scheduling_ddim.py 13.7 KB
Newer Older
1
# Copyright 2022 Stanford University Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16
17

# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
# and https://github.com/hojonathanho/diffusion

Patrick von Platen's avatar
Patrick von Platen committed
18
import math
19
from dataclasses import dataclass
20
from typing import Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
21

Patrick von Platen's avatar
Patrick von Platen committed
22
import numpy as np
23
import torch
Patrick von Platen's avatar
Patrick von Platen committed
24

25
from ..configuration_utils import ConfigMixin, register_to_config
26
from ..utils import BaseOutput, deprecate
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from .scheduling_utils import SchedulerMixin


@dataclass
class DDIMSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample (x_{0}) based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None
46
47


48
def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999) -> torch.Tensor:
49
    """
Patrick von Platen's avatar
Patrick von Platen committed
50
51
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
52

53
54
55
56
57
58
59
    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
60
                     prevent singularities.
61
62
63

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
64
    """
65

66
    def alpha_bar(time_step):
67
68
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

69
70
71
72
73
    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
74
    return torch.tensor(betas)
Patrick von Platen's avatar
Patrick von Platen committed
75
76


Patrick von Platen's avatar
Patrick von Platen committed
77
class DDIMScheduler(SchedulerMixin, ConfigMixin):
78
79
80
81
    """
    Denoising diffusion implicit models is a scheduler that extends the denoising procedure introduced in denoising
    diffusion probabilistic models (DDPMs) with non-Markovian guidance.

82
83
84
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
    [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and
Nathan Lambert's avatar
Nathan Lambert committed
85
    [`~ConfigMixin.from_config`] functions.
86

87
88
89
90
91
92
93
94
95
    For more details, see the original paper: https://arxiv.org/abs/2010.02502

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
Nathan Lambert's avatar
Nathan Lambert committed
96
97
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
98
99
100
        clip_sample (`bool`, default `True`):
            option to clip predicted sample between -1 and 1 for numerical stability.
        set_alpha_to_one (`bool`, default `True`):
101
102
103
104
105
106
107
            each diffusion step uses the value of alphas product at that step and at the previous one. For the final
            step there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
            otherwise it uses the value of alpha at step 0.
        steps_offset (`int`, default `0`):
            an offset added to the inference steps. You can use a combination of `offset=1` and
            `set_alpha_to_one=False`, to make the last step use step 0 for the previous alpha product, as done in
            stable diffusion.
108
109
110

    """

111
    @register_to_config
Patrick von Platen's avatar
Patrick von Platen committed
112
113
    def __init__(
        self,
114
115
116
117
118
119
120
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[np.ndarray] = None,
        clip_sample: bool = True,
        set_alpha_to_one: bool = True,
121
        steps_offset: int = 0,
122
        **kwargs,
Patrick von Platen's avatar
Patrick von Platen committed
123
    ):
124
125
126
127
128
129
        deprecate(
            "tensor_format",
            "0.5.0",
            "If you're running your code in PyTorch, you can safely remove this argument.",
            take_from=kwargs,
        )
130

131
        if trained_betas is not None:
132
            self.betas = torch.from_numpy(trained_betas)
133
        elif beta_schedule == "linear":
134
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
135
136
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
137
138
139
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
Patrick von Platen's avatar
Patrick von Platen committed
140
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
141
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
142
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
143
144
145
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

146
        self.alphas = 1.0 - self.betas
147
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
148
149
150

        # At every step in ddim, we are looking into the previous alphas_cumprod
        # For the final step, there is no previous alphas_cumprod because we are already at 0
151
        # `set_alpha_to_one` decides whether we set this parameter simply to one or
152
        # whether we use the final alpha of the "non-previous" one.
153
        self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
Patrick von Platen's avatar
Patrick von Platen committed
154

155
        # setable values
156
        self.num_inference_steps = None
157
        self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy())
Patrick von Platen's avatar
Patrick von Platen committed
158

159
160
    def _get_variance(self, timestep, prev_timestep):
        alpha_prod_t = self.alphas_cumprod[timestep]
161
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
Patrick von Platen's avatar
Patrick von Platen committed
162
163
164
165
166
167
168
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)

        return variance

169
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None, **kwargs):
170
171
172
173
174
175
176
        """
        Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
        """
177
178
179
180
        deprecated_offset = deprecate(
            "offset", "0.5.0", "Please pass `steps_offset` to `__init__` instead.", take_from=kwargs
        )
        offset = deprecated_offset or self.config.steps_offset
181

