scheduling_ddim.py 11.9 KB
Newer Older
1
# Copyright 2022 Stanford University Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16
17

# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
# and https://github.com/hojonathanho/diffusion

Patrick von Platen's avatar
Patrick von Platen committed
18
import math
19
from typing import Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
20

Patrick von Platen's avatar
Patrick von Platen committed
21
import numpy as np
22
import torch
Patrick von Platen's avatar
Patrick von Platen committed
23

24
from ..configuration_utils import ConfigMixin, register_to_config
25
from .scheduling_utils import SchedulerMixin, SchedulerOutput
26
27
28
29


def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
    """
Patrick von Platen's avatar
Patrick von Platen committed
30
31
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
32

33
34
35
36
37
38
39
    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
40
                     prevent singularities.
41
42
43

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
44
    """
45

46
47
48
49
50
51
52
53
54
    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
    return np.array(betas, dtype=np.float32)
Patrick von Platen's avatar
Patrick von Platen committed
55
56


Patrick von Platen's avatar
Patrick von Platen committed
57
class DDIMScheduler(SchedulerMixin, ConfigMixin):
58
59
60
61
    """
    Denoising diffusion implicit models is a scheduler that extends the denoising procedure introduced in denoising
    diffusion probabilistic models (DDPMs) with non-Markovian guidance.

62
63
64
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
    [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and
Nathan Lambert's avatar
Nathan Lambert committed
65
    [`~ConfigMixin.from_config`] functions.
66

67
68
69
70
71
72
73
74
75
    For more details, see the original paper: https://arxiv.org/abs/2010.02502

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
Nathan Lambert's avatar
Nathan Lambert committed
76
77
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
78
79
80
81
82
83
84
85
        clip_sample (`bool`, default `True`):
            option to clip predicted sample between -1 and 1 for numerical stability.
        set_alpha_to_one (`bool`, default `True`):
            if alpha for final step is 1 or the final alpha of the "non-previous" one.
        tensor_format (`str`): whether the scheduler expects pytorch or numpy arrays.

    """

86
    @register_to_config
Patrick von Platen's avatar
Patrick von Platen committed
87
88
    def __init__(
        self,
89
90
91
92
93
94
95
96
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[np.ndarray] = None,
        clip_sample: bool = True,
        set_alpha_to_one: bool = True,
        tensor_format: str = "pt",
Patrick von Platen's avatar
Patrick von Platen committed
97
    ):
98
99
        if trained_betas is not None:
            self.betas = np.asarray(trained_betas)
100
        if beta_schedule == "linear":
Nathan Lambert's avatar
Nathan Lambert committed
101
            self.betas = np.linspace(beta_start, beta_end, num_train_timesteps, dtype=np.float32)
102
103
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
Nathan Lambert's avatar
Nathan Lambert committed
104
            self.betas = np.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=np.float32) ** 2
Patrick von Platen's avatar
Patrick von Platen committed
105
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
106
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
107
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
108
109
110
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

Patrick von Platen's avatar
Patrick von Platen committed
111
112
        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = np.cumprod(self.alphas, axis=0)
113
114
115

        # At every step in ddim, we are looking into the previous alphas_cumprod
        # For the final step, there is no previous alphas_cumprod because we are already at 0
116
        # `set_alpha_to_one` decides whether we set this paratemer simply to one or
117
        # whether we use the final alpha of the "non-previous" one.
118
        self.final_alpha_cumprod = np.array(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
Patrick von Platen's avatar
Patrick von Platen committed
119

120
121
        # setable values
        self.num_inference_steps = None
Nathan Lambert's avatar
Nathan Lambert committed
122
        self.timesteps = np.arange(0, num_train_timesteps)[::-1].copy()
Patrick von Platen's avatar
Patrick von Platen committed
123

Patrick von Platen's avatar
Patrick von Platen committed
124
125
126
        self.tensor_format = tensor_format
        self.set_format(tensor_format=tensor_format)

127
128
    def _get_variance(self, timestep, prev_timestep):
        alpha_prod_t = self.alphas_cumprod[timestep]
129
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
Patrick von Platen's avatar
Patrick von Platen committed
130
131
132
133
134
135
136
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)

        return variance

137
    def set_timesteps(self, num_inference_steps: int, offset: int = 0):
138
139
140
141
142
143
        """
        Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
Nathan Lambert's avatar
Nathan Lambert committed
144
145
            offset (`int`):
                optional value to shift timestep values up by. A value of 1 is used in stable diffusion for inference.
146
        """
147
        self.num_inference_steps = num_inference_steps
148
149
150
151
        step_ratio = self.config.num_train_timesteps // self.num_inference_steps
        # creates integer timesteps by multiplying by ratio
        # casting to int to avoid issues when num_inference_step is power of 3
        self.timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy()
152
        self.timesteps += offset
153
154
155
156
        self.set_format(tensor_format=self.tensor_format)

