"tools/vscode:/vscode.git/clone" did not exist on "a984872dfee71a553eb90c7eb13c9a5609d041c0"
scheduling_ddim.py 14.2 KB
Newer Older
1
# Copyright 2022 Stanford University Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16
17

# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
# and https://github.com/hojonathanho/diffusion

Patrick von Platen's avatar
Patrick von Platen committed
18
import math
19
from dataclasses import dataclass
20
from typing import Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
21

Patrick von Platen's avatar
Patrick von Platen committed
22
import numpy as np
23
import torch
Patrick von Platen's avatar
Patrick von Platen committed
24

25
from ..configuration_utils import ConfigMixin, register_to_config
26
from ..utils import BaseOutput, deprecate
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from .scheduling_utils import SchedulerMixin


@dataclass
class DDIMSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample (x_{0}) based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None
46
47


48
def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999) -> torch.Tensor:
49
    """
Patrick von Platen's avatar
Patrick von Platen committed
50
51
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
52

53
54
55
56
57
58
59
    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
60
                     prevent singularities.
61
62
63

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
64
    """
65

66
    def alpha_bar(time_step):
67
68
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

69
70
71
72
73
    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
74
    return torch.tensor(betas)
Patrick von Platen's avatar
Patrick von Platen committed
75
76


Patrick von Platen's avatar
Patrick von Platen committed
77
class DDIMScheduler(SchedulerMixin, ConfigMixin):
78
79
80
81
    """
    Denoising diffusion implicit models is a scheduler that extends the denoising procedure introduced in denoising
    diffusion probabilistic models (DDPMs) with non-Markovian guidance.

82
83
84
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
    [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and
Nathan Lambert's avatar
Nathan Lambert committed
85
    [`~ConfigMixin.from_config`] functions.
86

87
88
89
90
91
92
93
94
95
    For more details, see the original paper: https://arxiv.org/abs/2010.02502

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
Nathan Lambert's avatar
Nathan Lambert committed
96
97
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
98
99
100
        clip_sample (`bool`, default `True`):
            option to clip predicted sample between -1 and 1 for numerical stability.
        set_alpha_to_one (`bool`, default `True`):
101
102
103
104
105
106
107
            each diffusion step uses the value of alphas product at that step and at the previous one. For the final
            step there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
            otherwise it uses the value of alpha at step 0.
        steps_offset (`int`, default `0`):
            an offset added to the inference steps. You can use a combination of `offset=1` and
            `set_alpha_to_one=False`, to make the last step use step 0 for the previous alpha product, as done in
            stable diffusion.
108
109
110

    """

111
    @register_to_config
Patrick von Platen's avatar
Patrick von Platen committed
112
113
    def __init__(
        self,
114
115
116
117
118
119
120
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[np.ndarray] = None,
        clip_sample: bool = True,
        set_alpha_to_one: bool = True,
121
        steps_offset: int = 0,
Patrick von Platen's avatar
Patrick von Platen committed
122
    ):
123
        if trained_betas is not None:
124
            self.betas = torch.from_numpy(trained_betas)
125
        elif beta_schedule == "linear":
126
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
127
128
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
129
130
131
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
Patrick von Platen's avatar
Patrick von Platen committed
132
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
133
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
134
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
135
136
137
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

138
        self.alphas = 1.0 - self.betas
139
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
140
141
142

        # At every step in ddim, we are looking into the previous alphas_cumprod
        # For the final step, there is no previous alphas_cumprod because we are already at 0
143
        # `set_alpha_to_one` decides whether we set this parameter simply to one or
144
        # whether we use the final alpha of the "non-previous" one.
145
        self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
Patrick von Platen's avatar
Patrick von Platen committed
146

147
148
149
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

150
        # setable values
151
        self.num_inference_steps = None
152
        self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
Patrick von Platen's avatar
Patrick von Platen committed
153

154
155
156
157
158
159
160
161
162
163
164
165
166
167
    def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
            sample (`torch.FloatTensor`): input sample
            timestep (`int`, optional): current timestep

        Returns:
            `torch.FloatTensor`: scaled input sample
        """
        return sample

168
169
    def _get_variance(self, timestep, prev_timestep):
        alpha_prod_t = self.alphas_cumprod[timestep]
170
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
Patrick von Platen's avatar
Patrick von Platen committed
171
172
173
174
175
176
177
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)

        return variance

178
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None, **kwargs):
179
180
181
182
183
184
185
        """
        Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
        """
186
        deprecated_offset = deprecate(
Patrick von Platen's avatar
Patrick von Platen committed
187
            "offset", "0.7.0", "Please pass `steps_offset` to `__init__` instead.", take_from=kwargs
188
189
        )
        offset = deprecated_offset or self.config.steps_offset
190

