55
56
57
58
59
60
61
    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
62
                     prevent singularities.
63
64
65

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
66
    """
67

68
    def alpha_bar(time_step):
69
70
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

71
72
73
74
75
    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
76
    return torch.tensor(betas, dtype=torch.float32)
Patrick von Platen's avatar
Patrick von Platen committed
77
78


79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
def rescale_zero_terminal_snr(betas):
    """
    Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1)


    Args:
        betas (`torch.FloatTensor`):
            the betas that the scheduler is being initialized with.

    Returns:
        `torch.FloatTensor`: rescaled betas with zero terminal SNR
    """
    # Convert betas to alphas_bar_sqrt
    alphas = 1.0 - betas
    alphas_cumprod = torch.cumprod(alphas, dim=0)
    alphas_bar_sqrt = alphas_cumprod.sqrt()

    # Store old values.
    alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
    alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()

    # Shift so the last timestep is zero.
    alphas_bar_sqrt -= alphas_bar_sqrt_T

    # Scale so the first timestep is back to the old value.
    alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)

    # Convert alphas_bar_sqrt to betas
    alphas_bar = alphas_bar_sqrt**2  # Revert sqrt
    alphas = alphas_bar[1:] / alphas_bar[:-1]  # Revert cumprod
    alphas = torch.cat([alphas_bar[0:1], alphas])
    betas = 1 - alphas

    return betas


Patrick von Platen's avatar
Patrick von Platen committed
115
class DDIMScheduler(SchedulerMixin, ConfigMixin):
116
117
118
119
    """
    Denoising diffusion implicit models is a scheduler that extends the denoising procedure introduced in denoising
    diffusion probabilistic models (DDPMs) with non-Markovian guidance.

120
121
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
122
123
    [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
    [`~SchedulerMixin.from_pretrained`] functions.
124

125
126
127
128
129
130
131
132
133
    For more details, see the original paper: https://arxiv.org/abs/2010.02502

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
Nathan Lambert's avatar
Nathan Lambert committed
134
135
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
136
        clip_sample (`bool`, default `True`):
137
138
139
            option to clip predicted sample for numerical stability.
        clip_sample_range (`float`, default `1.0`):
            the maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
140
        set_alpha_to_one (`bool`, default `True`):
141
142
143
144
145
146
147
            each diffusion step uses the value of alphas product at that step and at the previous one. For the final
            step there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
            otherwise it uses the value of alpha at step 0.
        steps_offset (`int`, default `0`):
            an offset added to the inference steps. You can use a combination of `offset=1` and
            `set_alpha_to_one=False`, to make the last step use step 0 for the previous alpha product, as done in
            stable diffusion.
148
149
150
151
        prediction_type (`str`, default `epsilon`, optional):
            prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
            process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
            https://imagen.research.google/video/paper.pdf)
152
153
154
155
156
157
158
159
160
        thresholding (`bool`, default `False`):
            whether to use the "dynamic thresholding" method (introduced by Imagen, https://arxiv.org/abs/2205.11487).
            Note that the thresholding method is unsuitable for latent-space diffusion models (such as
            stable-diffusion).
        dynamic_thresholding_ratio (`float`, default `0.995`):
            the ratio for the dynamic thresholding method. Default is `0.995`, the same as Imagen
            (https://arxiv.org/abs/2205.11487). Valid only when `thresholding=True`.
        sample_max_value (`float`, default `1.0`):
            the threshold value for dynamic thresholding. Valid only when `thresholding=True`.
161
162
163
164
165
166
167
168
        timestep_spacing (`str`, default `"leading"`):
            The way the timesteps should be scaled. Refer to Table 2. of [Common Diffusion Noise Schedules and Sample
            Steps are Flawed](https://arxiv.org/abs/2305.08891) for more information.
        rescale_betas_zero_snr (`bool`, default `False`):
            whether to rescale the betas to have zero terminal SNR (proposed by https://arxiv.org/pdf/2305.08891.pdf).
            This can enable the model to generate very bright and dark samples instead of limiting it to samples with
            medium brightness. Loosely related to
            [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
169
170
    """

Kashif Rasul's avatar
Kashif Rasul committed
171
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
172
    order = 1
173

174
    @register_to_config
Patrick von Platen's avatar
Patrick von Platen committed
175
176
    def __init__(
        self,
177
178
179
180
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
181
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
182
183
        clip_sample: bool = True,
        set_alpha_to_one: bool = True,
184
        steps_offset: int = 0,
Suraj Patil's avatar
Suraj Patil committed
185
        prediction_type: str = "epsilon",
186
187
188
189
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        clip_sample_range: float = 1.0,
        sample_max_value: float = 1.0,
190
191
        timestep_spacing: str = "leading",
        rescale_betas_zero_snr: bool = False,
Patrick von Platen's avatar
Patrick von Platen committed
192
    ):
193
        if trained_betas is not None:
194
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
195
        elif beta_schedule == "linear":
196
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
197
198
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
199
200
201
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
Patrick von Platen's avatar
Patrick von Platen committed
202
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
203
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
204
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
205
206
207
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

