pipeline_utils.py 40.2 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
improve  
Patrick von Platen committed
17
import importlib
18
import inspect
Patrick von Platen's avatar
Patrick von Platen committed
19
import os
20
from dataclasses import dataclass
21
from pathlib import Path
22
from typing import Any, Dict, List, Optional, Union
anton-l's avatar
Style  
anton-l committed
23

24
import numpy as np
Pedro Cuenca's avatar
Pedro Cuenca committed
25
26
import torch

27
import diffusers
28
import PIL
29
from huggingface_hub import model_info, snapshot_download
30
from packaging import version
31
from PIL import Image
hysts's avatar
hysts committed
32
from tqdm.auto import tqdm
Patrick von Platen's avatar
Patrick von Platen committed
33

Patrick von Platen's avatar
Patrick von Platen committed
34
from .configuration_utils import ConfigMixin
Patrick von Platen's avatar
Patrick von Platen committed
35
from .dynamic_modules_utils import get_class_from_dynamic_module
36
from .hub_utils import http_user_agent
37
from .modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT
38
from .schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
39
40
41
42
43
44
from .utils import (
    CONFIG_NAME,
    DIFFUSERS_CACHE,
    ONNX_WEIGHTS_NAME,
    WEIGHTS_NAME,
    BaseOutput,
45
    deprecate,
46
    is_accelerate_available,
47
    is_safetensors_available,
48
    is_torch_version,
49
50
51
52
53
54
    is_transformers_available,
    logging,
)


if is_transformers_available():
55
    import transformers
56
    from transformers import PreTrainedModel
Patrick von Platen's avatar
improve  
Patrick von Platen committed
57

Patrick von Platen's avatar
Patrick von Platen committed
58

Patrick von Platen's avatar
Patrick von Platen committed
59
INDEX_FILE = "diffusion_pytorch_model.bin"
Patrick von Platen's avatar
Patrick von Platen committed
60
CUSTOM_PIPELINE_FILE_NAME = "pipeline.py"
61
DUMMY_MODULES_FOLDER = "diffusers.utils"
62
TRANSFORMERS_DUMMY_MODULES_FOLDER = "transformers.utils"
Patrick von Platen's avatar
Patrick von Platen committed
63
64
65
66
67
68
69


logger = logging.get_logger(__name__)


LOADABLE_CLASSES = {
    "diffusers": {
Patrick von Platen's avatar
Patrick von Platen committed
70
        "ModelMixin": ["save_pretrained", "from_pretrained"],
71
        "SchedulerMixin": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
72
        "DiffusionPipeline": ["save_pretrained", "from_pretrained"],
73
        "OnnxRuntimeModel": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
74
75
    },
    "transformers": {
anton-l's avatar
anton-l committed
76
        "PreTrainedTokenizer": ["save_pretrained", "from_pretrained"],
77
        "PreTrainedTokenizerFast": ["save_pretrained", "from_pretrained"],
anton-l's avatar
anton-l committed
78
        "PreTrainedModel": ["save_pretrained", "from_pretrained"],
Suraj Patil's avatar
Suraj Patil committed
79
        "FeatureExtractionMixin": ["save_pretrained", "from_pretrained"],
80
81
        "ProcessorMixin": ["save_pretrained", "from_pretrained"],
        "ImageProcessingMixin": ["save_pretrained", "from_pretrained"],
Patrick von Platen's avatar
Patrick von Platen committed
82
    },
Prathik Rao's avatar
Prathik Rao committed
83
84
85
    "onnxruntime.training": {
        "ORTModule": ["save_pretrained", "from_pretrained"],
    },
Patrick von Platen's avatar
Patrick von Platen committed
86
87
}

88
89
90
91
ALL_IMPORTABLE_CLASSES = {}
for library in LOADABLE_CLASSES:
    ALL_IMPORTABLE_CLASSES.update(LOADABLE_CLASSES[library])

Patrick von Platen's avatar
Patrick von Platen committed
92

93
94
95
96
97
98
99
100
101
102
103
104
105
106
@dataclass
class ImagePipelineOutput(BaseOutput):
    """
    Output class for image pipelines.

    Args:
        images (`List[PIL.Image.Image]` or `np.ndarray`)
            List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
            num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
    """

    images: Union[List[PIL.Image.Image], np.ndarray]


107
108
109
110
111
112
113
114
115
116
117
118
119
120
@dataclass
class AudioPipelineOutput(BaseOutput):
    """
    Output class for audio pipelines.