    def step(
        self,
Patrick von Platen's avatar
Patrick von Platen committed
157
        model_output: Union[torch.FloatTensor, np.ndarray],
158
159
        timestep: int,
        sample: Union[torch.FloatTensor, np.ndarray],
Patrick von Platen's avatar
Patrick von Platen committed
160
161
        eta: float = 0.0,
        use_clipped_model_output: bool = False,
162
        generator=None,
163
164
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
            model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model.
            timestep (`int`): current discrete timestep in the diffusion chain.
            sample (`torch.FloatTensor` or `np.ndarray`):
                current instance of sample being created by diffusion process.
            eta (`float`): weight of noise for added noise in diffusion step.
            use_clipped_model_output (`bool`): TODO
            generator: random number generator.
            return_dict (`bool`): option for returning tuple rather than SchedulerOutput class

        Returns:
180
181
182
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.SchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
            returning a tuple, the first element is the sample tensor.
183
184

        """
185
186
187
188
189
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

Patrick von Platen's avatar
Patrick von Platen committed
190
191
192
193
194
        # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
        # Ideally, read DDIM paper in-detail understanding

        # Notation (<variable name> -> <name in paper>
        # - pred_noise_t -> e_theta(x_t, t)
195
        # - pred_original_sample -> f_theta(x_t, t) or x_0
Patrick von Platen's avatar
Patrick von Platen committed
196
197
        # - std_dev_t -> sigma_t
        # - eta -> η
198
199
        # - pred_sample_direction -> "direction pointingc to x_t"
        # - pred_prev_sample -> "x_t-1"
Patrick von Platen's avatar
Patrick von Platen committed
200

201
        # 1. get previous step value (=t-1)
Nathan Lambert's avatar
Nathan Lambert committed
202
        prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
Patrick von Platen's avatar
Patrick von Platen committed
203
204

        # 2. compute alphas, betas
205
        alpha_prod_t = self.alphas_cumprod[timestep]
206
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
Patrick von Platen's avatar
Patrick von Platen committed
207
208
        beta_prod_t = 1 - alpha_prod_t

209
        # 3. compute predicted original sample from predicted noise also called
Patrick von Platen's avatar
Patrick von Platen committed
210
        # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
Patrick von Platen's avatar
Patrick von Platen committed
211
        pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
Patrick von Platen's avatar
Patrick von Platen committed
212
213

        # 4. Clip "predicted x_0"
214
        if self.config.clip_sample:
215
            pred_original_sample = self.clip(pred_original_sample, -1, 1)
Patrick von Platen's avatar
Patrick von Platen committed
216
217
218

        # 5. compute variance: "sigma_t(η)" -> see formula (16)
        # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
219
        variance = self._get_variance(timestep, prev_timestep)
Patrick von Platen's avatar
Patrick von Platen committed
220
        std_dev_t = eta * variance ** (0.5)
Patrick von Platen's avatar
Patrick von Platen committed
221

Patrick von Platen's avatar
Patrick von Platen committed
222
223
224
        if use_clipped_model_output:
            # the model_output is always re-derived from the clipped x_0 in Glide
            model_output = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
anton-l's avatar
anton-l committed
225

Patrick von Platen's avatar
Patrick von Platen committed
226
        # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
Patrick von Platen's avatar
Patrick von Platen committed
227
        pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output
Patrick von Platen's avatar
Patrick von Platen committed
228
229

        # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
230
231
232
        prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction

        if eta > 0:
Patrick von Platen's avatar
Patrick von Platen committed
233
234
            device = model_output.device if torch.is_tensor(model_output) else "cpu"
            noise = torch.randn(model_output.shape, generator=generator).to(device)
235
236
            variance = self._get_variance(timestep, prev_timestep) ** (0.5) * eta * noise

Patrick von Platen's avatar
Patrick von Platen committed
237
            if not torch.is_tensor(model_output):
238
239
240
                variance = variance.numpy()

            prev_sample = prev_sample + variance
Patrick von Platen's avatar
Patrick von Platen committed
241

242
243
244
245
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)
Patrick von Platen's avatar
Patrick von Platen committed
246

247
248
249
250
251
252
    def add_noise(
        self,
        original_samples: Union[torch.FloatTensor, np.ndarray],
        noise: Union[torch.FloatTensor, np.ndarray],
        timesteps: Union[torch.IntTensor, np.ndarray],
    ) -> Union[torch.FloatTensor, np.ndarray]:
253
254
        if self.tensor_format == "pt":
            timesteps = timesteps.to(self.alphas_cumprod.device)
255
256
257
258
259
260
261
262
        sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
        sqrt_alpha_prod = self.match_shape(sqrt_alpha_prod, original_samples)
        sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
        sqrt_one_minus_alpha_prod = self.match_shape(sqrt_one_minus_alpha_prod, original_samples)

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
        return noisy_samples

Patrick von Platen's avatar
Patrick von Platen committed
263
    def __len__(self):
Nathan Lambert's avatar
Nathan Lambert committed
264
        return self.config.num_train_timesteps