208
209
210
211
        # Rescale for zero SNR
        if rescale_betas_zero_snr:
            self.betas = rescale_zero_terminal_snr(self.betas)

212
        self.alphas = 1.0 - self.betas
213
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
214
215
216

        # At every step in ddim, we are looking into the previous alphas_cumprod
        # For the final step, there is no previous alphas_cumprod because we are already at 0
217
        # `set_alpha_to_one` decides whether we set this parameter simply to one or
218
        # whether we use the final alpha of the "non-previous" one.
219
        self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
Patrick von Platen's avatar
Patrick von Platen committed
220

221
222
223
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

224
        # setable values
225
        self.num_inference_steps = None
226
        self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
Patrick von Platen's avatar
Patrick von Platen committed
227

228
229
230
231
232
233
234
235
236
237
238
239
240
241
    def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
            sample (`torch.FloatTensor`): input sample
            timestep (`int`, optional): current timestep

        Returns:
            `torch.FloatTensor`: scaled input sample
        """
        return sample

242
243
    def _get_variance(self, timestep, prev_timestep):
        alpha_prod_t = self.alphas_cumprod[timestep]
244
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
Patrick von Platen's avatar
Patrick von Platen committed
245
246
247
248
249
250
251
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)

        return variance

252
253
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
    def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
        """
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

        https://arxiv.org/abs/2205.11487
        """
        dtype = sample.dtype
        batch_size, channels, height, width = sample.shape

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
        sample = sample.reshape(batch_size, channels * height * width)

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
        s = torch.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]

        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

        sample = sample.reshape(batch_size, channels, height, width)
        sample = sample.to(dtype)

        return sample
286

287
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
288
289
290
291
292
293
294
        """
        Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
        """
295
296
297
298
299
300
301
302

        if num_inference_steps > self.config.num_train_timesteps:
            raise ValueError(
                f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
                f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
                f" maximal {self.config.num_train_timesteps} timesteps."
            )

303
        self.num_inference_steps = num_inference_steps
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

        # "leading" and "trailing" corresponds to annotation of Table 1. of https://arxiv.org/abs/2305.08891
        if self.config.timestep_spacing == "leading":
            step_ratio = self.config.num_train_timesteps // self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
            timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = self.config.num_train_timesteps / self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64)
            timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'leading' or 'trailing'."
            )

323
        self.timesteps = torch.from_numpy(timesteps).to(device)
324
325
326

    def step(
        self,
327
        model_output: torch.FloatTensor,
328
        timestep: int,
329
        sample: torch.FloatTensor,
Patrick von Platen's avatar
Patrick von Platen committed
330
331
        eta: float = 0.0,
        use_clipped_model_output: bool = False,
332
        generator=None,
333
        variance_noise: Optional[torch.FloatTensor] = None,
334
        return_dict: bool = True,
335
    ) -> Union[DDIMSchedulerOutput, Tuple]:
336
337
338
339
340
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
341
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
342
            timestep (`int`): current discrete timestep in the diffusion chain.
343
            sample (`torch.FloatTensor`):
344
345
                current instance of sample being created by diffusion process.
            eta (`float`): weight of noise for added noise in diffusion step.
346
347
348
349
            use_clipped_model_output (`bool`): if `True`, compute "corrected" `model_output` from the clipped
                predicted original sample. Necessary because predicted original sample is clipped to [-1, 1] when
                `self.config.clip_sample` is `True`. If no clipping has happened, "corrected" `model_output` would
                coincide with the one provided as input and `use_clipped_model_output` will have not effect.
350
            generator: random number generator.
351
352
353
            variance_noise (`torch.FloatTensor`): instead of generating noise for the variance using `generator`, we
                can directly provide the noise for the variance itself. This is useful for methods such as
                CycleDiffusion. (https://arxiv.org/abs/2210.05559)
354
            return_dict (`bool`): option for returning tuple rather than DDIMSchedulerOutput class
355
356

        Returns:
357
358
            [`~schedulers.scheduling_utils.DDIMSchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.DDIMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
359
            returning a tuple, the first element is the sample tensor.
360
361

        """
362
363
364
365
366
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

Patrick von Platen's avatar
Patrick von Platen committed
367
368
369
370
371
        # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
        # Ideally, read DDIM paper in-detail understanding