    Args:
        audios (`np.ndarray`)
            List of denoised samples of shape `(batch_size, num_channels, sample_rate)`. Numpy array present the
            denoised audio samples of the diffusion pipeline.
    """

    audios: np.ndarray


121
122
123
124
125
126
127
128
129
130
131
def is_safetensors_compatible(info) -> bool:
    filenames = set(sibling.rfilename for sibling in info.siblings)
    pt_filenames = set(filename for filename in filenames if filename.endswith(".bin"))
    is_safetensors_compatible = any(file.endswith(".safetensors") for file in filenames)
    for pt_filename in pt_filenames:
        prefix, raw = os.path.split(pt_filename)
        if raw == "pytorch_model.bin":
            # transformers specific
            sf_filename = os.path.join(prefix, "model.safetensors")
        else:
            sf_filename = pt_filename[: -len(".bin")] + ".safetensors"
132
133
        if is_safetensors_compatible and sf_filename not in filenames:
            logger.warning(f"{sf_filename} not found")
134
135
136
137
            is_safetensors_compatible = False
    return is_safetensors_compatible


Patrick von Platen's avatar
Patrick von Platen committed
138
class DiffusionPipeline(ConfigMixin):
139
140
141
142
143
144
145
146
147
148
149
    r"""
    Base class for all models.

    [`DiffusionPipeline`] takes care of storing all components (models, schedulers, processors) for diffusion pipelines
    and handles methods for loading, downloading and saving models as well as a few methods common to all pipelines to:

        - move all PyTorch modules to the device of your choice
        - enabling/disabling the progress bar for the denoising iteration

    Class attributes:

150
        - **config_name** (`str`) -- name of the config file that will store the class and module names of all
151
          components of the diffusion pipeline.
152
153
        - **_optional_components** (List[`str`]) -- list of all components that are optional so they don't have to be
          passed for the pipeline to function (should be overridden by subclasses).
154
    """
Patrick von Platen's avatar
Patrick von Platen committed
155
    config_name = "model_index.json"
156
    _optional_components = []
Patrick von Platen's avatar
Patrick von Platen committed
157

Patrick von Platen's avatar
up  
Patrick von Platen committed
158
    def register_modules(self, **kwargs):
159
160
        # import it here to avoid circular import
        from diffusers import pipelines
161

Patrick von Platen's avatar
Patrick von Platen committed
162
        for name, module in kwargs.items():
163
            # retrieve library
164
165
166
167
            if module is None:
                register_dict = {name: (None, None)}
            else:
                library = module.__module__.split(".")[0]
168

169
                # check if the module is a pipeline module
170
                pipeline_dir = module.__module__.split(".")[-2] if len(module.__module__.split(".")) > 2 else None
171
172
                path = module.__module__.split(".")
                is_pipeline_module = pipeline_dir in path and hasattr(pipelines, pipeline_dir)
173

174
175
176
177
178
                # if library is not in LOADABLE_CLASSES, then it is a custom module.
                # Or if it's a pipeline module, then the module is inside the pipeline
                # folder so we set the library to module name.
                if library not in LOADABLE_CLASSES or is_pipeline_module:
                    library = pipeline_dir
patil-suraj's avatar
patil-suraj committed
179

180
181
                # retrieve class_name
                class_name = module.__class__.__name__
Patrick von Platen's avatar
Patrick von Platen committed
182

183
                register_dict = {name: (library, class_name)}
184

Patrick von Platen's avatar
Patrick von Platen committed
185
            # save model index config
186
            self.register_to_config(**register_dict)
Patrick von Platen's avatar
Patrick von Platen committed
187
188
189

            # set models
            setattr(self, name, module)
190

191
192
193
194
195
    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
        safe_serialization: bool = False,
    ):
196
197
198
199
200
201
202
203
        """
        Save all variables of the pipeline that can be saved and loaded as well as the pipelines configuration file to
        a directory. A pipeline variable can be saved and loaded if its class implements both a save and loading
        method. The pipeline can easily be re-loaded using the `[`~DiffusionPipeline.from_pretrained`]` class method.

