scheduling_ddim.py 24.3 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 Stanford University Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16
17

# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
# and https://github.com/hojonathanho/diffusion

Patrick von Platen's avatar
Patrick von Platen committed
18
import math
19
from dataclasses import dataclass
20
from typing import List, Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
21

Patrick von Platen's avatar
Patrick von Platen committed
22
import numpy as np
23
import torch
Patrick von Platen's avatar
Patrick von Platen committed
24

25
from ..configuration_utils import ConfigMixin, register_to_config
26
from ..utils import BaseOutput, randn_tensor
Kashif Rasul's avatar
Kashif Rasul committed
27
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
28
29
30


@dataclass
31
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM
32
33
class DDIMSchedulerOutput(BaseOutput):
    """
34
    Output class for the scheduler's `step` function output.
35
36
37

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
38
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
39
40
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
41
            The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
42
43
44
45
46
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None
47
48


49
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
50
51
52
53
54
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
55
    """
Patrick von Platen's avatar
Patrick von Platen committed
56
57
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
58

59
60
61
62
63
64
65
    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
66
                     prevent singularities.
YiYi Xu's avatar
YiYi Xu committed
67
68
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
69
70
71

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
72
    """
YiYi Xu's avatar
YiYi Xu committed
73
    if alpha_transform_type == "cosine":
74

YiYi Xu's avatar
YiYi Xu committed
75
76
77
78
79
80
81
82
83
84
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
        raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
85

86
87
88
89
    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
90
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
91
    return torch.tensor(betas, dtype=torch.float32)
Patrick von Platen's avatar
Patrick von Platen committed
92
93


94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
def rescale_zero_terminal_snr(betas):
    """
    Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1)


    Args:
        betas (`torch.FloatTensor`):
            the betas that the scheduler is being initialized with.

    Returns:
        `torch.FloatTensor`: rescaled betas with zero terminal SNR
    """
    # Convert betas to alphas_bar_sqrt
    alphas = 1.0 - betas
    alphas_cumprod = torch.cumprod(alphas, dim=0)
    alphas_bar_sqrt = alphas_cumprod.sqrt()

    # Store old values.
    alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
    alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()

    # Shift so the last timestep is zero.
    alphas_bar_sqrt -= alphas_bar_sqrt_T

    # Scale so the first timestep is back to the old value.
    alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)

    # Convert alphas_bar_sqrt to betas
    alphas_bar = alphas_bar_sqrt**2  # Revert sqrt
    alphas = alphas_bar[1:] / alphas_bar[:-1]  # Revert cumprod
    alphas = torch.cat([alphas_bar[0:1], alphas])
    betas = 1 - alphas

    return betas


Patrick von Platen's avatar
Patrick von Platen committed
130
class DDIMScheduler(SchedulerMixin, ConfigMixin):
131
    """
132
133
    `DDIMScheduler` extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with
    non-Markovian guidance.
134

135
136
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
137
138

    Args:
139
140
141
142
143
144
145
146
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
147
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        clip_sample (`bool`, defaults to `True`):
            Clip the predicted sample for numerical stability.
        clip_sample_range (`float`, defaults to 1.0):
            The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
        set_alpha_to_one (`bool`, defaults to `True`):
            Each diffusion step uses the alphas product value at that step and at the previous one. For the final step
            there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
            otherwise it uses the alpha value at step 0.
        steps_offset (`int`, defaults to 0):
            An offset added to the inference steps. You can use a combination of `offset=1` and
            `set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable
            Diffusion.
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        thresholding (`bool`, defaults to `False`):
            Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
            as Stable Diffusion.
        dynamic_thresholding_ratio (`float`, defaults to 0.995):
            The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
        sample_max_value (`float`, defaults to 1.0):
            The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
        timestep_spacing (`str`, defaults to `"leading"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        rescale_betas_zero_snr (`bool`, defaults to `False`):
            Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
            dark samples instead of limiting it to samples with medium brightness. Loosely related to
179
            [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
180
181
    """

Kashif Rasul's avatar
Kashif Rasul committed
182
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
183
    order = 1
184

185
    @register_to_config
Patrick von Platen's avatar
Patrick von Platen committed
186
187
    def __init__(
        self,
188
189
190
191
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
192
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
193
194
        clip_sample: bool = True,
        set_alpha_to_one: bool = True,
195
        steps_offset: int = 0,
Suraj Patil's avatar
Suraj Patil committed
196
        prediction_type: str = "epsilon",
197
198
199
200
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        clip_sample_range: float = 1.0,
        sample_max_value: float = 1.0,
201
202
        timestep_spacing: str = "leading",
        rescale_betas_zero_snr: bool = False,
Patrick von Platen's avatar
Patrick von Platen committed
203
    ):
204
        if trained_betas is not None:
205
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
206
        elif beta_schedule == "linear":
207
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
208
209
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
210
211
212
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
Patrick von Platen's avatar
Patrick von Platen committed
213
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
214
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
215
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
216
217
218
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