182
        self.num_inference_steps = num_inference_steps
183
184
185
        step_ratio = self.config.num_train_timesteps // self.num_inference_steps
        # creates integer timesteps by multiplying by ratio
        # casting to int to avoid issues when num_inference_step is power of 3
186
187
        timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps).to(device)
188
        self.timesteps += offset
189
190
191

    def step(
        self,
192
        model_output: torch.FloatTensor,
193
        timestep: int,
194
        sample: torch.FloatTensor,
Patrick von Platen's avatar
Patrick von Platen committed
195
196
        eta: float = 0.0,
        use_clipped_model_output: bool = False,
197
        generator=None,
198
        return_dict: bool = True,
199
    ) -> Union[DDIMSchedulerOutput, Tuple]:
200
201
202
203
204
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
205
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
206
            timestep (`int`): current discrete timestep in the diffusion chain.
207
            sample (`torch.FloatTensor`):
208
209
210
211
                current instance of sample being created by diffusion process.
            eta (`float`): weight of noise for added noise in diffusion step.
            use_clipped_model_output (`bool`): TODO
            generator: random number generator.
212
            return_dict (`bool`): option for returning tuple rather than DDIMSchedulerOutput class
213
214

        Returns:
215
216
            [`~schedulers.scheduling_utils.DDIMSchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.DDIMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
217
            returning a tuple, the first element is the sample tensor.
218
219

        """
220
221
222
223
224
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

Patrick von Platen's avatar
Patrick von Platen committed
225
226
227
228
229
        # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
        # Ideally, read DDIM paper in-detail understanding

        # Notation (<variable name> -> <name in paper>
        # - pred_noise_t -> e_theta(x_t, t)
230
        # - pred_original_sample -> f_theta(x_t, t) or x_0
Patrick von Platen's avatar
Patrick von Platen committed
231
232
        # - std_dev_t -> sigma_t
        # - eta -> η
233
        # - pred_sample_direction -> "direction pointing to x_t"
234
        # - pred_prev_sample -> "x_t-1"
Patrick von Platen's avatar
Patrick von Platen committed
235

236
        # 1. get previous step value (=t-1)
Nathan Lambert's avatar
Nathan Lambert committed
237
        prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
Patrick von Platen's avatar
Patrick von Platen committed
238
239

        # 2. compute alphas, betas
240
        alpha_prod_t = self.alphas_cumprod[timestep]
241
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
242

Patrick von Platen's avatar
Patrick von Platen committed
243
244
        beta_prod_t = 1 - alpha_prod_t

245
        # 3. compute predicted original sample from predicted noise also called
Patrick von Platen's avatar
Patrick von Platen committed
246
        # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
Patrick von Platen's avatar
Patrick von Platen committed
247
        pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
Patrick von Platen's avatar
Patrick von Platen committed
248
249

        # 4. Clip "predicted x_0"
250
        if self.config.clip_sample:
251
            pred_original_sample = torch.clamp(pred_original_sample, -1, 1)
Patrick von Platen's avatar
Patrick von Platen committed
252
253
254

        # 5. compute variance: "sigma_t(η)" -> see formula (16)
        # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
255
        variance = self._get_variance(timestep, prev_timestep)
Patrick von Platen's avatar
Patrick von Platen committed
256
        std_dev_t = eta * variance ** (0.5)
Patrick von Platen's avatar
Patrick von Platen committed
257

Patrick von Platen's avatar
Patrick von Platen committed
258
259
260
        if use_clipped_model_output:
            # the model_output is always re-derived from the clipped x_0 in Glide
            model_output = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
anton-l's avatar
anton-l committed
261

Patrick von Platen's avatar
Patrick von Platen committed
262
        # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
Patrick von Platen's avatar
Patrick von Platen committed
263
        pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output
Patrick von Platen's avatar
Patrick von Platen committed
264
265

        # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
266
267
268
        prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction

        if eta > 0:
Patrick von Platen's avatar
Patrick von Platen committed
269
270
            device = model_output.device if torch.is_tensor(model_output) else "cpu"
            noise = torch.randn(model_output.shape, generator=generator).to(device)
271
272
273
            variance = self._get_variance(timestep, prev_timestep) ** (0.5) * eta * noise

            prev_sample = prev_sample + variance
Patrick von Platen's avatar
Patrick von Platen committed
274

275
276
277
        if not return_dict:
            return (prev_sample,)

278
        return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
Patrick von Platen's avatar
Patrick von Platen committed
279

280
281
    def add_noise(
        self,
282
283
284
285
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.IntTensor,
    ) -> torch.FloatTensor:
286
287
288
289
290
291
        if self.alphas_cumprod.device != original_samples.device:
            self.alphas_cumprod = self.alphas_cumprod.to(original_samples.device)

        if timesteps.device != original_samples.device:
            timesteps = timesteps.to(original_samples.device)

292
        sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
293
294
295
296
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

297
        sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
298
299
300
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
301
302
303
304

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
        return noisy_samples

Patrick von Platen's avatar
Patrick von Platen committed
305
    def __len__(self):
Nathan Lambert's avatar
Nathan Lambert committed
306
        return self.config.num_train_timesteps