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to which to save. Will be created if it doesn't exist.
204
205
            safe_serialization (`bool`, *optional*, defaults to `False`):
                Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
206
        """
Patrick von Platen's avatar
Patrick von Platen committed
207
208
        self.save_config(save_directory)

Patrick von Platen's avatar
Patrick von Platen committed
209
        model_index_dict = dict(self.config)
Patrick von Platen's avatar
Patrick von Platen committed
210
        model_index_dict.pop("_class_name")
211
        model_index_dict.pop("_diffusers_version")
212
        model_index_dict.pop("_module", None)
Patrick von Platen's avatar
Patrick von Platen committed
213

214
215
216
217
218
219
220
221
222
223
224
        expected_modules, optional_kwargs = self._get_signature_keys(self)

        def is_saveable_module(name, value):
            if name not in expected_modules:
                return False
            if name in self._optional_components and value[0] is None:
                return False
            return True

        model_index_dict = {k: v for k, v in model_index_dict.items() if is_saveable_module(k, v)}

anton-l's avatar
anton-l committed
225
226
227
        for pipeline_component_name in model_index_dict.keys():
            sub_model = getattr(self, pipeline_component_name)
            model_cls = sub_model.__class__
Patrick von Platen's avatar
Patrick von Platen committed
228
229

            save_method_name = None
anton-l's avatar
anton-l committed
230
231
232
233
            # search for the model's base class in LOADABLE_CLASSES
            for library_name, library_classes in LOADABLE_CLASSES.items():
                library = importlib.import_module(library_name)
                for base_class, save_load_methods in library_classes.items():
234
235
                    class_candidate = getattr(library, base_class, None)
                    if class_candidate is not None and issubclass(model_cls, class_candidate):
anton-l's avatar
anton-l committed
236
237
238
239
240
241
242
                        # if we found a suitable base class in LOADABLE_CLASSES then grab its save method
                        save_method_name = save_load_methods[0]
                        break
                if save_method_name is not None:
                    break

            save_method = getattr(sub_model, save_method_name)
243
244
245
246
247
248
249
250
251
252

            # Call the save method with the argument safe_serialization only if it's supported
            save_method_signature = inspect.signature(save_method)
            save_method_accept_safe = "safe_serialization" in save_method_signature.parameters
            if save_method_accept_safe:
                save_method(
                    os.path.join(save_directory, pipeline_component_name), safe_serialization=safe_serialization
                )
            else:
                save_method(os.path.join(save_directory, pipeline_component_name))
Patrick von Platen's avatar
Patrick von Platen committed
253

Pedro Cuenca's avatar
Pedro Cuenca committed
254
255
256
257
    def to(self, torch_device: Optional[Union[str, torch.device]] = None):
        if torch_device is None:
            return self

258
        module_names, _, _ = self.extract_init_dict(dict(self.config))
Pedro Cuenca's avatar
Pedro Cuenca committed
259
260
261
        for name in module_names.keys():
            module = getattr(self, name)
            if isinstance(module, torch.nn.Module):
262
                if module.dtype == torch.float16 and str(torch_device) in ["cpu"]:
263
                    logger.warning(
264
265
266
267
268
                        "Pipelines loaded with `torch_dtype=torch.float16` cannot run with `cpu` device. It"
                        " is not recommended to move them to `cpu` as running them will fail. Please make"
                        " sure to use an accelerator to run the pipeline in inference, due to the lack of"
                        " support for`float16` operations on this device in PyTorch. Please, remove the"
                        " `torch_dtype=torch.float16` argument, or use another device for inference."
269
                    )
Pedro Cuenca's avatar
Pedro Cuenca committed
270
271
272
273
274
                module.to(torch_device)
        return self

    @property
    def device(self) -> torch.device:
275
276
277
278
        r"""
        Returns:
            `torch.device`: The torch device on which the pipeline is located.
        """
279
        module_names, _, _ = self.extract_init_dict(dict(self.config))
Pedro Cuenca's avatar
Pedro Cuenca committed
280
281
282
283
284
285
        for name in module_names.keys():
            module = getattr(self, name)
            if isinstance(module, torch.nn.Module):
                return module.device
        return torch.device("cpu")

Patrick von Platen's avatar
Patrick von Platen committed
286
287
    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
288
        r"""
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
        Instantiate a PyTorch diffusion pipeline from pre-trained pipeline weights.

        The pipeline is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated).

        The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
        pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
        task.

        The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
        weights are discarded.

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

                    - A string, the *repo id* of a pretrained pipeline hosted inside a model repo on
                      https://huggingface.co/ Valid repo ids have to be located under a user or organization name, like
                      `CompVis/ldm-text2im-large-256`.
                    - A path to a *directory* containing pipeline weights saved using
                      [`~DiffusionPipeline.save_pretrained`], e.g., `./my_pipeline_directory/`.
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model under this dtype. If `"auto"` is passed the dtype
                will be automatically derived from the model's weights.
Patrick von Platen's avatar
Patrick von Platen committed
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
            custom_pipeline (`str`, *optional*):

                <Tip warning={true}>

                    This is an experimental feature and is likely to change in the future.