219
220
221
222
        # Rescale for zero SNR
        if rescale_betas_zero_snr:
            self.betas = rescale_zero_terminal_snr(self.betas)

223
        self.alphas = 1.0 - self.betas
224
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
225
226
227

        # At every step in ddim, we are looking into the previous alphas_cumprod
        # For the final step, there is no previous alphas_cumprod because we are already at 0
228
        # `set_alpha_to_one` decides whether we set this parameter simply to one or
229
        # whether we use the final alpha of the "non-previous" one.
230
        self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
Patrick von Platen's avatar
Patrick von Platen committed
231

232
233
234
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

235
        # setable values
236
        self.num_inference_steps = None
237
        self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
Patrick von Platen's avatar
Patrick von Platen committed
238

239
240
241
242
243
244
    def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
245
246
247
248
            sample (`torch.FloatTensor`):
                The input sample.
            timestep (`int`, *optional*):
                The current timestep in the diffusion chain.
249
250

        Returns:
251
252
            `torch.FloatTensor`:
                A scaled input sample.
253
254
255
        """
        return sample

256
257
    def _get_variance(self, timestep, prev_timestep):
        alpha_prod_t = self.alphas_cumprod[timestep]
258
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
Patrick von Platen's avatar
Patrick von Platen committed
259
260
261
262
263
264
265
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)

        return variance

266
267
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
    def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
        """
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

        https://arxiv.org/abs/2205.11487
        """
        dtype = sample.dtype
        batch_size, channels, height, width = sample.shape

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
        sample = sample.reshape(batch_size, channels * height * width)

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
        s = torch.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]

        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

        sample = sample.reshape(batch_size, channels, height, width)
        sample = sample.to(dtype)

        return sample
300

301
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
302
        """
303
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
304
305
306

        Args:
            num_inference_steps (`int`):
307
                The number of diffusion steps used when generating samples with a pre-trained model.
308
        """
309
310
311
312
313
314
315
316

        if num_inference_steps > self.config.num_train_timesteps:
            raise ValueError(
                f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
                f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
                f" maximal {self.config.num_train_timesteps} timesteps."
            )

317
        self.num_inference_steps = num_inference_steps
318

319
320
321
322
323
324
325
326
327
        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
        if self.config.timestep_spacing == "linspace":
            timesteps = (
                np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps)
                .round()[::-1]
                .copy()
                .astype(np.int64)
            )
        elif self.config.timestep_spacing == "leading":
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
            step_ratio = self.config.num_train_timesteps // self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
            timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = self.config.num_train_timesteps / self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64)
            timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'leading' or 'trailing'."
            )

344
        self.timesteps = torch.from_numpy(timesteps).to(device)
345
346
347

    def step(
        self,
348
        model_output: torch.FloatTensor,
349
        timestep: int,
350
        sample: torch.FloatTensor,
Patrick von Platen's avatar
Patrick von Platen committed
351
352
        eta: float = 0.0,
        use_clipped_model_output: bool = False,
353
        generator=None,
354
        variance_noise: Optional[torch.FloatTensor] = None,
355
        return_dict: bool = True,
356
    ) -> Union[DDIMSchedulerOutput, Tuple]:
357
        """
358
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
359
360
361
        process from the learned model outputs (most often the predicted noise).

        Args:
362
363
364
365
            model_output (`torch.FloatTensor`):
                The direct output from learned diffusion model.
            timestep (`float`):
                The current discrete timestep in the diffusion chain.
366
            sample (`torch.FloatTensor`):
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
                A current instance of a sample created by the diffusion process.
            eta (`float`):
                The weight of noise for added noise in diffusion step.
            use_clipped_model_output (`bool`, defaults to `False`):
                If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary
                because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no
                clipping has happened, "corrected" `model_output` would coincide with the one provided as input and
                `use_clipped_model_output` has no effect.
            generator (`torch.Generator`, *optional*):
                A random number generator.
            variance_noise (`torch.FloatTensor`):
                Alternative to generating noise with `generator` by directly providing the noise for the variance
                itself. Useful for methods such as [`CycleDiffusion`].
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`.
382
383

        Returns:
384
            [`~schedulers.scheduling_utils.DDIMSchedulerOutput`] or `tuple`:
385
386
                If return_dict is `True`, [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
387
388

        """
389
390
391
392
393
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

Patrick von Platen's avatar
Patrick von Platen committed
394
395
396
397
398
        # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
        # Ideally, read DDIM paper in-detail understanding

