scheduling_ddim.py 5.73 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math

Patrick von Platen's avatar
Patrick von Platen committed
16
import numpy as np
Patrick von Platen's avatar
Patrick von Platen committed
17
18

from ..configuration_utils import ConfigMixin
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from .scheduling_utils import SchedulerMixin


def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
    """
    Create a beta schedule that discretizes the given alpha_t_bar function,
    which defines the cumulative product of (1-beta) over time from t = [0,1].

    :param num_diffusion_timesteps: the number of betas to produce.
    :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
                      produces the cumulative product of (1-beta) up to that
                      part of the diffusion process.
    :param max_beta: the maximum beta to use; use values lower than 1 to
                     prevent singularities.
    """
    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
    return np.array(betas, dtype=np.float32)
Patrick von Platen's avatar
Patrick von Platen committed
43
44


Patrick von Platen's avatar
Patrick von Platen committed
45
class DDIMScheduler(SchedulerMixin, ConfigMixin):
Patrick von Platen's avatar
Patrick von Platen committed
46
47
48
49
50
51
    def __init__(
        self,
        timesteps=1000,
        beta_start=0.0001,
        beta_end=0.02,
        beta_schedule="linear",
patil-suraj's avatar
patil-suraj committed
52
53
        trained_betas=None,
        timestep_values=None,
Patrick von Platen's avatar
Patrick von Platen committed
54
        clip_sample=True,
Patrick von Platen's avatar
Patrick von Platen committed
55
        tensor_format="np",
Patrick von Platen's avatar
Patrick von Platen committed
56
57
    ):
        super().__init__()
58
        self.register_to_config(
Patrick von Platen's avatar
Patrick von Platen committed
59
60
61
62
            timesteps=timesteps,
            beta_start=beta_start,
            beta_end=beta_end,
            beta_schedule=beta_schedule,
63
64
65
            trained_betas=trained_betas,
            timestep_values=timestep_values,
            clip_sample=clip_sample,
Patrick von Platen's avatar
Patrick von Platen committed
66
67
        )

68
        if beta_schedule == "linear":
69
            self.betas = np.linspace(beta_start, beta_end, timesteps, dtype=np.float32)
Patrick von Platen's avatar
Patrick von Platen committed
70
71
        elif beta_schedule == "squaredcos_cap_v2":
            # GLIDE cosine schedule
72
            self.betas = betas_for_alpha_bar(timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
73
74
75
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

Patrick von Platen's avatar
Patrick von Platen committed
76
77
78
79
80
81
        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = np.cumprod(self.alphas, axis=0)
        self.one = np.array(1.0)

        self.set_format(tensor_format=tensor_format)

Patrick von Platen's avatar
Patrick von Platen committed
82
    def get_variance(self, t, num_inference_steps):
83
84
        orig_t = self.config.timesteps // num_inference_steps * t
        orig_prev_t = self.config.timesteps // num_inference_steps * (t - 1) if t > 0 else -1
Patrick von Platen's avatar
Patrick von Platen committed
85

86
87
        alpha_prod_t = self.alphas_cumprod[orig_t]
        alpha_prod_t_prev = self.alphas_cumprod[orig_prev_t] if orig_prev_t >= 0 else self.one
Patrick von Platen's avatar
Patrick von Platen committed
88
89
90
91
92
93
94
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)

        return variance

95
    def step(self, residual, sample, t, num_inference_steps, eta, use_clipped_residual=False):
Patrick von Platen's avatar
Patrick von Platen committed
96
97
98
99
100
        # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
        # Ideally, read DDIM paper in-detail understanding

        # Notation (<variable name> -> <name in paper>
        # - pred_noise_t -> e_theta(x_t, t)
101
        # - pred_original_sample -> f_theta(x_t, t) or x_0
Patrick von Platen's avatar
Patrick von Platen committed
102
103
        # - std_dev_t -> sigma_t
        # - eta -> η
104
105
        # - pred_sample_direction -> "direction pointingc to x_t"
        # - pred_prev_sample -> "x_t-1"
Patrick von Platen's avatar
Patrick von Platen committed
106
107

        # 1. get actual t and t-1
108
109
        orig_t = self.config.timesteps // num_inference_steps * t
        orig_prev_t = self.config.timesteps // num_inference_steps * (t - 1) if t > 0 else -1
Patrick von Platen's avatar
Patrick von Platen committed
110
111

        # 2. compute alphas, betas
112
113
        alpha_prod_t = self.alphas_cumprod[orig_t]
        alpha_prod_t_prev = self.alphas_cumprod[orig_prev_t] if orig_prev_t >= 0 else self.one
Patrick von Platen's avatar
Patrick von Platen committed
114
115
        beta_prod_t = 1 - alpha_prod_t

116
        # 3. compute predicted original sample from predicted noise also called
Patrick von Platen's avatar
Patrick von Platen committed
117
        # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
118
        pred_original_sample = (sample - beta_prod_t ** (0.5) * residual) / alpha_prod_t ** (0.5)
Patrick von Platen's avatar
Patrick von Platen committed
119
120

        # 4. Clip "predicted x_0"
121
        if self.config.clip_sample:
122
            pred_original_sample = self.clip(pred_original_sample, -1, 1)
Patrick von Platen's avatar
Patrick von Platen committed
123
124
125
126

        # 5. compute variance: "sigma_t(η)" -> see formula (16)
        # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
        variance = self.get_variance(t, num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
127
        std_dev_t = eta * variance ** (0.5)
Patrick von Platen's avatar
Patrick von Platen committed
128

anton-l's avatar
anton-l committed
129
130
        if use_clipped_residual:
            # the residual is always re-derived from the clipped x_0 in GLIDE
131
            residual = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
anton-l's avatar
anton-l committed
132

Patrick von Platen's avatar
Patrick von Platen committed
133
        # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
134
        pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * residual
Patrick von Platen's avatar
Patrick von Platen committed
135
136

        # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
137
        pred_prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
Patrick von Platen's avatar
Patrick von Platen committed
138

139
        return pred_prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
140
141

    def __len__(self):
142
        return self.config.timesteps