                </Tip>

                Can be either:

                    - A string, the *repo id* of a custom pipeline hosted inside a model repo on
                      https://huggingface.co/. Valid repo ids have to be located under a user or organization name,
                      like `hf-internal-testing/diffusers-dummy-pipeline`.

                        <Tip>

                         It is required that the model repo has a file, called `pipeline.py` that defines the custom
                         pipeline.

                        </Tip>

                    - A string, the *file name* of a community pipeline hosted on GitHub under
                      https://github.com/huggingface/diffusers/tree/main/examples/community. Valid file names have to
                      match exactly the file name without `.py` located under the above link, *e.g.*
                      `clip_guided_stable_diffusion`.

                        <Tip>

                         Community pipelines are always loaded from the current `main` branch of GitHub.

                        </Tip>

                    - A path to a *directory* containing a custom pipeline, e.g., `./my_pipeline_directory/`.

                        <Tip>

                         It is required that the directory has a file, called `pipeline.py` that defines the custom
                         pipeline.

                        </Tip>

                For more information on how to load and create custom pipelines, please have a look at [Loading and
354
355
                Adding Custom
                Pipelines](https://huggingface.co/docs/diffusers/using-diffusers/custom_pipeline_overview)
Patrick von Platen's avatar
Patrick von Platen committed
356
357

            torch_dtype (`str` or `torch.dtype`, *optional*):
358
359
360
361
362
363
364
365
366
367
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
368
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
369
370
371
372
373
374
375
376
377
378
379
380
381
            local_files_only(`bool`, *optional*, defaults to `False`):
                Whether or not to only look at local files (i.e., do not try to download the model).
            use_auth_token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
                when running `huggingface-cli login` (stored in `~/.huggingface`).
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
                identifier allowed by git.
            mirror (`str`, *optional*):
                Mirror source to accelerate downloads in China. If you are from China and have an accessibility
                problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
                Please refer to the mirror site for more information. specify the folder name here.
382
383
384
385
386
387
388
389
390
391
392
393
394
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
                A map that specifies where each submodule should go. It doesn't need to be refined to each
                parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the
                same device.

                To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For
                more information about each option see [designing a device
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
                Speed up model loading by not initializing the weights and only loading the pre-trained weights. This
                also tries to not use more than 1x model size in CPU memory (including peak memory) while loading the
                model. This is only supported when torch version >= 1.9.0. If you are using an older version of torch,
                setting this argument to `True` will raise an error.
395
396
            return_cached_folder (`bool`, *optional*, defaults to `False`):
                If set to `True`, path to downloaded cached folder will be returned in addition to loaded pipeline.
397
398
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load - and saveable variables - *i.e.* the pipeline components - of the
399
400
                specific pipeline class. The overwritten components are then directly passed to the pipelines
                `__init__` method. See example below for more information.
401
402
403

        <Tip>

404
         It is required to be logged in (`huggingface-cli login`) when you want to use private or [gated
apolinario's avatar
apolinario committed
405
         models](https://huggingface.co/docs/hub/models-gated#gated-models), *e.g.* `"runwayml/stable-diffusion-v1-5"`
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

        </Tip>

        <Tip>

        Activate the special ["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use
        this method in a firewalled environment.

        </Tip>

        Examples:

        ```py
        >>> from diffusers import DiffusionPipeline

        >>> # Download pipeline from huggingface.co and cache.
        >>> pipeline = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256")

        >>> # Download pipeline that requires an authorization token
        >>> # For more information on access tokens, please refer to this section
        >>> # of the documentation](https://huggingface.co/docs/hub/security-tokens)
apolinario's avatar
apolinario committed
427
        >>> pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
428

429
        >>> # Use a different scheduler
430
431
        >>> from diffusers import LMSDiscreteScheduler

432
433
        >>> scheduler = LMSDiscreteScheduler.from_config(pipeline.scheduler.config)
        >>> pipeline.scheduler = scheduler
434
        ```
435
436
437
        """
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
438
        force_download = kwargs.pop("force_download", False)
439
440
441
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", False)
        use_auth_token = kwargs.pop("use_auth_token", None)
442
        revision = kwargs.pop("revision", None)
443
        torch_dtype = kwargs.pop("torch_dtype", None)
Patrick von Platen's avatar
Patrick von Platen committed
444
        custom_pipeline = kwargs.pop("custom_pipeline", None)
445
        provider = kwargs.pop("provider", None)
446
        sess_options = kwargs.pop("sess_options", None)
447
        device_map = kwargs.pop("device_map", None)
448
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
449
        return_cached_folder = kwargs.pop("return_cached_folder", False)
Patrick von Platen's avatar
Patrick von Platen committed
450