        # Notation (<variable name> -> <name in paper>
        # - pred_noise_t -> e_theta(x_t, t)
399
        # - pred_original_sample -> f_theta(x_t, t) or x_0
Patrick von Platen's avatar
Patrick von Platen committed
400
401
        # - std_dev_t -> sigma_t
        # - eta -> η
402
        # - pred_sample_direction -> "direction pointing to x_t"
403
        # - pred_prev_sample -> "x_t-1"
Patrick von Platen's avatar
Patrick von Platen committed
404

405
        # 1. get previous step value (=t-1)
Nathan Lambert's avatar
Nathan Lambert committed
406
        prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
Patrick von Platen's avatar
Patrick von Platen committed
407
408

        # 2. compute alphas, betas
409
        alpha_prod_t = self.alphas_cumprod[timestep]
410
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
411

Patrick von Platen's avatar
Patrick von Platen committed
412
413
        beta_prod_t = 1 - alpha_prod_t

414
        # 3. compute predicted original sample from predicted noise also called
Patrick von Platen's avatar
Patrick von Platen committed
415
        # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
416
        if self.config.prediction_type == "epsilon":
Suraj Patil's avatar
Suraj Patil committed
417
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
418
            pred_epsilon = model_output
419
        elif self.config.prediction_type == "sample":
Suraj Patil's avatar
Suraj Patil committed
420
            pred_original_sample = model_output
421
            pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
422
        elif self.config.prediction_type == "v_prediction":
Suraj Patil's avatar
Suraj Patil committed
423
            pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
424
            pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
Suraj Patil's avatar
Suraj Patil committed
425
426
        else:
            raise ValueError(
427
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
Suraj Patil's avatar
Suraj Patil committed
428
429
                " `v_prediction`"
            )
Patrick von Platen's avatar
Patrick von Platen committed
430

431
        # 4. Clip or threshold "predicted x_0"
432
433
434
        if self.config.thresholding:
            pred_original_sample = self._threshold_sample(pred_original_sample)
        elif self.config.clip_sample:
435
436
437
438
            pred_original_sample = pred_original_sample.clamp(
                -self.config.clip_sample_range, self.config.clip_sample_range
            )

Patrick von Platen's avatar
Patrick von Platen committed
439
440
        # 5. compute variance: "sigma_t(η)" -> see formula (16)
        # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
441
        variance = self._get_variance(timestep, prev_timestep)
Patrick von Platen's avatar
Patrick von Platen committed
442
        std_dev_t = eta * variance ** (0.5)
Patrick von Platen's avatar
Patrick von Platen committed
443

Patrick von Platen's avatar
Patrick von Platen committed
444
        if use_clipped_model_output:
445
446
            # the pred_epsilon is always re-derived from the clipped x_0 in Glide
            pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
anton-l's avatar
anton-l committed
447

Patrick von Platen's avatar
Patrick von Platen committed
448
        # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
449
        pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * pred_epsilon
Patrick von Platen's avatar
Patrick von Platen committed
450
451

        # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
452
453
454
        prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction

        if eta > 0:
455
456
457
458
459
460
461
            if variance_noise is not None and generator is not None:
                raise ValueError(
                    "Cannot pass both generator and variance_noise. Please make sure that either `generator` or"
                    " `variance_noise` stays `None`."
                )

            if variance_noise is None:
462
                variance_noise = randn_tensor(
463
                    model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype
464
                )
465
            variance = std_dev_t * variance_noise
466
467

            prev_sample = prev_sample + variance
Patrick von Platen's avatar
Patrick von Platen committed
468

469
470
471
        if not return_dict:
            return (prev_sample,)

472
        return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
Patrick von Platen's avatar
Patrick von Platen committed
473

474
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
475
476
    def add_noise(
        self,
477
478
479
480
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.IntTensor,
    ) -> torch.FloatTensor:
481
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
482
        alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
483
        timesteps = timesteps.to(original_samples.device)
484

485
        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
486
487
488
489
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

490
        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
491
492
493
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
494
495
496
497

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
        return noisy_samples

498
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.get_velocity
499
500
501
502
    def get_velocity(
        self, sample: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor
    ) -> torch.FloatTensor:
        # Make sure alphas_cumprod and timestep have same device and dtype as sample
503
        alphas_cumprod = self.alphas_cumprod.to(device=sample.device, dtype=sample.dtype)
504
505
        timesteps = timesteps.to(sample.device)

506
        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
507
508
509
510
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(sample.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

511
        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
512
513
514
515
516
517
518
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)

        velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
        return velocity

Patrick von Platen's avatar
Patrick von Platen committed
519
    def __len__(self):
Nathan Lambert's avatar
Nathan Lambert committed
520
        return self.config.num_train_timesteps