        # Notation (<variable name> -> <name in paper>
        # - pred_noise_t -> e_theta(x_t, t)
372
        # - pred_original_sample -> f_theta(x_t, t) or x_0
Patrick von Platen's avatar
Patrick von Platen committed
373
374
        # - std_dev_t -> sigma_t
        # - eta -> η
375
        # - pred_sample_direction -> "direction pointing to x_t"
376
        # - pred_prev_sample -> "x_t-1"
Patrick von Platen's avatar
Patrick von Platen committed
377

378
        # 1. get previous step value (=t-1)
Nathan Lambert's avatar
Nathan Lambert committed
379
        prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
Patrick von Platen's avatar
Patrick von Platen committed
380
381

        # 2. compute alphas, betas
382
        alpha_prod_t = self.alphas_cumprod[timestep]
383
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
384

Patrick von Platen's avatar
Patrick von Platen committed
385
386
        beta_prod_t = 1 - alpha_prod_t

387
        # 3. compute predicted original sample from predicted noise also called
Patrick von Platen's avatar
Patrick von Platen committed
388
        # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
389
        if self.config.prediction_type == "epsilon":
Suraj Patil's avatar
Suraj Patil committed
390
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
391
            pred_epsilon = model_output
392
        elif self.config.prediction_type == "sample":
Suraj Patil's avatar
Suraj Patil committed
393
            pred_original_sample = model_output
394
            pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
395
        elif self.config.prediction_type == "v_prediction":
Suraj Patil's avatar
Suraj Patil committed
396
            pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
397
            pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
Suraj Patil's avatar
Suraj Patil committed
398
399
        else:
            raise ValueError(
400
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
Suraj Patil's avatar
Suraj Patil committed
401
402
                " `v_prediction`"
            )
Patrick von Platen's avatar
Patrick von Platen committed
403

404
        # 4. Clip or threshold "predicted x_0"
405
406
407
        if self.config.thresholding:
            pred_original_sample = self._threshold_sample(pred_original_sample)
        elif self.config.clip_sample:
408
409
410
411
            pred_original_sample = pred_original_sample.clamp(
                -self.config.clip_sample_range, self.config.clip_sample_range
            )

Patrick von Platen's avatar
Patrick von Platen committed
412
413
        # 5. compute variance: "sigma_t(η)" -> see formula (16)
        # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
414
        variance = self._get_variance(timestep, prev_timestep)
Patrick von Platen's avatar
Patrick von Platen committed
415
        std_dev_t = eta * variance ** (0.5)
Patrick von Platen's avatar
Patrick von Platen committed
416

Patrick von Platen's avatar
Patrick von Platen committed
417
        if use_clipped_model_output:
418
419
            # the pred_epsilon is always re-derived from the clipped x_0 in Glide
            pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
anton-l's avatar
anton-l committed
420

Patrick von Platen's avatar
Patrick von Platen committed
421
        # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
422
        pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * pred_epsilon
Patrick von Platen's avatar
Patrick von Platen committed
423
424

        # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
425
426
427
        prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction

        if eta > 0:
428
429
430
431
432
433
434
            if variance_noise is not None and generator is not None:
                raise ValueError(
                    "Cannot pass both generator and variance_noise. Please make sure that either `generator` or"
                    " `variance_noise` stays `None`."
                )

            if variance_noise is None:
435
                variance_noise = randn_tensor(
436
                    model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype
437
                )
438
            variance = std_dev_t * variance_noise
439
440

            prev_sample = prev_sample + variance
Patrick von Platen's avatar
Patrick von Platen committed
441

442
443
444
        if not return_dict:
            return (prev_sample,)

445
        return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
Patrick von Platen's avatar
Patrick von Platen committed
446

447
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
448
449
    def add_noise(
        self,
450
451
452
453
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.IntTensor,
    ) -> torch.FloatTensor:
454
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
455
        alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
456
        timesteps = timesteps.to(original_samples.device)
457

458
        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
459
460
461
462
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

463
        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
464
465
466
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
467
468
469
470

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
        return noisy_samples

471
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.get_velocity
472
473
474
475
    def get_velocity(
        self, sample: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor
    ) -> torch.FloatTensor:
        # Make sure alphas_cumprod and timestep have same device and dtype as sample
476
        alphas_cumprod = self.alphas_cumprod.to(device=sample.device, dtype=sample.dtype)
477
478
        timesteps = timesteps.to(sample.device)

479
        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
480
481
482
483
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(sample.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

484
        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
485
486
487
488
489
490
491
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)

        velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
        return velocity

Patrick von Platen's avatar
Patrick von Platen committed
492
    def __len__(self):
Nathan Lambert's avatar
Nathan Lambert committed
493
        return self.config.num_train_timesteps