patil-suraj's avatar
patil-suraj committed
451
        # 1. Download the checkpoints and configs
Patrick von Platen's avatar
Patrick von Platen committed
452
        # use snapshot download here to get it working from from_pretrained
Patrick von Platen's avatar
Patrick von Platen committed
453
        if not os.path.isdir(pretrained_model_name_or_path):
454
            config_dict = cls.load_config(
455
456
457
                pretrained_model_name_or_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
458
                force_download=force_download,
459
460
461
462
463
464
465
466
467
468
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
            )
            # make sure we only download sub-folders and `diffusers` filenames
            folder_names = [k for k in config_dict.keys() if not k.startswith("_")]
            allow_patterns = [os.path.join(k, "*") for k in folder_names]
            allow_patterns += [WEIGHTS_NAME, SCHEDULER_CONFIG_NAME, CONFIG_NAME, ONNX_WEIGHTS_NAME, cls.config_name]

469
            # make sure we don't download flax weights
470
            ignore_patterns = ["*.msgpack"]
471

Patrick von Platen's avatar
Patrick von Platen committed
472
473
474
            if custom_pipeline is not None:
                allow_patterns += [CUSTOM_PIPELINE_FILE_NAME]

475
476
477
478
479
            if cls != DiffusionPipeline:
                requested_pipeline_class = cls.__name__
            else:
                requested_pipeline_class = config_dict.get("_class_name", cls.__name__)
            user_agent = {"pipeline_class": requested_pipeline_class}
480
481
            if custom_pipeline is not None:
                user_agent["custom_pipeline"] = custom_pipeline
482

483
            user_agent = http_user_agent(user_agent)
484

485
486
487
488
489
490
491
492
493
            if is_safetensors_available():
                info = model_info(
                    pretrained_model_name_or_path,
                    use_auth_token=use_auth_token,
                    revision=revision,
                )
                if is_safetensors_compatible(info):
                    ignore_patterns.append("*.bin")

494
            # download all allow_patterns
495
496
497
498
499
500
501
            cached_folder = snapshot_download(
                pretrained_model_name_or_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
502
                revision=revision,
503
                allow_patterns=allow_patterns,
504
                ignore_patterns=ignore_patterns,
505
                user_agent=user_agent,
506
            )
Patrick von Platen's avatar
Patrick von Platen committed
507
508
        else:
            cached_folder = pretrained_model_name_or_path
509

510
        config_dict = cls.load_config(cached_folder)
511

Patrick von Platen's avatar
Patrick von Platen committed
512
        # 2. Load the pipeline class, if using custom module then load it from the hub
513
        # if we load from explicit class, let's use it
Patrick von Platen's avatar
Patrick von Platen committed
514
        if custom_pipeline is not None:
515
516
517
518
519
520
521
522
            if custom_pipeline.endswith(".py"):
                path = Path(custom_pipeline)
                # decompose into folder & file
                file_name = path.name
                custom_pipeline = path.parent.absolute()
            else:
                file_name = CUSTOM_PIPELINE_FILE_NAME

523
            pipeline_class = get_class_from_dynamic_module(custom_pipeline, module_file=file_name, cache_dir=cache_dir)
Patrick von Platen's avatar
Patrick von Platen committed
524
        elif cls != DiffusionPipeline:
525
526
            pipeline_class = cls
        else:
Patrick von Platen's avatar
Patrick von Platen committed
527
528
529
            diffusers_module = importlib.import_module(cls.__module__.split(".")[0])
            pipeline_class = getattr(diffusers_module, config_dict["_class_name"])

530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
        # To be removed in 1.0.0
        if pipeline_class.__name__ == "StableDiffusionInpaintPipeline" and version.parse(
            version.parse(config_dict["_diffusers_version"]).base_version
        ) <= version.parse("0.5.1"):
            from diffusers import StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy

            pipeline_class = StableDiffusionInpaintPipelineLegacy

            deprecation_message = (
                "You are using a legacy checkpoint for inpainting with Stable Diffusion, therefore we are loading the"
                f" {StableDiffusionInpaintPipelineLegacy} class instead of {StableDiffusionInpaintPipeline}. For"
                " better inpainting results, we strongly suggest using Stable Diffusion's official inpainting"
                " checkpoint: https://huggingface.co/runwayml/stable-diffusion-inpainting instead or adapting your"
                f" checkpoint {pretrained_model_name_or_path} to the format of"
                " https://huggingface.co/runwayml/stable-diffusion-inpainting. Note that we do not actively maintain"
                " the {StableDiffusionInpaintPipelineLegacy} class and will likely remove it in version 1.0.0."
            )
            deprecate("StableDiffusionInpaintPipelineLegacy", "1.0.0", deprecation_message, standard_warn=False)