191
        self.num_inference_steps = num_inference_steps
192
193
194
        step_ratio = self.config.num_train_timesteps // self.num_inference_steps
        # creates integer timesteps by multiplying by ratio
        # casting to int to avoid issues when num_inference_step is power of 3
195
        timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
196
        self.timesteps = torch.from_numpy(timesteps).to(device)
197
        self.timesteps += offset
198
199
200

    def step(
        self,
201
        model_output: torch.FloatTensor,
202
        timestep: int,
203
        sample: torch.FloatTensor,
Patrick von Platen's avatar
Patrick von Platen committed
204
205
        eta: float = 0.0,
        use_clipped_model_output: bool = False,
206
        generator=None,
207
        return_dict: bool = True,
208
    ) -> Union[DDIMSchedulerOutput, Tuple]:
209
210
211
212
213
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
214
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
215
            timestep (`int`): current discrete timestep in the diffusion chain.
216
            sample (`torch.FloatTensor`):
217
218
219
220
                current instance of sample being created by diffusion process.
            eta (`float`): weight of noise for added noise in diffusion step.
            use_clipped_model_output (`bool`): TODO
            generator: random number generator.
221
            return_dict (`bool`): option for returning tuple rather than DDIMSchedulerOutput class
222
223

        Returns:
224
225
            [`~schedulers.scheduling_utils.DDIMSchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.DDIMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
226
            returning a tuple, the first element is the sample tensor.
227
228

        """
229
230
231
232
233
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

Patrick von Platen's avatar
Patrick von Platen committed
234
235
236
237
238
        # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
        # Ideally, read DDIM paper in-detail understanding

        # Notation (<variable name> -> <name in paper>
        # - pred_noise_t -> e_theta(x_t, t)
239
        # - pred_original_sample -> f_theta(x_t, t) or x_0
Patrick von Platen's avatar
Patrick von Platen committed
240
241
        # - std_dev_t -> sigma_t
        # - eta -> η
242
        # - pred_sample_direction -> "direction pointing to x_t"
243
        # - pred_prev_sample -> "x_t-1"
Patrick von Platen's avatar
Patrick von Platen committed
244

245
        # 1. get previous step value (=t-1)
Nathan Lambert's avatar
Nathan Lambert committed
246
        prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
Patrick von Platen's avatar
Patrick von Platen committed
247
248

        # 2. compute alphas, betas
249
        alpha_prod_t = self.alphas_cumprod[timestep]
250
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
251

Patrick von Platen's avatar
Patrick von Platen committed
252
253
        beta_prod_t = 1 - alpha_prod_t

254
        # 3. compute predicted original sample from predicted noise also called
Patrick von Platen's avatar
Patrick von Platen committed
255
        # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
Patrick von Platen's avatar
Patrick von Platen committed
256
        pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
Patrick von Platen's avatar
Patrick von Platen committed
257
258

        # 4. Clip "predicted x_0"
259
        if self.config.clip_sample:
260
            pred_original_sample = torch.clamp(pred_original_sample, -1, 1)
Patrick von Platen's avatar
Patrick von Platen committed
261
262
263

        # 5. compute variance: "sigma_t(η)" -> see formula (16)
        # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
264
        variance = self._get_variance(timestep, prev_timestep)
Patrick von Platen's avatar
Patrick von Platen committed
265
        std_dev_t = eta * variance ** (0.5)
Patrick von Platen's avatar
Patrick von Platen committed
266

Patrick von Platen's avatar
Patrick von Platen committed
267
268
269
        if use_clipped_model_output:
            # the model_output is always re-derived from the clipped x_0 in Glide
            model_output = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
anton-l's avatar
anton-l committed
270

Patrick von Platen's avatar
Patrick von Platen committed
271
        # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
Patrick von Platen's avatar
Patrick von Platen committed
272
        pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output
Patrick von Platen's avatar
Patrick von Platen committed
273
274

        # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
275
276
277
        prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction

        if eta > 0:
278
            # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072
Patrick von Platen's avatar
Patrick von Platen committed
279
            device = model_output.device if torch.is_tensor(model_output) else "cpu"
280
            noise = torch.randn(model_output.shape, dtype=model_output.dtype, generator=generator).to(device)
281
282
283
            variance = self._get_variance(timestep, prev_timestep) ** (0.5) * eta * noise

            prev_sample = prev_sample + variance
Patrick von Platen's avatar
Patrick von Platen committed
284

285
286
287
        if not return_dict:
            return (prev_sample,)

288
        return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
Patrick von Platen's avatar
Patrick von Platen committed
289

290
291
    def add_noise(
        self,
292
293
294
295
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.IntTensor,
    ) -> torch.FloatTensor:
296
297
298
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
        self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
        timesteps = timesteps.to(original_samples.device)
299

300
        sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
301
302
303
304
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

305
        sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
306
307
308
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
309
310
311
312

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
        return noisy_samples

Patrick von Platen's avatar
Patrick von Platen committed
313
    def __len__(self):
Nathan Lambert's avatar
Nathan Lambert committed
314
        return self.config.num_train_timesteps