549
550
551
        # some modules can be passed directly to the init
        # in this case they are already instantiated in `kwargs`
        # extract them here
552
        expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)
553
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
554
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
555

556
        init_dict, unused_kwargs, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)
557

558
559
560
561
562
        # define init kwargs
        init_kwargs = {k: init_dict.pop(k) for k in optional_kwargs if k in init_dict}
        init_kwargs = {**init_kwargs, **passed_pipe_kwargs}

        # remove `null` components
Patrick von Platen's avatar
Patrick von Platen committed
563
564
565
566
567
568
569
570
        def load_module(name, value):
            if value[0] is None:
                return False
            if name in passed_class_obj and passed_class_obj[name] is None:
                return False
            return True

        init_dict = {k: v for k, v in init_dict.items() if load_module(k, v)}
571

572
        if len(unused_kwargs) > 0:
573
574
575
            logger.warning(
                f"Keyword arguments {unused_kwargs} are not expected by {pipeline_class.__name__} and will be ignored."
            )
Patrick von Platen's avatar
Patrick von Platen committed
576

577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
        if low_cpu_mem_usage and not is_accelerate_available():
            low_cpu_mem_usage = False
            logger.warning(
                "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                " install accelerate\n```\n."
            )

        if device_map is not None and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `device_map=None`."
            )

        if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `low_cpu_mem_usage=False`."
            )

        if low_cpu_mem_usage is False and device_map is not None:
            raise ValueError(
                f"You cannot set `low_cpu_mem_usage` to False while using device_map={device_map} for loading and"
                " dispatching. Please make sure to set `low_cpu_mem_usage=True`."
            )

604
605
        # import it here to avoid circular import
        from diffusers import pipelines
606

Patrick von Platen's avatar
Patrick von Platen committed
607
        # 3. Load each module in the pipeline
patil-suraj's avatar
patil-suraj committed
608
        for name, (library_name, class_name) in init_dict.items():
609
610
611
612
            # 3.1 - now that JAX/Flax is an official framework of the library, we might load from Flax names
            if class_name.startswith("Flax"):
                class_name = class_name[4:]

613
            is_pipeline_module = hasattr(pipelines, library_name)
614
615
            loaded_sub_model = None

616
            # if the model is in a pipeline module, then we load it from the pipeline
617
618
            if name in passed_class_obj:
                # 1. check that passed_class_obj has correct parent class
Patrick von Platen's avatar
Patrick von Platen committed
619
                if not is_pipeline_module:
620
621
622
                    library = importlib.import_module(library_name)
                    class_obj = getattr(library, class_name)
                    importable_classes = LOADABLE_CLASSES[library_name]
623
                    class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()}
624
625
626

                    expected_class_obj = None
                    for class_name, class_candidate in class_candidates.items():
627
                        if class_candidate is not None and issubclass(class_obj, class_candidate):
628
629
630
631
632
633
634
635
                            expected_class_obj = class_candidate

                    if not issubclass(passed_class_obj[name].__class__, expected_class_obj):
                        raise ValueError(
                            f"{passed_class_obj[name]} is of type: {type(passed_class_obj[name])}, but should be"
                            f" {expected_class_obj}"
                        )
                else:
636
                    logger.warning(
637
638
639
640
641
642
643
                        f"You have passed a non-standard module {passed_class_obj[name]}. We cannot verify whether it"
                        " has the correct type"
                    )

                # set passed class object
                loaded_sub_model = passed_class_obj[name]
            elif is_pipeline_module:
644
645
646
                pipeline_module = getattr(pipelines, library_name)
                class_obj = getattr(pipeline_module, class_name)
                importable_classes = ALL_IMPORTABLE_CLASSES
Patrick von Platen's avatar
Patrick von Platen committed
647
                class_candidates = {c: class_obj for c in importable_classes.keys()}
patil-suraj's avatar
patil-suraj committed
648
            else:
patil-suraj's avatar
patil-suraj committed
649
                # else we just import it from the library.
patil-suraj's avatar
patil-suraj committed
650
                library = importlib.import_module(library_name)
651

patil-suraj's avatar
patil-suraj committed
652
                class_obj = getattr(library, class_name)
653
                importable_classes = LOADABLE_CLASSES[library_name]
654
                class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()}
655

Patrick von Platen's avatar
Patrick von Platen committed
656
            if loaded_sub_model is None:
657
658
                load_method_name = None
                for class_name, class_candidate in class_candidates.items():
659
                    if class_candidate is not None and issubclass(class_obj, class_candidate):
660
                        load_method_name = importable_classes[class_name][1]
Patrick von Platen's avatar
Patrick von Platen committed
661

662
663
                if load_method_name is None:
                    none_module = class_obj.__module__
664
665
666
667
                    is_dummy_path = none_module.startswith(DUMMY_MODULES_FOLDER) or none_module.startswith(
                        TRANSFORMERS_DUMMY_MODULES_FOLDER
                    )
                    if is_dummy_path and "dummy" in none_module:
668
669
670
671
672
673
674
                        # call class_obj for nice error message of missing requirements
                        class_obj()

                    raise ValueError(
                        f"The component {class_obj} of {pipeline_class} cannot be loaded as it does not seem to have"
                        f" any of the loading methods defined in {ALL_IMPORTABLE_CLASSES}."
                    )
Patrick von Platen's avatar
Patrick von Platen committed
675

676
                load_method = getattr(class_obj, load_method_name)
677
                loading_kwargs = {}
678

679
680
                if issubclass(class_obj, torch.nn.Module):
                    loading_kwargs["torch_dtype"] = torch_dtype
681
682
                if issubclass(class_obj, diffusers.OnnxRuntimeModel):
                    loading_kwargs["provider"] = provider
683
                    loading_kwargs["sess_options"] = sess_options
684

685
686
687
                is_diffusers_model = issubclass(class_obj, diffusers.ModelMixin)
                is_transformers_model = (
                    is_transformers_available()
688
                    and issubclass(class_obj, PreTrainedModel)
689
690
691
                    and version.parse(version.parse(transformers.__version__).base_version) >= version.parse("4.20.0")
                )

692
                # When loading a transformers model, if the device_map is None, the weights will be initialized as opposed to diffusers.
693
                # To make default loading faster we set the `low_cpu_mem_usage=low_cpu_mem_usage` flag which is `True` by default.
694
                # This makes sure that the weights won't be initialized which significantly speeds up loading.
695
                if is_diffusers_model or is_transformers_model:
696
                    loading_kwargs["device_map"] = device_map
697
                    loading_kwargs["low_cpu_mem_usage"] = low_cpu_mem_usage
698

699
700
                # check if the module is in a subdirectory
                if os.path.isdir(os.path.join(cached_folder, name)):
701
                    loaded_sub_model = load_method(os.path.join(cached_folder, name), **loading_kwargs)
702
703
                else:
                    # else load from the root directory
704
                    loaded_sub_model = load_method(cached_folder, **loading_kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
705

706
            init_kwargs[name] = loaded_sub_model  # UNet(...), # DiffusionSchedule(...)
Patrick von Platen's avatar
Patrick von Platen committed
707

Patrick von Platen's avatar
Patrick von Platen committed
708
709
        # 4. Potentially add passed objects if expected
        missing_modules = set(expected_modules) - set(init_kwargs.keys())
710
711
712
        passed_modules = list(passed_class_obj.keys())
        optional_modules = pipeline_class._optional_components
        if len(missing_modules) > 0 and missing_modules <= set(passed_modules + optional_modules):
Patrick von Platen's avatar
Patrick von Platen committed
713
            for module in missing_modules:
714
                init_kwargs[module] = passed_class_obj.get(module, None)
Patrick von Platen's avatar
Patrick von Platen committed
715
        elif len(missing_modules) > 0:
716
            passed_modules = set(list(init_kwargs.keys()) + list(passed_class_obj.keys())) - optional_kwargs
Patrick von Platen's avatar
Patrick von Platen committed
717
718
719
720
721
            raise ValueError(
                f"Pipeline {pipeline_class} expected {expected_modules}, but only {passed_modules} were passed."
            )

        # 5. Instantiate the pipeline
722
        model = pipeline_class(**init_kwargs)
723
724
725

        if return_cached_folder:
            return model, cached_folder
Patrick von Platen's avatar
Patrick von Platen committed
726
        return model
727

728
729
730
    @staticmethod
    def _get_signature_keys(obj):
        parameters = inspect.signature(obj.__init__).parameters
731
732
        required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty}
        optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty})
733
734
735
        expected_modules = set(required_parameters.keys()) - set(["self"])
        return expected_modules, optional_parameters

736
737
738
739
    @property
    def components(self) -> Dict[str, Any]:
        r"""

Yuta Hayashibe's avatar
Yuta Hayashibe committed
740
        The `self.components` property can be useful to run different pipelines with the same weights and
741
742
743
744
745
746
747
748
749
750
751
        configurations to not have to re-allocate memory.

        Examples:

        ```py
        >>> from diffusers import (
        ...     StableDiffusionPipeline,
        ...     StableDiffusionImg2ImgPipeline,
        ...     StableDiffusionInpaintPipeline,
        ... )

Patrick von Platen's avatar
Patrick von Platen committed
752
753
754
        >>> text2img = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        >>> img2img = StableDiffusionImg2ImgPipeline(**text2img.components)
        >>> inpaint = StableDiffusionInpaintPipeline(**text2img.components)
755
756
757
        ```

        Returns:
Yuta Hayashibe's avatar
Yuta Hayashibe committed
758
            A dictionaly containing all the modules needed to initialize the pipeline.
759
        """
760
761
762
763
        expected_modules, optional_parameters = self._get_signature_keys(self)
        components = {
            k: getattr(self, k) for k in self.config.keys() if not k.startswith("_") and k not in optional_parameters
        }
764
765
766
767
768
769
770
771
772

        if set(components.keys()) != expected_modules:
            raise ValueError(
                f"{self} has been incorrectly initialized or {self.__class__} is incorrectly implemented. Expected"
                f" {expected_modules} to be defined, but {components} are defined."
            )

        return components

773
774
775
776
777
778
779
780
    @staticmethod
    def numpy_to_pil(images):
        """
        Convert a numpy image or a batch of images to a PIL image.
        """
        if images.ndim == 3:
            images = images[None, ...]
        images = (images * 255).round().astype("uint8")
781
782
783
784
785
        if images.shape[-1] == 1:
            # special case for grayscale (single channel) images
            pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
        else:
            pil_images = [Image.fromarray(image) for image in images]
786
787

        return pil_images
hysts's avatar
hysts committed
788

789
    def progress_bar(self, iterable=None, total=None):
hysts's avatar
hysts committed
790
791
792
793
794
795
796
        if not hasattr(self, "_progress_bar_config"):
            self._progress_bar_config = {}
        elif not isinstance(self._progress_bar_config, dict):
            raise ValueError(
                f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}."
            )

797
798
799
800
801
802
        if iterable is not None:
            return tqdm(iterable, **self._progress_bar_config)
        elif total is not None:
            return tqdm(total=total, **self._progress_bar_config)
        else:
            raise ValueError("Either `total` or `iterable` has to be defined.")
hysts's avatar
hysts committed
803
804
805

    def set_progress_bar_config(self, **kwargs):
        self._progress_bar_config = kwargs
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840

    def enable_xformers_memory_efficient_attention(self):
        r"""
        Enable memory efficient attention as implemented in xformers.

        When this option is enabled, you should observe lower GPU memory usage and a potential speed up at inference
        time. Speed up at training time is not guaranteed.

        Warning: When Memory Efficient Attention and Sliced attention are both enabled, the Memory Efficient Attention
        is used.
        """
        self.set_use_memory_efficient_attention_xformers(True)

    def disable_xformers_memory_efficient_attention(self):
        r"""
        Disable memory efficient attention as implemented in xformers.
        """
        self.set_use_memory_efficient_attention_xformers(False)

    def set_use_memory_efficient_attention_xformers(self, valid: bool) -> None:
        # Recursively walk through all the children.
        # Any children which exposes the set_use_memory_efficient_attention_xformers method
        # gets the message
        def fn_recursive_set_mem_eff(module: torch.nn.Module):
            if hasattr(module, "set_use_memory_efficient_attention_xformers"):
                module.set_use_memory_efficient_attention_xformers(valid)

            for child in module.children():
                fn_recursive_set_mem_eff(child)

        module_names, _, _ = self.extract_init_dict(dict(self.config))
        for module_name in module_names:
            module = getattr(self, module_name)
            if isinstance(module, torch.nn.Module):
                fn_recursive_set_mem_eff(module)
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871

    def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
        r"""
        Enable sliced attention computation.

        When this option is enabled, the attention module will split the input tensor in slices, to compute attention
        in several steps. This is useful to save some memory in exchange for a small speed decrease.

        Args:
            slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
                When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
                `"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
                provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
                must be a multiple of `slice_size`.
        """
        self.set_attention_slice(slice_size)

    def disable_attention_slicing(self):
        r"""
        Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
        back to computing attention in one step.
        """
        # set slice_size = `None` to disable `attention slicing`
        self.enable_attention_slicing(None)

    def set_attention_slice(self, slice_size: Optional[int]):
        module_names, _, _ = self.extract_init_dict(dict(self.config))
        for module_name in module_names:
            module = getattr(self, module_name)
            if isinstance(module, torch.nn.Module) and hasattr(module, "set_attention_slice"):
                module.set_attention_slice(slice_size)